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Abstract

:

Canal surfaces are defined and divided into nine types in Minkowski 3-space E13, which are obtained as the envelope of a family of pseudospheres S12, pseudohyperbolic spheres H02, or lightlike cones Q2, whose centers lie on a space curve (resp. spacelike curve, timelike curve, or null curve). This paper focuses on canal surfaces foliated by pseudohyperbolic spheres H02 along three kinds of space curves in E13. The geometric properties of such surfaces are presented by classifying the linear Weingarten canal surfaces, especially the relationship between the Gaussian curvature and the mean curvature of canal surfaces. Last but not least, two examples are shown to illustrate the construction of such surfaces.
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1. Introduction


The concept of canal surface is the envelope of a moving sphere whose centers lie on a space curve, and their radius varies depending on this curve in Euclidean 3-space E3. Canal surfaces are useful for representing long thin objects, e.g., pipes, ropes, 3D fonts, or internal body organs in solid/surface modeling. Tori and tubes are the special types of the canal surfaces. Apart from being used in pure mathematics, canal surfaces are a kind of blending surface that plays an important role in computer aided geometric design, i.e., CAGD. Most studies on canal surfaces within the CAGD context is related to such surfaces with a rational spine curve and rational radius function. For example, the authors presented that each canal surface with a rational spine curve and rational radius function is a rational Pythagorean hodograph curve in Minkowski space [1,2].



The Lorentz–Minkowski space is the basic space model of quantum physics that plays an important role in general relativity. In recent years, with the development of the theory of relativity, physicians and geometers extended the topics in classical differential geometry of Riemannian manifolds to that of Lorentzian manifolds. It is clearly demonstrated by the fact that many works in Euclidean space have found their counterparts in Minkowski space [3]. At present, the properties of canal surfaces have been researched in E3 [4,5]. As a natural idea, we can extend canal surfaces into spaces with an indefinite metric, such as Minkowski space. Similar to the generating process of canal surfaces in E3, a canal surface in Minkowski 3-space E13 can be obtained as the envelope of a family of pseudospheres S12, pseudohyperbolic spheres H02, or lightlike cones Q2 whose centers lie on a space curve (resp. spacelike curve, timelike curve, or null curve). The classification of canal surfaces was obtained by Ucum and Ilarslan in [6]. For convenience, the authors of this paper denoted the notations for all kinds of canal surfaces in E13. At the same time, the authors discussed canal surfaces foliated by pseudospheres along three kinds of space curves in E13 [7]. The relationship between Gaussian curvature and mean curvature is revealed, which is an important tool for future research, such as the Weingarten canal surfaces or linear Weingarten canal surfaces. Weingarten surfaces (resp. linear Weingarten surfaces) are attractive for use in CAGD, particularly in surface design due to the advantages of using these surfaces that can mitigate curvature computations and also admit simpler, more direct shape control procedures [8].



As a follow-up work of [7], in this paper we focus on the geometric properties of canal surfaces foliated by pseudohyperbolic spheres H02 along three kinds of space curves in E13. We discuss canal surfaces purely by geometric arguments, thereby avoiding a cumbersome algorithmic procedure. The paper is organized as follows. In Section 2, we review the Frenet formulas of space curves and the definitions of canal surfaces in E13. We recall definitions of Weingarten surface and linear Weingarten surface in E13. In Section 3, the geometric properties of three types of canal surfaces are discussed, respectively. For each type of canal surface, the relationships between Gaussian curvature and mean curvature are presented (Theorems 1, 5, and 9). Different kinds of linear Weingarten canal surfaces are explored, the developable, minimal and umbilical canal surfaces are discussed at the same time. The applications of these surfaces in shape control are important hopefully motivated. Finally, some common results for canal surfaces are shown (Theorems 13 and 14).




