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Abstract

:

In this manuscript, we propose a solution for Volterra type fractional integral equations by using a hybrid type contraction that unifies both nonlinear and linear type inequalities in the context of metric spaces. Besides this main goal, we also aim to combine and merge several existing fixed point theorems that were formulated by linear and nonlinear contractions.
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1. Introduction and Preliminaries


In the last few decades, one of the most attractive research topics in nonlinear functional analysis is to solve fractional differential and fractional integral equations that can be reduced properly to standard differential equations and integral equations, respectively. In this paper, we aim to get a proper solution for Volterra type fractional integral equations by using a hybrid type contraction. For this purpose, we first initialize the new hybrid type contractions that combine linear and nonlinear inequalities.



We first recall the auxiliary functions that we shall use effectively: Let Ψ be the set of all nondecreasing functions Λ:[0,∞)→[0,∞) in a way that




	(ΛΣ)

	
there are k0∈N and δ∈0,1 and a convergent series ∑i=1∞vi such that vi≥0 and


Λi+1t≤δΛkt+vi,



(1)




for i≥i0 and t≥0.









Each Λ∈Φ is called a c-comparison function (see [1,2]).



The following lemma demonstrate the usability and power of such auxiliary functions:



Lemma 1

([2]). If Λ∈Φ, then




	(i)

	
The series ∑k=1∞Λkσ is convergent for σ≥0.




	(ii)

	
Λnσn∈N converges to 0 as n→∞ for σ≥0;




	(iii)

	
Λ is continuous at 0;




	(iv)

	
Λσ<σ, for any σ∈(0,∞).











All the way through the paper, a pair (X,d) presents a complete metric space if it is not mentioned otherwise. In addition, the letter T presents a self-mapping on (X,d).



In what follows, we shall state the definition of a new hybrid contraction:



Definition 1.

A mapping T:(X,d)→(X,d) is called a hybrid contraction of type A, if there is Λ in Φ so that


d(TΩ,Tω)≤ΛATp(Ω,ω),



(2)




where p≥0 and σi≥0,i=1,2,3,4, such that ∑i=14σi=1 and


ATp(Ω,ω)=[σ1(d(Ω,ω))p+σ2(d(Ω,TΩ))p+σ3(d(ω,Tω))p+σ4d(ω,TΩ)+d(Ω,Tω)2p]1/p,for p>0,Ω,ω∈X(d(Ω,ω))σ1(d(Ω,TΩ))σ2(d(ω,Tω))σ3,for p=0,Ω,ω∈X∖ϝT(X),



(3)




where ϝT(X)={ϱ∈X:Tϱ=ϱ}.





Leu us underline some particular cases from Definition 1.




	
For p=1, σ4=0 and μi=κσi, for i=1,2,3, we get a contraction of Reich-Rus-Ćirić type:


d(TΩ,Tω)≤μ1d(Ω,ω)+μ2d(Ω,TΩ)+μ3d(ω,Tω),








for Ω,ω∈X, where κ∈0,1, see [2,3,4].



	
In the statement above, for μi=13, we find particular form Reich–Rus–Ćirić type contraction,


d(TΩ,Tω)≤13d(Ω,ω)+d(Ω,TΩ)+d(ω,Tω),








for Ω,ω∈X.



	
If p=2, and σ1=σ2=σ3=13,σ4=0, we find the following condition,


d(TΩ,Tω)≤κ3[d2(Ω,ω)+d2(Ω,TΩ)+d2(ω,Tω)]1/2








for all Ω,ω∈X, where κ∈0,1.



	
If p=1 and σ2=σ3=12,σ1=σ4=0, we have a Kannan type contraction,


d(TΩ,Tω)≤κ2[d(Ω,TΩ)+d(ω,Tω)],








for all Ω,ω∈X, see [5].



	
If p=2 and σ2=σ3=12,σ1=σ4=0, we have


d(TΩ,Tω)≤κ2[d2(Ω,TΩ)+d2(ω,Tω)]1/2








for all Ω,ω∈X.



	
If p=0 and σ1=0,σ2=δ,σ3=1−δ,σ4=0, we get an interpolative contraction of Kannan type:


d(TΩ,Tω)≤κ(d(Ω,TΩ))δ(d(ω,Tω))1−δ,








for all Ω,ω∈X∖ϝT(X), where κ∈[0,1), see [6].



