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Abstract

:

In this paper, we offer a new approach of investigation and approximation of solutions of Caputo-type fractional differential equations under nonlinear boundary conditions. By using an appropriate parametrization technique, the original problem with nonlinear boundary conditions is reduced to the equivalent parametrized boundary-value problem with linear restrictions. To study the transformed problem, we construct a numerical-analytic scheme which is successful in relation to different types of two-point and multipoint linear boundary and nonlinear boundary conditions. Moreover, we give sufficient conditions of the uniform convergence of the successive approximations. Also, it is indicated that these successive approximations uniformly converge to a parametrized limit function and state the relationship of this limit function and exact solution. Finally, an example is presented to illustrate the theory.
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1. Introduction


In recent years, fractional differential equations subjected to different kind of boundary conditions have been studied such as periodic/anti-periodic, nonlocal, multipoint, and integral boundary conditions, see [1,2,3].



In this paper, we consider Caputo-type fractional differential equations with nonlinear boundary conditions. We apply the technique proposed in [4,5,6,7,8,9,10,11] for investigation and approximation of solutions of Caputo-type fractional differential equations with nonlinear boundary conditions. By using an appropriate parametrization technique, nonlinear boundary conditions are transformed to linear boundary conditions by using vector parameters. To study the transformed problem, we construct a numerical-analytic scheme which is successful in relation to different types of two-point and multipoint linear boundary and nonlinear boundary conditions [4,6,7,8,9,11,12].



According to the main idea of the numerical-analytic technique, certain types of successive approximations are constructed analytically. We give sufficient conditions for the uniform convergence of the successive approximations. Also, it is indicated that these successive approximations uniformly converge to a parametrized limit function and state the relationship of this limit function and exact solution. Finally, an example is discussed for illustration of the theory.




2. Background Material


In this section, some definitions of fractional calculus are presented which we use for the statement of the problem.



Definition 1.

Let f:0,∞→R be a continuous function. Then


D0+qf(t)=1Γ(n−q)ddtn∫0t(t−s)n−q−1f(s)ds,n−1<q<n,n∈N,








is called the Riemann–Liouville fractional derivative of order q>0. Here Γ is the gamma function defined by Γ(p)=∫0∞e−ssp−1ds





Definition 2.

The Caputo derivative of order q for a function f:0,∞→R can be written as


cDqf(t)=D0+qf(t)−k=0n−1tkk!f(k)(0),t>0,n−1<q<n.













Remark 1.

Let f(t)∈Cn0,∞. Then


cDqf(t)=1Γ(n−q)∫0tf(n)(s)(t−s)q+1−nds=In−qf(n)(t),t>0,n−1<q<n.














3. Statement of Fractional Differential Equation with Nonlinear Boundary Conditions and Identification of Parametrized Boundary-Value Problem


In this section, we state the Caputo-type fractional differential equation equipped with nonlinear boundary condition and we use the vector of parameters to reduce the nonlinear boundary conditions to the linear boundary condition.



Let us consider Caputo-type fractional differential equations with nonlinear boundary conditions


cDαx(t)=h(t,x(t)),t∈0,T,



(1)






Ax(0)+Bx(T)+g(x(0),x(T))=d,d∈Rn,



(2)




where cDα is the Caputo derivative of order α∈0,1, the functions h:0,T×D→R, and g:D×D→Rn are continuous and the set D⊂Rn is closed and bounded domain. A and B are n×n matrices, det B≠0 and d is a n− dimensional vector.



By using appropriate parametrization technique [5], the given problem (1), (2) is reduced to certain parametrized two-point boundary conditions. To see that, we introduce the vectors of parameters


ω:=x(0)=(ω1,ω2…ωn)T,ϕ:=x(T)=ϕ1,ϕ2,…,ϕnT,



(3)






d(ω,ϕ):=d−g(ω,ϕ).



(4)




and by using (4), the problem (1), (2) can be rewritten as follows:


cDαx(t)=h(t,x(t))Ax(0)+Bx(T)=d(ω,ϕ).