2. Preliminaries


Let E13 be a Minkowski 3-space with natural Lorentzian metric


⟨·,·⟩=dx12+dx22−dx32








in terms of the natural coordinate system (x1,x2,x3). It is well known that a vector υ∈E13 is said to be spacelike if ⟨υ,υ⟩>0 or υ=0; timelike if ⟨υ,υ⟩<0; null (lightlike) if ⟨υ,υ⟩=0, respectively. The norm of vector v is given by ∥v∥=|⟨v,v⟩|. Due to the causal character of the tangent vector of a space curve, curves in Minkowski space can be divided into a spacelike curve, timelike curve, or null curve. At the same time, a surface is called a timelike surface, spacelike surface, or lightlike surface if its normal vector is spacelike, timelike, or lightlike. In E13, there exist three space forms, i.e., pseudosphere S12, pseudohyperbolic sphere H02, and lightlike cones Q2, which are complete semi-Riemannian manifolds with index 1.



Let a=(a1,a2,a3), b=(b1,b2,b3) be vectors in E13. Then, their scalar product is given by


⟨a,b⟩=a1b1+a2b2−a3b3








and the exterior product by


a×b=e1e2e3a1a2a3b1b2b3=a2a3b2b3,a3a1b3b1,−a1a2b1b2,








where {e1,e2,e3} is an orthonormal basis in E13.



Let c(s):I→E13 be a space curve with a moving Frenet frame {T(s),N(s),B(s)} consisting of tangent vector T, principal normal vector N, and binormal vector B, respectively.



Case 1. Let c=c(s) be a spacelike curve parameterized by arc length s. Due to the causal character of the normal vector, it can be divided into the following two cases:



Case 1.1. Let ⟨c″(s),c″(s)⟩≠0, then the following Frenet equations are satisfied


c′(s)=T(s),T′(s)=κ(s)N(s),N′(s)=−εκ(s)T(s)+τ(s)B(s),B′(s)=τ(s)N(s),








where ⟨T,T⟩=1, ⟨N,N⟩=ε=±1, ⟨B,B⟩=−ε, ⟨T,N⟩=⟨T,B⟩=⟨B,N⟩=0. Functions κ(s) and τ(s) are called the curvature and torsion of c(s), respectively. When ε=1, c(s) is called the first-kind spacelike curve, and the second-kind spacelike curve when ε=−1.



Case 1.2. Let ⟨c″(s),c″(s)⟩=0, the Frenet equations are given by


c′(s)=T(s),T′(s)=N(s),N′(s)=κ(s)N(s),B′(s)=−T(s)−κ(s)B(s),








where ⟨T,T⟩=⟨N,B⟩=1, ⟨N,N⟩=⟨B,B⟩=⟨T,N⟩=⟨T,B⟩=0. Function κ(s) is also called the curvature function. Such kind of spacelike curve is said to be null-type spacelike.



Case 2. Let c=c(s) be a timelike curve parameterized by arc length s; then, the following Frenet equations are satisfied:


c′(s)=T(s),T′(s)=κ(s)N(s),N′(s)=κ(s)T(s)+τ(s)B(s),B′(s)=−τ(s)N(s),








where ⟨T,T⟩=−1, ⟨N,N⟩=⟨B,B⟩=1, ⟨T,N⟩=⟨T,B⟩=⟨B,N⟩=0. The functions κ(s) and τ(s) are called the curvature and the torsion of c(s), respectively.



Case 3. Let c=c(s) be a null curve with null arc-length parameter s, i.e., ⟨c″(s),c″(s)⟩=1. Then, we have


c′(s)=T(s),T′(s)=N(s),N′(s)=κ(s)T(s)−B(s),B′(s)=−κ(s)N(s),








where ⟨T,T⟩=⟨B,B⟩=⟨T,N⟩=⟨B,N⟩=0, ⟨T,B⟩=⟨N,N⟩=1. Function κ(s) is called the null curvature of c(s).



Remark 1.

For null curves, there exist a variety of concepts where not all authors’ terminologies coincide. The null curvature here expresses the same meaning as the pseudo torsion or the pseudo curvature in articles related to null curves.





Next, we recall the definition of canal surfaces in E13 as the following:



Definition 1.

