Non-Stationary Fractal Interpolation
Abstract
:1. Introduction
2. Preliminaries
3. Systems of Function Systems
- (i)
- , for all ;
- (ii)
- there exists a common nonempty compact invariant set for the maps , , , such that converges uniformly on to as ;
- (iii)
- the IFS with is contractive on ;
- (i)
- there exists a nonempty closed invariant set for , , ;
- (ii)
- and:
4. Fractal Interpolation
4.1. Stationary Fractal Interpolation
5. Non-Stationary Fractal Functions
6. Non-Stationary Fractal Interpolation
7. Non-Stationary Fractal Functions in Bochner–Lebesgue Spaces
- (A1)
- ;
- (A2)
- ;
- (A3)
Funding
Acknowledgments
Conflicts of Interest
References
- Barnsley, M.F. Fractals Everywhere; Academic Press: Orlando, FL, USA, 1988. [Google Scholar]
- Massopust, P.R. Interpolation and Approximation with Splines and Fractals; Oxford University Press: Oxford, MA, USA, 2010. [Google Scholar]
- Massopust, P.R. Fractal Functions, Fractal Surfaces, and Wavelets, 2nd ed.; Academic Press: San Diego, CA, USA, 2016. [Google Scholar]
- Levin, D.; Dyn, N.; Viswanathan, P. Non-stationary versions of fixed-point theory, with applications to fractals and subdivision. J. Fixed Point Theory Appl. 2019, 21, 1–25. [Google Scholar] [CrossRef]
- Dira, N.; Levin, D.; Massopust, P. Attractors of Trees of Maps and of Sequences of Maps between Spaces and Applications to Subdivision. Available online: http://arxiv.org/abs/1902.03407 (accessed on 9 February 2019).
- Hutchinson, J.E. Fractals and self-similarity. Indiana Univ. Math. J. 1981, 30, 713–747. [Google Scholar] [CrossRef]
- Barnsley, M.F.; Hutchinson, J.E.; Stenflo, Ö. V-variable fractals: Fractals with partial self-similarity. Adv. Math. 2008, 218, 2015–2088. [Google Scholar] [CrossRef]
- Rolewicz, S. Metric Linear Spaces; Kluwer Academic: Warsaw, Poland, 1985. [Google Scholar]
- Barnsley, M.F.; Hegland, M.; Massopust, P.R. Numerics and Fractals. Bull. Inst. Math. Acad. Sin. (N.S.) 2014, 9, 389–430. [Google Scholar]
- Barnsley, M.F. Fractal functions and interpolation. Constr. Approx. 1986, 2, 303–329. [Google Scholar] [CrossRef]
- Takagi, T. A simple example of the continuous function without derivative. Proc. Phys. Math. Soc. Jpn. 1903, 1, 176–177. [Google Scholar]
- Kiesswetter, K. Ein einfaches Beispiel für eine Funktion welche überall stetig und nicht differenzierbar ist. Math. Phys. Semesterber. 1966, 13, 216–221. [Google Scholar]
- Dubins, L.E.; Savage, L.J. Inequalities for Stochastic Processes; Dover Publications: New York, NY, USA, 1976. [Google Scholar]
- Rudin, W. Functional Analysis; McGraw–Hill: New York, NY, USA, 1991. [Google Scholar]
- Adams, R.; Fourier, J. Sobolev Spaces, 2nd ed.; Academic Press: New York, NY, USA, 2003. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Massopust, P. Non-Stationary Fractal Interpolation. Mathematics 2019, 7, 666. https://doi.org/10.3390/math7080666
Massopust P. Non-Stationary Fractal Interpolation. Mathematics. 2019; 7(8):666. https://doi.org/10.3390/math7080666
Chicago/Turabian StyleMassopust, Peter. 2019. "Non-Stationary Fractal Interpolation" Mathematics 7, no. 8: 666. https://doi.org/10.3390/math7080666
APA StyleMassopust, P. (2019). Non-Stationary Fractal Interpolation. Mathematics, 7(8), 666. https://doi.org/10.3390/math7080666