	
If p=0 and σ1=α,σ2=β,σ3=1−β−α,σ4=0 with α,β∈(0,1), then


d(TΩ,Tω)≤κ(d(Ω,ω))α(d(Ω,TΩ))β(d(ω,Tω))1−β−α,








for all Ω,ω∈X∖ϝT(X). It is an interpolative contraction of Reich–Rus–Ćirić type [7] (for other related interpolate contraction type mappings, see [8,9,10,11]).








In this paper, we provide some fixed point results involving the hybrid contraction (18). At the end, we give a concrete example and we resolve a Volterra fractional type integral equation.




2. Main Results


Our essential result is



Theorem 1.

Suppose that a self-mapping T on (X,d) is a hybrid contraction of type A. Then, T possesses a fixed point ρ and, for any ς0∈X, the sequence {Tnς0} converges to ρ if either




	(C1)

	
T is continuous at ρ;




	(C2)

	
or, [σ21/p+σ421/p]<1;




	(C2)

	
or, [σ31/p+σ421/p]<1.











Proof. 

We shall use the standard Picard algorithm to prove the claims in the theorem. Let {ςn} be defined by the recursive relation ςn+1=Tςn, n≥0, by taking an arbitrary point x∈X and renaming it as x=ς0. Hereafter, we shall assume that


ςn≠ςn+1⇔d(ςn,ςn+1)>0 for all n∈N0.








Indeed, it is easy that the converse case is trivial and terminate the proof. More precisely, if there is n0 so that ςn0=ςn0+1=Tςn0, then ςn0 turns to be a fixed point of T.



Now, we shall examine the cases p=0 and p>0, separately. We first consider the case p>0.



On account of the given condition (18), we find


d(ςn+1,ςn)≤ΛATp(ςn,ςn−1),



(4)




where


ATp(ςn,ςn−1)=σ1(d(ςn,ςn−1))p+σ2(d(ςn,ςn+1))p+σ3(d(ςn−1,ςn))p+σ4d(ςn−1,ςn+1)+d(ςn,ςn)2p1/p=σ1(d(ςn,ςn−1))p+σ2(d(ςn,ςn+1))p+σ3(d(ςn−1,ςn))p+σ42[d(ςn−1,ςn)+d(ςn,ςn+1)]p1/p.








Suppose that d(ςn,ςn+1)≥d(ςn−1,ςn). With an elementary estimation in Label (4) from the right-hand side and keeping ∑i=14σi=1 in mind, we find that


d(ςn+1,ςn)≤Λd(ςn+1,ςn)∑i=14σip=Λd(ςn+1,ςn)<d(ςn+1,ςn),



(5)




a contradiction. Attendantly, we find that d(ςn,ςn+1)<d(ςn−1,ςn) and further


d(ςn+1,ςn)≤Λd(ςn−1,ςn)<d(ςn−1,ςn).



(6)




Inductively, from the inequalities above, we deduce


d(ςn+1,ςn)≤Λn(d(ς1,ς0)), for all n∈N.



(7)




From Label (7) and using the triangular inequality, for all k≥1, we have


d(ςn,ςn+k)≤d(ςn,ςn+1)+…+d(ςn+k−1,ςn+k)≤∑r=nn+k−1Λr(d(ς1,ς0))≤∑r=n+∞Λr(d(ς1,ς0))→0asn→∞.








Thus, the constructive sequence {ςn} is Cauchy in (X,d). Taking the completeness of the metric space (X,d) into account, we conclude the existence of ρ∈X such that


limn→∞d(ςn,ρ)=0.



(8)







Now, we shall indicate that ρ is the requested fixed point of T under the given assumptions.



Suppose that (C1) holds, that is, T is continuous. Then,


ρ=limn→∞ςn+1=limn→∞Tςn=T(limn→∞ςn)=Tρ.











Now, we suppose that (C2) holds, that is, [σ21/p+σ421/p]<1.