[7] Surface M in E13 is called a canal surface that is formed as the envelope of a family of pseudohyperbolic spheres H02 (resp. pseudospheres S12 or lightlike cones Q2) whose centers lie on a space curve c(s) framed by {T,N,B}. Then, M can be parametrized by


x(s,θ)=c(s)+λ(s,θ)T(s)+μ(s,θ)N(s)+ω(s,θ)B(s),



(1)




where λ, μ and ω are differential functions of s and θ, ∥x(s,θ)−c(s)∥2=ϵr2(s), (ϵ=±1 or 0). Curve c(s) is called the center curve (or spine curve), and r(s) is the radius function of M.





Explicitly, if M is foliated by pseudohyperbolic spheres H02 (resp. pseudospheres S12 or lightlike cones Q2), then ϵ=−1 (resp. 1 or 0) and M is said to be of the type M− (resp. M+ or M0). Canal surfaces of type M− can be divided into three types. In the case that c(s) is spacelike (resp. timelike or null), it is said to be of type M−1 (resp. M−2 or M−3). Furthermore, M−1 can be divided into M−11, M−12 and M−13 when c(s) is the first-kind spacelike curve, the second-kind spacelike curve, and the null-type spacelike curve, respectively. Similar to M−, canal surfaces M+ (resp. M0) can be divided into M+1, M+2 and M+3 (resp. M01, M02 or M03). Naturally, M+1 (resp. M01) can be divided into M+11, M+12 and M+13 (resp. M011, M012 or M013).



Remark 2.

[9] In particular, if center curve c(s) is a straight line, then Frenet frame {T,N,B} of c(s) can be regarded as a trivial orthogonal frame, and the canal surface is nothing but a surface of revolution. If the radius function is constant, then M is a tube (or pipe) surface.





Definition 2.

[10] For curvatures K and H of a surface M in E13, if M satisfies


W(K,H)=0,








where W is the Jacobian determinant, then that is said to be a Weingarten surface.





Definition 3.

[10] For curvatures K and H of a surface M in E13, if M satisfies


2aH+bK=c(a,b,c∈Rand(a,b,c)≠(0,0,0)),



(2)




then that is said to be a linear Weingarten surface.





Remark 3.

When a=0 or b=0 in (2), surface M has a constant Gaussian curvature or constant mean curvature. Without loss of generality, we always assume c=1 in (2).





All surfaces we are dealing with are smooth, regular, and topologically connected unless otherwise stated.




3. Main Results


In this part, we focus on the geometric properties of different types of canal surfaces formed by the movement of pseudohyperbolic spheres H02 along a space curve in E13.



3.1. Canal Surfaces of Type M−11 and M−12


First, we assume M is a canal surface formed by the movement of H02 along a first kind spacelike curve c(s) in E13. i.e., M−11. According to the definition of M−11, through detailed calculation, we get


λ(s)=r(s)r′(s),μ(s,θ)=r(s)1+r′2(s)sinhθ,ω(s,θ)=r(s)1+r′2(s)coshθ








in Equation (1). Then, M−11 can be parameterized by


x(s,θ)=c(s)+r(s)(r′(s)T+1+r′2(s)sinhθN+1+r′2(s)coshθB),








where c(s) is parameterized by arc length s. For convenience, we may assume r′(s)=sinhφ for some smooth function φ=φ(s). Then, canal surface M−11 can be rewritten by


x(s,θ)=c(s)+r(s)(sinhφT+coshφsinhθN+coshφcoshθB).



(3)




Initially, we have


xs=xs1T+xs2N+xs3B,xθ=rcoshφcoshθN+rcoshφsinhθB,








where


xs1=rr″+cosh2φ−rκcoshφsinhθ,xs2=r′coshφsinhθ+rr′κ+rr′φ′sinhθ+rτcoshφcoshθ,xs3=r′coshφcoshθ+rτcoshφsinhθ+rr′φ′coshθ.








Then, quantities of the first fundamental form are given by


E=⟨xs,xs⟩=r2(κ2cosh2φsinh2θ+r′2κ2+φ′2+τ2cosh2φ−2φ′κsinhθ+2r′κτcoshφcoshθ)+cosh2φ+2(rr″−rκcoshφsinhθ),F=⟨xs,xθ⟩=r2r′κcoshφcoshθ+r2τcosh2φ,G=⟨xθ,xθ⟩=r2cosh2φ.



