Risk Assessment for Failure Mode and Effects Analysis Using the Bonferroni Mean and TODIM Method
Abstract
:1. Introduction
2. Literature Review
2.1. Aggregation Expert Preferences
2.2. Bonferroni Mean
2.3. Failure Mode Ranking
2.4. TODIM Method
3. Preliminaries
- (1)
- ;
- (2)
- ;
- (3)
- ;
- (4)
- .
- (1)
- If, then;
- (2)
- If, then:
- (a)
- If, then;
- (b)
- If, then.
4. The Proposed FMEA Method
5. Case Illustration
5.1. Implementation of the Proposed Method
5.2. Sensitivity Analysis
5.3. Comparisons and Discussion
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stamatis, D.H. Failure Mode and Effect Analysis: FMEA from Theory to Execution; ASQ Quality Press: Milwaukee, WI, USA, 2003. [Google Scholar]
- Bowles, J.B.; Pelaez, C.E. Fuzzy logic prioritization of failures in a system failure mode, effects and criticality analysis. Reliab. Eng. Syst. Saf. 1995, 50, 203–213. [Google Scholar] [CrossRef]
- Yeh, T.M.; Chen, L.Y. Fuzzy-based risk priority number in FMEA for semiconductor wafer processes. Int. J. Prod. Res. 2014, 52, 539–549. [Google Scholar] [CrossRef]
- Karim, M.A.; Smith, A.J.R.; Halgamuge, S. Empirical relationships between some manufacturing practices and performance. Int. J. Prod. Res. 2008, 46, 3583–3613. [Google Scholar] [CrossRef]
- Braaksma, A.J.J.; Meesters, A.J.; Klingenberg, W.; Hicks, C. A quantitative method for failure mode and effects analysis. Int. J. Prod. Res. 2012, 50, 6904–6917. [Google Scholar] [CrossRef]
- Chang, K.H.; Chang, Y.C.; Lee, Y.T. Integrating TPOSIS and dematel methods to rank the risk of failure of FMEA. Int. J. Inf. Technol. Decis. Mak. 2014, 13, 1229–1257. [Google Scholar] [CrossRef]
- Bozdag, E.; Asan, U.; Soyer, A.; Serdarasan, S. Risk prioritization in failure mode and effects analysis using interval type-2 fuzzy sets. Expert Syst. Appl. 2015, 42, 4000–4015. [Google Scholar] [CrossRef]
- Certa, A.; Hopps, F.; Inghilleri, R.; Fata, C.M.L. A Dempster-shafer theory-based approach to the failure mode, effects and criticality analysis (FMECA) under epistemic uncertainty: Application to the propulsion system of a fishing vessel. Reliab. Eng. Syst. Saf. 2017, 159, 69–79. [Google Scholar] [CrossRef]
- Braglia, M.; Frosolini, M.; Montanari, R. Fuzzy TOPSIS approach for failure mode, effects and criticality analysis. Qual. Reliab. Eng. Int. 2010, 19, 425–443. [Google Scholar] [CrossRef]
- Chin, K.S.; Wang, Y.M.; Poon, G.K.K.; Yang, J.B. Failure mode and effects analysis using a group-based evidential reasoning approach. Comput. Oper. Res. 2009, 36, 1768–1779. [Google Scholar] [CrossRef]
- Huang, J.; Li, Z.; Liu, H.C. New approach for failure mode and effect analysis using linguistic distribution assessments and TODIM method. Reliab. Eng. Syst. Saf. 2017, 167, 302–309. [Google Scholar] [CrossRef]
- Safari, H.; Faraji, Z.; Majidian, S. Identifying and evaluating enterprise architecture risks using FMEA and fuzzy vikor. J. Intell. Manuf. 2016, 27, 475–486. [Google Scholar] [CrossRef]