(5)








4. Conditions for Convergence of Successive Approximation


Some conditions are needed for studying of the successive approximation. In this study, the parametrized boundary-value problem (5) will be studied under the following conditions:




	(A) 

	
The function h:0,T×Rn→Rn satisfies the Lipschitz condition:


h(t,u)−h(t,v)≤Lu−v



(6)




for all t∈0,T,u,v∈D, where L is a positive constant.




	(B) 

	
Let


κ(t)=2tαΓα+11−tTα.











Then, κ(t) takes its maximum value at t=T2 and


κ∞=Tα22α−1Γα+1.











Define,


h∞=maxt,x∈0,T×Dh12+h22








and a vector function δ:D×D→Rn is


δω,ϕ:=κ∞h∞+B−1d(ω,ϕ)−B−1A+Inω,








where In is the n×n identity matrix and ω,ϕ∈D of the form (3). δ is the radius of a neighborhood C of the point ω∈D is defined as follows:


Bω,δω,ϕ:=x∈Rn:x−ω≤δω,ϕforallϕ∈D⊂Rn.








the set


Dδ:=ω∈D:Bω,δω,ϕ⊂Dforallϕ∈D








is nonempty.




	(C) 

	


Lκ∞<1








where L is a positive constant and satisfies the inequality (6).



For studying of the solution of the parametrized boundary-value problem (5), we consider the sequence of functions xm which is defined by the iterative formula as follows:


xm(t,ω,ϕ)=ω+1Γα∫0tt−sα−1hs,xm−1s,ω,ϕds−tTα∫0TT−sα−1hs,xm−1s,ω,ϕds+tTαB−1d(ω,ϕ)−B−1A+Inω



(7)




for t∈0,T, m=1,2,3… where


x0(t,ω,ϕ)=x01,x02,..,x0nT=ω∈Dδxm(t,ω,ϕ)=xm,1t,z,ϕ,xm,2t,z,ϕ…,xm,nt,z,ϕT








and ω,ϕ are considered to be parameters.









In addition, it is easy to see that the sequence of functions xm are satisfied linear parameterized boundary conditions (5) for all m≥1,ω∈Dδ,ϕ∈D.



Now, we prove that the sequence of the functions (7) is uniformly convergent and show the relationship between this sequence of the functions and the limit function.



Theorem 1.

Assume that the parametrized boundary-value problem (5) satisfy the conditions A,B and C. Then for all fixed ϕ∈D and ω∈Dδ, the following assertions are truė:




	1. 

	
All functions of sequence (7) are continuous and satisfy the parametrized boundary conditions (5)


Axm(0,ω,ϕ)+Bxm(T,ω,ϕ)=d(ω,ϕ),m=1,2,3…



(8)








	2. 

	
The sequence of functions (7) converges uniformly in t∈0,T as m→∞ to the limit function


x*(t,ω,ϕ)=limm→∞xm(t,ω,ϕ).



(9)








	3. 

	
The limit function x* satisfies the initial conditions


x*(0,ω,ϕ)=ω








and


Ax*(0,ω,ϕ)+Bx*(T,ω,ϕ)=d(ω,ϕ)








.




	4. 

	
The limit function (9) is the unique continuous solution of the integral equation


x(t):=ω+1Γα∫0tt−sα−1hs,x(s)ds−tTα∫0TT−sα−1hs,x(s)ds+tTαB−1d(ω,ϕ)−B−1A+Inω,



(10)




or x(t) is the unique solution on the 0,T of the Cauchy problem:


cDαx(t)=h(t,x(t))+αΩω,ϕ,x(0)=ω



(11)




where


αΩω,ϕ=−αTα∫0TT−sα−1hs,x*(t,ω,ϕ)ds−ΓαB−1d(ω,ϕ)−B−1A+Inω.



(12)








	5. 

	
Error estimation:


x*(t,ω,ϕ)−xm(t,ω,ϕ)≤Lκ∞mh∞κ∞+B−1d(ω,ϕ)−B−1A+Inω11−Lκ∞.



















Proof. 






	1.

	
Continuity of the sequence xm defined by (7) follows directly from the construction of sequence and by direct computation, it is easy to show that the sequence xm satisfies the parametrized boundary conditions (5).




	2.