(4)




and


EG−F2=r2(rr″−rκcoshφsinhθ+cosh2φ)2.



(5)







Unit normal vector field n to M−11 is given by


n=xs×xθ∥xs×xθ∥=sinhφT+coshφsinhθN+coshφcoshθB,



(6)




which point canal surface M−11 and ⟨n,n⟩=−1 outwards.



Furthermore, by Equation (6), we have


ns=(r″−κcoshφsinhθ)T+(r′κ+r′φ′sinhθ+τcoshφcoshθ)N+(τcoshφsinhθ+r′φ′coshθ)B,nθ=coshφcoshθN+coshφsinhθB.











Quantities of the second fundamental form are obtained by


L=−⟨xs,ns⟩=−r(κ2cosh2φsinh2θ+r′2κ2+φ′2+τ2cosh2φ−2φ′κsinhθ+2r′κτcoshφcoshθ)−(r″−κcoshφsinhθ),M=−⟨xθ,ns⟩=−rr′κcoshφcoshθ−rτcosh2φ,N=−⟨xθ,nθ⟩=−rcosh2φ.



(7)







From Equations (6) and (7), we have



Proposition 1.

The quantities of the first and second fundamental forms of canal surface M−11 satisfy


L=E−P1−r,M=F−r,N=G−r








and


EG−F2=r2P12,LN−M2=rP1Q1,



(8)




where


P1=rr″−rκcoshφsinhθ+cosh2φ=rQ1+cosh2φ,Q1=r″−κcoshφsinhθ.



(9)









Remark 4.

Due to regularity, we see that P1≠0 everywhere by Equation (8).





By Proposition 1, Gaussian curvature K and mean curvature H of M−11 are given by, respectively,


K=−LN−M2EG−F2=−Q1rP1,



(10)






H=−EN−2FM+GL2(EG−F2)=2P1−cosh2φ2rP1.



(11)







Second, for canal surface M−12, according to the definition of M−12, we get


λ(s)=r(s)r′(s),μ(s,θ)=r(s)1+r′2(s)coshθ,ω(s,θ)=r(s)1+r′2(s)sinhθ








in Equation (1). Then, M−12 can be parameterized by


x(s,θ)=c(s)+r(s)(r′(s)T+1+r′2(s)coshθN+1+r′2(s)sinhθB),








where c(s) is parameterized by arc length s. Here, we may assume that r′(s)=sinhφ for smooth function φ=φ(s). So, canal surface M−12 can be written by


x(s,θ)=c(s)+r(s)(sinhφT+coshφcoshθN+coshφsinhθB).



(12)







With similar calculations to those of M−11, we have the following conclusions.



Proposition 2.

The quantities of the first and second fundamental forms of canal surface M−12 satisfy


L=E−P2−r,M=F−r,N=G−r








and


EG−F2=r2P22,LN−M2=rP2Q2,



(13)




where


P2=rr″+rκcoshφcoshθ+cosh2φ=rQ2+cosh2φ,Q2=r″+κcoshφcoshθ.



(14)









Remark 5.

Due to regularity, we see P2≠0 everywhere by Equation (13).





By Proposition 2, Gaussian curvature K and mean curvature H of M−12 are given by, respectively,


K=−LN−M2EG−F2=−Q2rP2,



(15)






H=−EN−2FM+GL2(EG−F2)=2P2−cosh2φ2rP2.



(16)







Based on the Gaussian curvature and mean curvature of M−11 and M−12, it is obvious to obtain the following results.



Theorem 1.

Gaussian curvature K and mean curvature H of canal surface M−11(M−12) are related by


H=−12(Kr−1r).



(17)









Proof of Theorem 1.

For M−11, from Equations (10) and (11), we can easily obtain the conclusion. For M−12, we can refer to Equations (15) and (16). □





Next, we study canal surface M−11(M−12) whose Gaussian curvature and mean curvature satisfy some particular conditions.



Remark 6.

In the following, we just prove the results for M−11 and omit the proof for M−12 since it can be similarly done to those of M−11, and the results are same.





Theorem 2.