- Liu, H.C.; Liu, L.; Liu, N. Risk evaluation approaches in failure mode and effects analysis: A literature review. Expert Syst. Appl. 2013, 40, 828–838. [Google Scholar] [CrossRef]
- Franceschini, F.; Galetto, M. A new approach for evaluation of risk priorities of failure modes in FMEA. Int. J. Prod. Res. 2001, 39, 2991–3002. [Google Scholar] [CrossRef] [Green Version]
- Guo, J. A risk assessment approach for failure mode and effects analysis based on intuitionistic fuzzy sets and evidence theory. J. Intell. Fuzzy Syst. 2016, 30, 869–881. [Google Scholar] [CrossRef]
- Liu, H.C.; You, J.X.; Chen, S.; Chen, Y.Z. An integrated failure mode and effect analysis approach for accurate risk assessment under uncertainty. Iie Trans. 2016, 48, 1027–1042. [Google Scholar] [CrossRef]
- Liu, H.C.; You, J.X.; Duan, C.Y. An integrated approach for failure mode and effect analysis under interval-valued intuitionistic fuzzy environment. Int. J. Prod. Econ. 2017, 207, 163–172. [Google Scholar] [CrossRef]
- Wang, L.E.; Liu, H.C.; Quan, M.Y. Evaluating the risk of failure modes with a hybrid MCDM model under interval-valued intuitionistic fuzzy environment. Comput. Ind. Eng. 2016, 102, 175–185. [Google Scholar] [CrossRef]
- Zhao, H.; You, J.X.; Liu, H.C. Failure mode and effect analysis using multimoora method with continuous weighted entropy under interval-valued intuitionistic fuzzy environment. Soft Comput. 2017, 21, 5355–5367. [Google Scholar] [CrossRef]
- Kabak, Ö.; Ervural, B. Multiple attribute group decision making: A generic conceptual framework and a classification scheme. Knowl. Based Syst. 2017, 123, 13–30. [Google Scholar] [CrossRef]
- Ju, D.; Ju, Y.; Wang, A. Multi-attribute group decision making based on power generalized Heronian mean operator under hesitant fuzzy linguistic environment. Soft Comput. 2018, 23, 3823–3842. [Google Scholar] [CrossRef]
- Camerer, C. Bounded rationality in individual decision making. Exp. Econ. 1998, 1, 163–183. [Google Scholar] [CrossRef]
- Charness, G.; Rabin, M. Expressed preferences and behavior in experimental games. Games Econ. Behav. 2005, 53, 151–169. [Google Scholar] [CrossRef] [Green Version]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica 1979, 47, 263–291. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, Z. The TODIM analysis approach based on novel measured functions under hesitant fuzzy environment. Knowl. Based Syst. 2014, 61, 48–58. [Google Scholar] [CrossRef]
- Mohsen, O.; Fereshteh, N. An extended VIKORmethod based on entropy measure for the failure modes risk assessment – a case study of the geothermal power plant (GPP). Saf. Sci. 2017, 92, 160–172. [Google Scholar] [CrossRef]
- Selim, H.; Yunusoglu, M.G.; Balaman, Ş.Y. A dynamic maintenance planning framework based on fuzzy TOPSIS and FMEA: Application in an international food company. Qual. Reliab. Eng. Int. 2016, 32, 795–804. [Google Scholar] [CrossRef]
- Song, W.; Ming, X.; Wu, Z.; Zhu, B. Failure modes and effects analysis using integrated weight-based fuzzy TOPSIS. Int. J. Comput. Integr. Manuf. 2013, 26, 1172–1186. [Google Scholar] [CrossRef]