	
We prove that the sequence of functions is a Cauchy sequence in the Banach space Ca,b,Rn. At first, we need to show that xm(t,ω,ϕ)∈D for all (t,ω,ϕ)∈0,T×Dδ×D,m∈N. We start from Equation (7). For m=1:


x1(t,ω,ϕ)=ω+1Γα∫0tt−sα−1hs,x0s,ω,ϕds−tTα∫0TT−sα−1hs,x0s,ω,ϕds+tTαB−1d(ω,ϕ)−B−1A+Inω.



(13)







The Equation (13) can be written as follows:


x1(t,ω,ϕ)−ω≤1Γα∫0tt−sα−1−tTαT−sα−1hs,ωds+∫tTtTαT−sα−1hs,ωds+tTαB−1d(ω,ϕ)−B−1A+Inω:=I1+I2+I3.



(14)







We start from the estimation of I1:


I1≤1Γα∫0tt−sα−1−tTαT−sα−1h∞ds=tTαT−tαΓα+1h∞,



(15)




where the expression under the absolute value is nonnegative


1t−s1−α≥tTα1t−s1−α≥tTα1T−s1−α.











Then, we estimate I2 and I3:


I2≤1Γα∫tTtTαT−sα−1hs,ωds=tTαT−tαΓα+1h∞



(16)




and


I3=tTαB−1d(ω,ϕ)−B−1A+Inω.



(17)







Substituting (15)–(17) into the relation (14) and we obtain the following result


x1(t,ω,ϕ)−ω≤2tαΓα+11−tTαh∞+tTαB−1d(ω,ϕ)−B−1A+Inω≤Tα22α−1Γα+1h∞+B−1d(ω,ϕ)−B−1A+Inω=κ∞h∞+B−1d(ω,ϕ)−B−1A+Inω=δω,ϕ.



(18)







Thus,


x1(t,ω,ϕ)∈Dfor(t,ω,ϕ)∈0,T×Dδ×D.











By induction, it can be shown that all functions xm(t,ω,ϕ) defined by (7) also belong to the set D for all m=1,2,3,…t∈0,T,ω∈Dδ,ϕ∈D. To show that, we start with the difference between xm+1 and xm:


xm+1(t,ω,ϕ)−xm(t,ω,ϕ)=1Γα(∫0tt−sα−1hs,xms,ω,ϕ)−hs,xm−1s,ω,ϕds−∫0TtTαT−sα−1×hs,xms,ω,ϕ−hs,xm−1s,ω,ϕds



(19)




for m=1,2,…



Here, we denote the difference (19) by rm(t,ω,ϕ) as follows:


rm(t,ω,ϕ):=xm(t,ω,ϕ)−xm−1(t,ω,ϕ),forallm=1,2,3,…



(20)







We rewrite the inequality (18), by using (20) for m=1. Then, we obtain


r1(t,ω,ϕ)=x1(t,ω,ϕ)−ω≤κ∞h∞+B−1d(ω,ϕ)−B−1A+Inω.



(21)







Taking into account the Lipshitz condition A and the relation (21) for m=2 into Equation (20), we get


r2(t,ω,ϕ)≤LΓα∫0tt−sα−1−tTαT−sα−1+∫tTtTαT−sα−1x1(s,ω,ϕ)−ωds=LΓα∫0tt−sα−1−tTαT−sα−1










+∫tTtTαT−sα−1dsr1(s,ω,ϕ)≤2LtαΓα+11−tTακ∞h∞+B−1d(ω,ϕ)−B−1A+Inω≤Lκ∞2h∞+Lκ∞B−1d(ω,ϕ)−B−1A+Inω.











Hence,


r2(t,ω,ϕ)≤Lκ∞κ∞h∞+B−1d(ω,ϕ)−B−1A+Inω.



(22)







Therefore, by using mathematical induction, we obtain the following inequality:


rm+1(t,ω,ϕ)≤Lκ∞mκ∞h∞+B−1d(ω,ϕ)−B−1A+Inωm=0,1,2..