Let M−11(M−12)be a linear Weingarten canal surface; then, it is an open part of the following surfaces:




	
a surface of revolution such as


x(s,θ)=(r(s)sinhφ(s)+s,r(s)coshφ(s)sinhθ,r(s)coshφ(s)coshθ),








where r(s) is given by (19);



	
a tube with radius r=a(a>0).










Proof of Theorem 2.

From Equation (2) with c=1 and Equation (17), we obtain


(br−ar2)K=r−a.











By Equation (10), we get


−(br−ar2)(r″−κcoshφsinhθ)r(rr″−rκcoshφsinhθ+cosh2φ)=r−a,



(18)




i.e.,


κ(r2−2ar+b)coshφsinhθ−(r−a)(1+r′2)−(r2−2ar+b)r″=0.











Therefore, we get


κ(r2−2ar+b)coshφ=0and(r−a)(1+r′2)+(r2−2ar+b)r″=0.











Case 1: If r2−2ar+b≠0, i.e., a2−b<0, then κ=0. Thus, M−11 is a surface of revolution and its radial function satisfies


(r2−2ar+b)r″+(r−a)(1+r′2)=0.











Solving the above equation, we get


s=c2±∫r2−2ar+bc1−r2+2ar−bdr,



(19)




where c1>r2−2ar+b,c2∈R.



Since κ=0, without loss of generality, we may assume the center curve is c(s)=(s,0,0) and T=(1,0,0),N=(0,1,0),B=(0,0,1), respectively. Then, by Equation (3), M−11 can be expressed by


x(s,θ)=(r(s)sinhφ(s)+s,r(s)coshφ(s)sinhθ,r(s)coshφ(s)coshθ),



(20)




where r(s) is given by Equation (19).



Case 2: If κ≠0, then r2−2ar+b=0. Hence, r=a is a nonzero constant. M−11 is a tube and a,b satisfy a2−b=0.



Note that M−11 is a circular cylinder if κ=r2−2ar+b≡0. □





Corollary 1.

Let M−11(M−12)be a canal surface with nonzero constant Gaussian curvature. Then, it is a surface of revolution with positive constant Gaussian curvature, such as


x(s,θ)=(r(s)sinhφ(s)+s,r(s)coshφ(s)sinhθ,r(s)coshφ(s)coshθ),








where r(s) is given by Equation (21).





Proof of Corollary 1.

By Theorem 2 with a=0, when M−11 has nonzero constant Gaussian curvature K=1b, from a2−b<0, then it is nothing but a surface of revolution with positive constant Gaussian curvature. It can be expressed by


x(s,θ)=(r(s)sinhφ(s)+s,r(s)coshφ(s)sinhθ,r(s)coshφ(s)coshθ),








where r(s) satisfies


s=c2±∫r2+bc1−r2−bdr,(c1>r2+b,c2∈R).



(21)




 □





Corollary 2.

Canal surface M−11(M−12) with nonzero constant mean curvature does not exist.





Proof of Corollary 2.

By Theorem 2 with b=0, it must be a surface of revolution. However, from a2−b<0, then a2<0, it is a contradiction. □





Theorem 3.

A canal surface M−11(M−12)is developable iff it is congruent to a part of a circular cylinder or a circular cone.





Proof of Theorem 3.

M−11 is developable iff K≡0. By (10), we have Q1≡0. Then, we get


r″−κcoshφsinhθ=0.











It follows that r″=0 and κ=0 (if coshφ=0, by (5), M−11 is degenerate). Then, r(s)=c1s+c2, where c1,c2 are constants. Therefore, M−11 is a circular cylinder (c1=0) or a circular cone (c1≠0) in E13, respectively. The converse is obvious. □





Theorem 4.

Canal surface M−11(M−12)is minimal iff it is a part of a surface of revolution, such as


x(s,θ)=(r(s)sinhφ(s)+s,r(s)coshφ(s)sinhθ,r(s)coshφ(s)coshθ),








where r(s) satisfies (22).





Proof of Theorem 4.

M−11 is minimal iff H≡0. From (11), H≡0 implies


2P1−cosh2φ=0.











By Equation (9), we get


2rr″−2rκcoshφsinhθ+cosh2φ=0.