- Bonferroni, C. Sulle medie multiple di potenze. Boll. Dell’Unione Mat. Ital. 1950, 5, 267–270. [Google Scholar]
- Liang, D.; Xu, Z.; Darko, A.P. Projection model for fusing the information of Pythagorean fuzzy multicriteria group decision making based on geometric Bonferroni mean. Int. J. Intell. Syst. 2017, 32, 966–987. [Google Scholar] [CrossRef]
- Liu, P.; Zhang, L.; Liu, X.; Wang, P. Multi-valued neutrosophic number Bonferroni mean operators with their applications in multiple attribute group decision making. Int. J. Inf. Technol. Decis. Mak. 2016, 15, 1181–1210. [Google Scholar] [CrossRef]
- Liu, X.; Tao, Z.; Chen, H.; Zhou, L. A new interval-valued 2-tuple linguistic Bonferroni mean operator and its application to multiattribute group decision making. Int. J. Fuzzy Syst. 2017, 19, 86–108. [Google Scholar] [CrossRef]
- He, Y.; Zhen, H.; Shi, L.; Meng, S. Multiple attribute group decision making based on ivhfpbms and a new ranking method for interval-valued hesitant fuzzy information. Comput. Ind. Eng. 2016, 99, 63–77. [Google Scholar] [CrossRef]
- Fan, C.; Ye, J.; Hu, K.; Fan, E. Bonferroni mean operators of linguistic neutrosophic numbers and their multiple attribute group decision-making methods. Information 2017, 8, 107. [Google Scholar] [CrossRef]
- He, Y.; Zhen, H.; Wang, G.; Chen, H. Hesitant fuzzy power Bonferroni means and their application to multiple attribute decision making. IEEE Trans. Fuzzy Syst. 2015, 23, 1655–1668. [Google Scholar] [CrossRef]
- Liu, P.; Xi, L. Multiattribute group decision making methods based on linguistic intuitionistic fuzzy power Bonferroni mean operators. Complexity 2017, 2017, 1–15. [Google Scholar] [CrossRef]
- Lolli, F.; Ishizaka, A.; Gamberini, R.; Rimini, B.; Messori, M. Flowsort-gdss—A novel group multi-criteria decision support system for sorting problems with application to FMEA. Expert Syst. Appl. Int. J. 2015, 42, 6342–6349. [Google Scholar] [CrossRef]
- Liu, H.C.; Liu, L.; Liu, N.; Mao, L.X. Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment. Expert Syst. Appl. 2012, 39, 12926–12934. [Google Scholar] [CrossRef]
- Xu, K.; Tang, L.C.; Xie, M.; Ho, S.L.; Zhu, M.L. Fuzzy assessment of FMEA for engine systems. Reliab. Eng. Syst. Saf. 2002, 75, 17–29. [Google Scholar] [CrossRef]
- Seyed-Hosseini, S.M.; Safaei, N.; Asgharpour, M.J. Reprioritization of failures in a system failure mode and effects analysis by decision making trial and evaluation laboratory technique. Reliab. Eng. Syst. Saf. 2006, 91, 872–881. [Google Scholar] [CrossRef]
- Liu, H.C.; You, J.X.; Lin, Q.L.; Li, H. Risk assessment in system FMEA combining fuzzy weighted average with fuzzy decision-making trial and evaluation laboratory. Int. J. Comput. Integr. Manuf. 2015, 28, 701–714. [Google Scholar] [CrossRef]
- Liu, H.C.; You, J.X.; Ding, X.F.; Su, Q. Improving risk evaluation in FMEA with a hybrid multiple criteria decision making method. Int. J. Qual. Reliab. Manag. 2015, 32, 763–782. [Google Scholar] [CrossRef]
- Gomes, L.; Lima, M. TODIM: Basics and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 1992, 16, 113–127. [Google Scholar]