0<d(Tρ,ρ)≤d(Tρ,ςn+1)+d(ςn+1,ρ)=d(Tρ,Tςn+1)+d(ςn+1,ρ)≤ΛATp(ρ,ςn)+d(ςn+1,ρ),<ATp(ρ,ςn)+d(ςn+1,ρ),



(9)




where


ATp(ρ,ςn)=σ1(d(ρ,ςn))p+σ2(d(ρ,Tρ))p+σ3(d(ςn,ςn+1))p+σ4d(ςn,Tρ)+d(ρ,ςn+1)2p1/p.








As n→∞, we have


0<d(Tρ,ρ)≤Δd(Tρ,ρ),








where Δ:=[σ21/p+σ421/p]. Since Δ:=[σ21/p+σ421/p]<1, which is a contradiction, that is, Tρ=ρ.



We skip the details of the case (C3) since it is verbatim of the proof of the case (C2). Indeed, the only the difference follows from the fact that ATp(ρ,ςn)≠ATp(ςn,ρ) since σ2 not need to be equal to σ3.



As a last step, we shall consider the case p=0. Here, Label (18) and Label (3) become


d(TΩ,Tω)≤Λ(d(Ω,ω))σ1(d(Ω,TΩ))σ2(d(ω,Tω))σ3[d(TΩ,ω)+d(Ω,Tω)2]1−σ1−σ2−σ3



(10)




for all Ω,ω∈X∖ϝT(X), where κ∈0,1 and σ1,σ2,σ3∈(0,1). Set Ω=θn and ω=θn−1 in the inequality (10), we find that


dθn+1,θn=dTθn,Tθn−1≤Λdθn,θn−1σ1dθn,Tθnσ2·dθn−1,Tθn−1σ3·12(dθn,θn+dθn−1,θn+1)1−σ1−σ2−σ3≤Λdθn,θn−1σ1·dθn,θn+1σ2·dθn−1,θnσ3·12(dθn−1,θn+dθn,θn+1)1−σ1−σ2−σ3.



(11)




Suppose that dθn−1,θn<dθn,θn+1 for some n≥1. Thus,


12(dθn−1,θn+dθn,θn+1)≤dθn,θn+1.








Consequently, inequality (11) yields that


dθn,θn+1σ1+σ3≤Λdθn−1,θnσ1+σ3<dθn−1,θnσ1+σ3.



(12)




Thus, we conclude that dθn−1,θn≥dθn,θn+1, which is a contradiction. Thus, we have


dθn,θn+1≤dθn−1,θnfor alln≥1.








Hence, {dθn−1,θn} is a non-increasing sequence with positive terms. On account of the simple observation below,


12(dθn−1,θn+dθn,θn+1)≤dθn−1,θn,for alln≥1








together with an elementary elimination, the inequality (11) implies that


dθn,θn+1≤Λ(dθn−1,θn)<dθn−1,θn



(13)




for all n∈N. Since the inequality (13) is equivalent to Label (6), by following the corresponding lines, we derive that the iterated sequence {θn} is Cauchy and converges to θ*∈X that is, limn→∞dθn,θ*=0. Suppose that θ*≠Tθ*. Since θn≠Tθn for each n≥0, by letting x=θn and y=θ* in (18), we have


dθn+1,Tθ*=dTθn,Tθ*≤Λdθn,θ*σ1·dθn,Tθnσ2·dθ*,Tθ*σ3·12(dθn+1,Tθ*+dθ*,Tθn+1)1−σ2−σ1−σ3.



(14)




Letting n→∞ in the inequality (14), we get d(θ*,Tθ*)=0, which is a contradiction. That is, Tθ*=θ*. □





Corollary 1.

Let T be a self-mapping on (X,d). Suppose that there is κ∈[0,1) such that


d(TΩ,Tω)≤κATp(Ω,ω),



(15)




where p≥0. Then, there is a fixed point ρ of T if either




	(C1)

	
T is continuous at such point ρ;




	(C2)

	
or, [σ21/p+σ421/p]<1;




	(C2)

	
or, [σ31/p+σ421/p]<1;











Definition 2.