Therefore, one can obtain rκcoshφ=0 and 2rr″+cosh2φ=0. Since r≠0, coshφ≠0, then κ=0 and M−11 is a surface of revolution. Solving 2rr″+cosh2φ=0, we get


s=c2±∫rc1−rdr,(c1>r,c2∈R).



(22)







The converse is obvious through direct calculations. □






3.2. Canal Surfaces M−2


Let M be a canal surface formed by the movement of H02 along a timelike curve c(s) in E13, i.e., M−2. Then, by the definition of M−2 and Frenet equations, we obtain


λ(s)=−r(s)r′(s),μ(s,θ)=r(s)r′2(s)−1cosθ,ω(s,θ)=r(s)r′2(s)−1sinθ








in Equation (1). Then, M−2 can be parameterized by


x(s,θ)=c(s)+r(s)(−r′(s)T+r′2(s)−1cosθN+r′2(s)−1sinθB),



(23)




where c(s) is parameterized by arc length s. Without loss of generality, we assume −r′(s)=coshφ for some smooth function φ=φ(s). Then, M−2 can be written by


x(s,θ)=c(s)+r(s)(coshφT+sinhφcosθN+sinhφsinθB).



(24)







Remark 7.

From Equation (23), tube M−2 does not exist.





Proposition 3.

The quantities of the first and second fundamental forms of canal surface M−2 satisfy


L=E−P3−r,M=F−r,N=G−r








and


EG−F2=r2P32,LN−M2=rP3Q3,



(25)




where


P3=rr″−rκsinhφcosθ+sinh2φ=rQ3+sinh2φ,Q3=r″−κsinhφcosθ.



(26)









Remark 8.

Due to regularity, we see P3≠0 everywhere by Equation (25).





By Proposition 3, Gaussian curvature K and mean curvature H of M−2 are given by, respectively,


K=−LN−M2EG−F2=−Q3rP3,



(27)






H=−EN−2FM+GL2(EG−F2)=2P3−sinh2φ2rP3.



(28)







Theorem 5.

Gaussian curvature K and mean curvature H of canal surface M−2 are related by


H=−12(Kr−1r).



(29)









Next, we study canal surface M−2 whose Gaussian curvature and mean curvature satisfy some particular conditions. We omitted the proofs for M−2 since they are similar to M−11, M−12.



Theorem 6.

Let M−2 be a linear Weingarten canal surface; then, it is a surface of revolution, such as


x(s,θ)=(r(s)sinhφ(s)sinθ,r(s)sinhφ(s)cosθ,r(s)coshφ(s)+s),



(30)




where r(s) is given by


s=c2±∫r2−2ar+br2−2ar+b+c1dr,(c1>−r2+2ar−b,c2∈R).













Corollary 3.

Let M−2 be a canal surface with nonzero constant Gaussian curvature. Then, it is a surface of revolution with positive constant Gaussian curvature, such as


x(s,θ)=(r(s)sinhφ(s)sinθ,r(s)sinhφ(s)cosθ,r(s)coshφ(s)+s),








where r(s) is given by


s=c2±∫r2+br2+b+c1dr,(c1>−r2−b,c2∈R).













Corollary 4.

Canal surface M−2 with nonzero constant mean curvature does not exist.





Theorem 7.

A canal surface M−2 is developable iff it is a circular cone.





Proof of Theorem 7.

M−2 is developable iff K≡0. By Equation (27), we have Q3≡0. Then, we get


r″−κsinhφcosθ=0.











It follows that r″=0 and κ=0 (if sinhφ=0, by Equation (25), M−2 is degenerate). Then, r(s)=c1s+c2, where c1,c2 are constants, and |c1|>1. If |c1|≤1, by (23), it is a contradiction. Therefore, M−2 is a circular cone (|c1|>1) in E13. The converse is obvious. □





Theorem 8.

A canal surface M−2 is minimal iff it is a part of a surface of revolution such as


x(s,θ)=(r(s)sinhφ(s)sinθ,r(s)sinhφ(s)cosθ,r(s)coshφ(s)+s),








where r(s) satisfies


s=c2±∫rr+c1dr,(c1>−r,c2∈R).