- Qin, J.; Liu, X.; Pedrycz, W. An extended TODIM multi-criteria group decision making method for green supplier selection in interval type-2 fuzzy environment. Eur. J. Oper. Res. 2017, 258, 626–638. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, Z. Efficiency evaluation of sustainable water management using the HF-TODIM method. Int. Trans. Oper. Res. 2019, 26, 747–764. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, H.Y.; Wang, J.Q. A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Comput. Appl. 2018, 29, 221–234. [Google Scholar] [CrossRef]
- Qin, Q.; Liang, F.; Li, L.; Wei, Y.M. Selection of energy performance contracting business models: A behavioral decision-making approach. Renew. Sustain. Energy Rev. 2017, 72, 422–433. [Google Scholar] [CrossRef]
- Ren, P.; Xu, Z.; Gou, X. Pythagorean fuzzy TODIM approach to multi-criteria decision making. Appl. Soft Comput. 2016, 42, 246–259. [Google Scholar] [CrossRef]
- Zhang, X. Multicriteria Pythagorean fuzzy decision analysis: A hierarchical QUALIFLEX approach with the closeness index-based ranking methods. Inf. Sci. 2016, 330, 104–124. [Google Scholar] [CrossRef]
- Peng, X.; Yang, Y. Fundamental properties of interval-valued Pythagorean fuzzy aggregation operators. Int. J. Intell. Syst. 2016, 31, 444–487. [Google Scholar] [CrossRef]
- Chen, T.Y. An interval-valued Pythagorean fuzzy outranking method with a closeness-based assignment model for multiple criteria decision making. Int. J. Intell. Syst. 2018, 33, 126–168. [Google Scholar] [CrossRef]
- Xu, Z.; Chen, Q. A multi-criteria decision making procedure based on interval-valuedintuitionistic fuzzy Bonferroni mean. J. Syst. Sci. Syst. Eng. 2011, 20, 217–228. [Google Scholar] [CrossRef]
- Bazzazi, A.A.; Osanloo, M.; Karimi, B. Deriving preference order of open pit mines equipment through MADM methods: Application of modified vikor method. Expert Syst. Appl. 2011, 38, 2550–2556. [Google Scholar] [CrossRef]
- Wei, C.P.; Wang, P.; Zhang, Y.Z. Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications. Inf. Sci. 2011, 181, 4273–4286. [Google Scholar] [CrossRef]
- Wei, G. Grey relational analysis model for dynamic hybrid multiple attribute decision making. Knowl. Based Syst. 2011, 24, 672–679. [Google Scholar] [CrossRef]
- Liu, H.C.; Chen, Y.Z.; You, J.X.; Li, H. Risk evaluation in failure mode and effects analysis using fuzzy digraph and matrix approach. J. Intell. Manuf. 2016, 27, 805–816. [Google Scholar] [CrossRef]
Linguistic Variables | Abbreviation | IVPFNs |
---|---|---|
Very high | VH | ([0.8000, 0.9000], [0.1000, 0.2000]) |
High | H | ([0.7000, 0.8000], [0.2000, 0.3000]) |
Medium high | MH | ([0.6000, 0.7000], [0.3000, 0.4000]) |
Medium | M | ([0.5000, 0.6000], [0.4000, 0.5000]) |
Medium low | ML | ([0.3000, 0.4000], [0.6000, 0.7000]) |
Low | L | ([0.2000, 0.3000], [0.7000, 0.8000]) |
Very low | VL | ([0.1000, 0.2000], [0.8000, 0.9000]) |
Linguistic Variables | Abbreviation | IVPFNs |
---|---|---|
Very high | VH | ([0.8000, 0.9000], [0.1000, 0.2000]) |