A self-mapping T is called on (X,d) a hybrid contraction of type B, if there is Λ∈Φ such that


d(TΩ,Tω)≤ΛWTp(Ω,ω),



(16)




where p≥0, a=(σ1,σ2,σ3),σi≥0,i=1,2,3 such that σ1+σ2+σ3=1 and


WTp(Ω,ω)=[σ1(d(Ω,ω))p+σ2(d(Ω,TΩ))p+σ3(d(ω,Tω))p]1/p,p>0,Ω,ω∈X,(d(Ω,ω))σ1(d(Ω,TΩ))σ2(d(ω,Tω))σ3,p=0,Ω,ω∈X∖ϝT(X).



(17)









Notice that a hybrid contraction of type A and a hybrid contraction of type B are also called a weighted contraction of type A and type B, respectively.



As corollaries of Theorem 1, we also have the following.



Corollary 2.

Let T be a self-mapping on (X,d). Suppose that either T is a hybrid contraction of type B, or there is κ∈[0,1) so that


d(TΩ,Tω)≤κWTp(Ω,ω),



(18)




where p≥0. Then, there is a fixed point ρ of T if either




	(i) 

	
T is continuous at such point ρ;




	(ii) 

	
or, σ2<1;




	(iii) 

	
or, σ3<1.











Corollary 3.

Let T be a self-mapping on (X,d). Suppose that:


d(TΩ,Tω)≤κdσ1(Ω,ω)·dσ2(Ω,TΩ)·dσ3(ω,Tω),



(19)




for all Ω,ω∈X∖ϝT(X), where κ∈0,1,σ1,σ2,σ3≥0 and σ1+σ2+σ3=1. Then, there is a fixed point ρ of T.





Proof. 

Put in Corollary 2, p=0 and a=(σ1,σ2,σ3). □





Remark 1.

Using Corollary 3, we get Theorem 2 in [7] (for metric spaces).





Corollary 4.

Let T be a self-mapping on (X,d) such that


d(TΩ,Tω)≤κd(Ω,ω)·d(Ω,TΩ)·d(ω,Tω)3,



(20)




for all Ω,ω∈X∖ϝT(X), where κ∈0,1. Then, there is a fixed point ρ of T.





Proof. 

Put in Corollary 2, p=0 and a=(13,13,13). □





Corollary 5.

Let T be a self-mapping on (X,d) such that


d(TΩ,Tω)≤κ3[d(Ω,ω)+d(Ω,TΩ)+d(ω,Tω)],



(21)




for all Ω,ω∈X, where κ∈0,1.



Then, there is a fixed point ρ of T.




	(i) 

	
T is continuous at such point ρ∈X;




	(ii) 

	
or, b<3.











Proof. 

Put in Corollary 2, p=1 and a=(13,13,13).



 □





Corollary 6.

Let T be a self-mapping on (X,d) such that


d(TΩ,Tω)≤κ3[d2(Ω,ω)+d2(Ω,TΩ)+d2(ω,Tω)]1/2,



(22)




for all Ω,ω∈X, where κ∈0,1, then T has a fixed point in X. The sequence {Tnς0} converges to ρ.




	(i) 

	
T is continuous at such point ρ∈X;




	(ii) 

	
or, b2<3.











Proof. 

Put in Corollary 2, p=2 and a=(13,13,13). □





Corollary 2 is illustrated by the following.



Example 1.

Choose X={τ1,τ2,τ3,τ4}∪[0,∞) (where τ1,τ2,τ3 and τ4 are negative reals). Take




	1. 

	
d(Ω,ω)=|Ω−ω| for (Ω,ω)∈[0,∞)×[0,∞);




	2. 

	
d(Ω,ω)=0 for (Ω,ω)∈{a,b,c,d}×[0,∞) or (Ω,ω)∈[0,∞)×{τ1,τ2,τ3,τ4};




	3. 

	
for (Ω,ω)∈{τ1,τ2,τ3,τ4}×{τ1,τ2,τ3,τ4},


d(Ω,ω)τ1τ2τ3τ4τ10124τ21013τ32102τ44320








Consider T:τ1τ2τ3τ4τ3τ4τ3τ4 and TΩ=Ω8 for Ω∈[0,∞).