3.3. Canal Surfaces of Type M−13 and M−3


Let M be a canal surface formed by the movement of H02 along a null type spacelike curve c(s), i.e., M−13. By the definition of M−13 and Frenet equations, we obtain


λ(s)=r(s)r′(s),2μ(s,θ)ω(s,θ)=−r2(s)(1+r′2(s))



(31)




in Equation (1). Then, M−13 can be parameterized by


x(s,θ)=c(s)+r(s)r′(s)T+μ(s,θ)N+ω(s,θ)B,



(32)




where c(s) is parameterized by arc length s.



Initially, we have


xs=U1(s,θ)T+V1(s,θ)N+W1(s,θ)B,xθ=μθN+ωθB,








where


U1(s,θ)=1+r′2+rr″−ω,V1(s,θ)=rr′+μ+μκ,W1(s,θ)=ωs−ωκ.











From Equation (31), we can get


μθ=−μωθω,μs=−rr′(U1+ω)−μωsω.











Then, the quantities of the first fundamental form are given by


E=U12+2V1W1,F=μθW1+ωθV1,G=2μθωθ.



(33)






EG−F2=r2ωθ2U12ω2.











Unit normal vector field n to M−13 is given by


n=xs×xθ∥xs×xθ∥=−1r(rr′T+μN+ωB),



(34)




which point canal surface M−13 and ⟨n,n⟩=−1 outwards.



Furthermore, by Equation (34) we have


ns=1r2{(rr′2−rU1+r)T+(r′μ−rV1)N+(r′ω−rW1)B},nθ=−1r(μθN+ωθB).











Then, the quantities of the second fundamental form are obtained by


L=1r(U12−U1+2V1W1),M=ωθωr(ωV1−μW1),N=2μθωθr.



(35)







From Equations (34) and (35), we have



Proposition 4.

The quantities of the first and second fundamental forms of canal surfaces M−13 satisfy


L=E−U1r,M=Fr,N=Gr








and


EG−F2=r2ωθ2U12ω2,LN−M2=−ωθ2U1Y1ω2,



(36)




where Y1=1+r′2−U1=ω−rr″.





Remark 9.

Due to regularity, we see U1≠0 everywhere by Equation (36).





By Proposition 4, Gaussian curvature K and mean curvature H of M−13 are given by, respectively,


K=−LN−M2EG−F2=Y1r2U1,



(37)






H=−EN−2FM+GL2(EG−F2)=Y1−U12rU1.



(38)







Second, we study canal surface M−3. By the definition of M−3 and the Frenet equations, we obtain


ω(s)=r(s)r′(s),2λ(s,θ)r(s)r′(s)+μ2(s,θ)=−r2(s)



(39)




in Equation (1). Then, M−3 can be parameterized by


x(s,θ)=c(s)+λ(s,θ)T+μ(s,θ)N+r(s)r′(s)B



(40)




where c(s) is parameterized by null arc length s.



Remark 10.

According to Equation (39), tube M−3 does not exist.





Proposition 5.

The quantities of the first and second fundamental forms of canal surfaces M−3 satisfy


L=E−W2r,M=Fr,N=Gr








and


EG−F2=r2λθ2W22μ2,LN−M2=λθ2W2Y2μ2,



(41)




where W2=rr″−r′2−μ,Y2=W2−r′2=rr″−μ.





By Proposition 5, Gaussian curvature K and mean curvature H of M−3 are given by, respectively,


K=−LN−M2EG−F2=−Y2r2W2,



(42)






H=−EN−2FM+GL2(EG−F2)=−W2+Y22rW2.



(43)







Based on the Gaussian curvature and mean curvature of M−13 and M−3, it is easy to get the following results.



Theorem 9.

Gaussian curvature K and mean curvature H of canal surface M−13(M−3) can be related by


H=12(Kr−1r).



(44)









Proof of Theorem 9.

For M−13, from Equations (37) and (38), we can easily obtain the conclusion. For M−3, we can refer to Equations (42) and (43). □





Next, we study canal surface M−13(M−3) whose Gaussian curvature and mean curvature satisfy some particular conditions.



Remark 11.

In the following, we just prove the results for M−13 and omit the proofs for M−3, since they can be similarly done to those of M−13 and the results are similar.