High | H | ([0.7000, 0.8000], [0.2000, 0.3000]) |
Medium | M | ([0.5000, 0.6000], [0.4000, 0.5000]) |
Low | L | ([0.3000, 0.4000], [0.6000, 0.7000]) |
Very low | VL | ([0.1000, 0.2000], [0.8000, 0.9000]) |
Risk Factors | Severity (S) | Occurrence (O) | Detection (D) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Team Experts | E1 | E2 | E3 | E4 | E1 | E2 | E3 | E4 | E1 | E2 | E3 | E4 |
FM1 | VH | VH | VH | H | ML | ML | M | L | H | H | MH | M |
FM2 | L | VL | VH | ML | ML | ML | M | ML | ML | M | M | ML |
FM3 | ML | ML | L | ML | MH | MH | M | M | ML | ML | L | M |
FM4 | MH | MH | M | M | ML | L | ML | ML | M | L | ML | ML |
FM5 | VH | VH | MH | H | ML | ML | M | M | ML | ML | L | ML |
FM6 | VH | VH | MH | VH | L | ML | L | ML | L | ML | ML | M |
FM7 | MH | MH | VH | H | M | M | MH | M | ML | L | ML | ML |
FM8 | M | M | H | MH | M | MH | M | MH | ML | M | ML | ML |
Team Experts | E1 | E2 | E3 | E4 |
---|---|---|---|---|
Occurrence | L | M | M | H |
Severity | M | H | H | VH |
Detection | M | H | M | H |
Risk Factors | S | O | D |
---|---|---|---|
FM1 | ([0.4517,0.5520], [0.6053,0.6972]) | ([0.1743,0.2292], [0.8708,0.9062]) | ([0.3416,0.4138], [0.7297,0.7875]) |
FM2 | ([0.1943, 0.2609], [0.8627, 0.9045]) | ([0.1847, 0.2403], [0.8620, 0.8982]) | ([0.2200, 0.2770], [0.8384, 0.8772]) |
FM3 | ([0.1357, 0.1884], [0.8936, 0.9264]) | ([0.2898, 0.3540], [0.7764, 0.8248]) | ([0.1619, 0.2163], [0.8768, 0.9123]) |
FM4 | ([0.2898, 0.3540], [0.7764, 0.8248]) | ([0.1371, 0.1897], [0.8931, 0.9258]) | ([0.1597, 0.2136], [0.8785, 0.9136]) |
FM5 | ([0.4077, 0.4978], [0.6539, 0.7330]) | ([0.2120, 0.2689], [0.8426, 0.8813]) | ([0.1357, 0.1884], [0.8936, 0.9264]) |
FM6 | ([0.4264, 0.5231], [0.6286, 0.7165]) | ([0.1268, 0.1791], [0.9000, 0.9321]) | ([0.1698, 0.2243], [0.8722, 0.9077]) |
FM7 | ([0.3818, 0.4630], [0.6928, 0.7586]) | ([0.2796, 0.3422], [0.7872, 0.8332]) | ([0.1371, 0.1897], [0.8931, 0.9258]) |
FM8 | ([0.3141, 0.3818], [0.7586, 0.8099]) | ([0.2924, 0.3568], [0.7745, 0.8231]) | ([0.1829, 0.2385], [0.8625, 0.8988]) |
Weights | ([0.3736, 0.4573], [0.6817, 0.7526]) | ([0.2677, 0.3366], [0.7913, 0.8386]) | ([0.3177, 0.3873], [0.7421, 0.7980]) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, J.; Shuai, B.; Wang, R.; Chin, K.-S. Risk Assessment for Failure Mode and Effects Analysis Using the Bonferroni Mean and TODIM Method. Mathematics 2019, 7, 536. https://doi.org/10.3390/math7060536
Zhu J, Shuai B, Wang R, Chin K-S. Risk Assessment for Failure Mode and Effects Analysis Using the Bonferroni Mean and TODIM Method. Mathematics. 2019; 7(6):536. https://doi.org/10.3390/math7060536
Chicago/Turabian StyleZhu, Jianghong, Bin Shuai, Rui Wang, and Kwai-Sang Chin. 2019. "Risk Assessment for Failure Mode and Effects Analysis Using the Bonferroni Mean and TODIM Method" Mathematics 7, no. 6: 536. https://doi.org/10.3390/math7060536
APA StyleZhu, J., Shuai, B., Wang, R., & Chin, K. -S. (2019). Risk Assessment for Failure Mode and Effects Analysis Using the Bonferroni Mean and TODIM Method. Mathematics, 7(6), 536. https://doi.org/10.3390/math7060536