For Ω∈[0,∞), the main theorem is satisfied straightforwardly. Thus, we examine the case Ω∈{a,b,c,d}. Note that there is no κ∈[0,1) such that


d(Tτ1,Tτ2)≤κ3d(τ1,τ2)+d(τ1,Tτ1)+d(τ2,Tτ2),








namely, we have,


2≤κ31+2+3.








Thus, Corollary 5 is not applicable.



Using (20), we have


d(Tτ1,Tτ2)≤κd(τ1,τ2)·d(τ1,Tτ1)·d(τ2,Tτ2)3,








i.e., 2≤κ1·2·33, so κ≥263>1. Hence, Corollary 4 is not applicable.



Corollary 6 is applicable. In fact, for Ω,ω∈X, we have for κ=67,


d(TΩ,Tω)≤κ3[d2(Ω,ω)+d2(Ω,TΩ)+d2(ω,Tω)]1/2.








Here, {0,τ3,τ4} is the set of fixed points of T.






3. Application on Volterra Fractional Integral Equations


The fractional Schrodinger equation (FSE) is known as the fundamental equation of the fractional quantum mechanics. As compared to the standard Schrodinger equation, it contains the fractional Laplacian operator instead of the usual one. This change brings profound differences in the behavior of wave function. Zhang et al. [12] investigated analytically and numerically the propagation of optical beams in the FSE with a harmonic potential. In addition, Zhang et al. [13] suggested a real physical system (the honeycomb lattice ) as a possible realization of the FSE system, through utilization of the Dirac–Weyl equation, while Zhang et al. [14] investigated the dynamics of waves in the FSE with a PT-symmetric potential. Still in fractional calculus, in this section, we study a nonlinear Volterra fractional integral equation.



Set 0<τ<1 and J=[σ0,σ0+a] in R(a>0). Denote by X=C(J,R) the set of continuous real-valued functions on J.



Now, particularly, we cosnider the following nonlinear Volterra fractional integral equation (in short, VFIE)


ξ(t)=F(t)+1Γ(τ)∫σ0t(t−s)τ−1h(s,ξ(s))ds,



(23)




for all t∈J, where Γ is the gamma function, F:J→R and h:J×R→R are continuous functions. The VFIE (23) has been investigated in the literature on fractional calculus and its applications, see [15,16,17].



In the following result, under some assumptions, we ensure the existence of a solution for the VFIE (23).



Theorem 2.

Suppose that




	(H1) 

	
There are constants M>0 and N>0 such that


|h(t,u)−h(t,v)|≤M|u−v|N+|u−v|



(24)




for all u,v∈R;




	(H2) 

	
Such M and N verify that


MaΓ(τ+1)≤N.



(25)













Then, the VFIE (23) has a solution in X.





Proof. 

For ξ,η∈X, consider the metric


d(ξ,η)=supt∈J|ξ(t)−η(t)|.








Take the operator


Tξ(t)=F(t)+1Γ(τ)∫σ0t(t−s)τ−1h(s,ξ(s))ds,t∈J.



(26)




 □





Clearly, T is well defined. Let ξ,η∈X, then for each t∈J,


|Tξ(t)−Tη(t)|=1Γ(τ)∫σ0t(t−s)τ−1(h(s,ξ(s))−h(s,η(s)))ds≤1Γ(τ)∫σ0t(t−s)τ−1|h(s,ξ(s))−h(s,η(s))|ds≤MaΓ(τ+1)M|ξ(s)−η(s)|N+|ξ(s)−η(s))∥≤MaΓ(τ+1)M∥ξ−η∥N+∥ξ−η)∥.








We deduce that


∥Tξ−Tη∥≤MaΓ(τ+1)M∥ξ−η∥N+∥ξ−η)∥=Λ(∥ξ−η)∥),



(27)




where Λ(t)=LaΓ(τ+1)MtN+t for t≥0. By hypothesis (H2), Λ∈Φ. Then,


d(Tξ,Tη)≤ΛFTp(ξ,η),



(28)




for p>0, with σ2=σ2=σ4=0 and σ1=1. Applying Theorem 1, T has a fixed point in X, so the VFIE (23) has a solution in X.




4. Conclusions


The obtained results unify several existing results in a single theorem. We list some of the consequences, but it is clear that there are more consequences of our main results. Regarding the length of the paper, we skip them.
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