Theorem 10.

Let M−13 be a linear Weingarten canal surface; then, it is a tube with radius r=−a(a<0).





Proof of Theorem 10.

From Equation (2) with c=1 and Equation (44), we obtain


(ar2+br)K=r+a.











By Equation (37), we get


(ar2+br)(ω−rr″)r2(1+r′2+rr″−ω)=r+a,



(45)




i.e.,


ω(r2+2ar+b)−rr″(r2+2ar+b)−(r2+ar)(1+r′2)=0.











Therefore, we get


ω(r2+2ar+b)=0andrr″(r2+2ar+b)+(r2+ar)(1+r′2)=0.











Assume r2+2ar+b≠0, then ω=0. By (36), M−13 is degenerate. Thus, r2−2ar+b=0. Hence, r=−a(a<0) is a nonzero constant. M−13 is a tube and a,b satisfy a2−b=0. □





Theorem 11.

Linear Weingarten canal surface M−3 does not exist.





Proof of Theorem 11.

Similar to the proof of Theorem 10, through calculation, we obtain that r=−a(a<0) is a nonzero constant. This contradicts the result of Remark 10. Thus it is completed. □





Corollary 5.

Canal surface M−13(M−3) with nonzero constant Gaussian curvature or nonzero constant mean curvature does not exist.





Proof of Corollary 5.

If M−13 has nonzero constant Gaussian curvature or nonzero constant mean curvature, by Equations (37) and (38), the functions ω=ω(s) and μ=μ(s), obviously. It is impossible. The proof is completed. □





Similar to Corollary 5, when the Gaussian curvature or mean curvature equal to zero, by (37) and (38), the functions ω=ω(s) and μ=μ(s), obviously. Then, we have



Theorem 12.

Canal surface M−13(M−3) is nondevelopable and nonminimal.





From the calculations above, we have the following common conclusions.



Theorem 13.

Umbilical canal surface M− does not exist.





Proof of Theorem 13.

Canal surface M− is umbilical; this means


E:F:G=L:M:N,








from Propositions 1–5, we obtain P1=P2=P3=U1=W2=0. It is impossible by the regularity of those canal surfaces. □





Theorem 14.

Canal surfaces M− are spacelike surfaces in E13.





Proof of Theorem 14.

The normal vector of M− satisfies ⟨n,n⟩=−1; it is obtained easily. □





Remark 12.

The canal surfaces obtained by pseudo spheres S12 along a space curve, i.e., M+ are discussed in [7]. The canal surfaces foliated by lightcones Q2 along a space curve, i.e., M0 are degenerate surfaces by simple calculation. Here, the proof is omitted.







4. Examples


Canal surfaces are very popular in CAGD. In this section, we want to show a method to characterize M− geometrically via Mathematica Programme.



Example 1.

Let the timelike curve c(s)=(sins2,coss2,5s2), then the Frenet frame are


T(s)=(12coss2,−12sins2,52),N(s)=(−sins2,−coss2,0),B(s)=(52coss2,−52sins2,12).








Denoting radius function r(s)=2s, then the canal surface of type M−2 (see Figure 1) can be written by


x(s,θ)=(sins2−2scoss2−23ssins2cosθ+15scoss2sinθ,coss2+2ssins2−23scoss2cosθ−15ssins2sinθ,−35s2+3ssinθ).













Example 2.

Let null curve c(s)=(coss,sins,s); then, the Frenet frame can be given by


T(s)=(−sins,coss,1),N(s)=(−coss,−sins,0),B(s)=(−12sins,12coss,−12).








Here, we denote radius function r(s)=s2 and λ(s,θ)=−eθ in (39), the canal surface of type M−3 (see Figure 2) as


x(s,θ)=(coss+eθsins−s(4eθ−s)scoss−s3sins,sins−eθcoss−s(4eθ−s)ssins+s3coss,s−eθ−s3).
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Figure 1. M−2 with r(s)=2s. 






Figure 1. M−2 with r(s)=2s.
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Figure 2. M−3 with r(s)=s2. 






Figure 2. M−3 with r(s)=s2.
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