(23)







In view of (23) and by using triangular inequality we get


xm+jt,ω,ϕ−xmt,ω,ϕ≤xm+jt,ω,ϕ−xm+j−1t,ω,ϕ+xm+j−1t,ω,ϕ−xm+j−2t,ω,ϕ+…+xm+1t,ω,ϕ−xmt,ω,ϕ=rm+jt,ω,ϕ+rm+j−1t,ω,ϕ+…+rm+1t,ω,ϕ=∑i=1jrm+it,ω,ϕ≤Lκ∞mh∞κ∞+B−1d(ω,ϕ)−B−1A+Inω∑i=1∞Li−1κ∞i−1.



(24)







From the assumption C, it follows that


limm→0Lκ∞m=0.











Hence, by (24), xm is Cauchy sequence and uniformly converges on 0,T×Dδ×D to a certain limit x*.














	3.

	
Taking the limit in (8) as m→∞, we see that x* satisfies the boundary conditions directly.




	4.

	
By using contradiction, the uniqueness of the solution is shown. Assume that there are two limit functions such as x1*(t,ω,ϕ) and x2*(t,ω,ϕ). Then, estimating the difference between x1* and x2*


x1*(t,ω,ϕ)−x2*(t,ω,ϕ)≤LΓα∫0tt−sα−1x1*(s,ω,ϕ)−x2*(s,ω,ϕ)ds+∫0TT−sα−1x1*(s,ω,ϕ,ψ)−x2*(s,ω,ϕ)ds≤Lκ∞x1*−x2*∞











Thus,


x1*−x2*∞≤Lκ∞x1*−x2*∞.











It can be written


1−Lκ∞x1*−x2*∞≤0.











So, x1*−x2*=0⟹x1*−x2*=0⟹x1*=x2*.




	5.

	
Passing to j→∞ in (24) we get


x1*(t,ω,ϕ)−x2*(t,ω,ϕ)≤Lκ∞mh∞κ∞+B−1d(ω,ϕ)−B−1A+Inω∑i=1∞Li−1κ∞i−1=Lκ∞mh∞κ∞+B−1d(ω,ϕ)−B−1A+Inω11−Lκ∞.

















 ☐





Remark 2.

If A=In,B=−In,gx(0),x(T)=0,d=0, boundary condition (2) becomes x(0)=x(T). Please note that this problem was studied in [5].






5. Relationship between the Limit Function and the Solution of the Nonlinear Boundary-Value Problem


We consider the following equation


cDαx(t)=h(t,x)+ψ,t∈0,T



(25)




and


x0=ω,



(26)




where ψ=colψ1…ψn is the parameter of control.



Theorem 2.

Let ω∈Dδ,ϕ∈D be arbitrarily defined vectors. Suppose that all conditions of Theorem 1 are satisfied. The solution x=t,ω,ϕ,ψ of the initial-value problem (25), (26) satisfies the boundary conditions (5) if and only if x=t,ω,ϕ,ψ coincides with the limit function x*=x*t,ω,ϕ,ψ of sequence (7). Moreover,


ψ=ψω,ϕ=−αTα∫0TT−sα−1hs,x*(t,ω,ϕ)ds−ΓαB−1d(ω,ϕ)−B−1A+Inω.



(27)









Proof. 

Sufficiency: The proof is similar to the proof of theorem in [9]. Necessity: We fix an arbitrary value ψ−∈Rn and assume that the problem


cDαx(t)=h(t,x)+ψ¯,t∈0,T



(28)




with initial condition x0=ω. The solution x¯=x¯(t) of the problem (28) satisfying the two-point boundary conditions (5):


Ax¯(0)+Bx¯(T)=d(ω,ϕ).











Then, t∈0,Tx¯ is a solution of the integral equation


x¯(t)=ω+1Γα∫0tt−sα−1hs,x¯(s)ds+tαψ¯Γα+1.



(29)







When t=T in (29), we get the following equation


x−(T)=ω+1Γα∫0TT−sα−1hs,x−(s)ds+Tαψ¯Γα+1.



(30)







Also,


x¯(0)=ω








and from the boundary conditions (5):


x¯(T)=B−1d(ω,ϕ)−Aω.



(31)







By using (30) and (31), we obtain


ψ¯=−αTα∫0TT−sα−1hs,x¯(s)ds−ΓαB−1d(ω,ϕ)−B−1A+Inω.



(32)







Then, substituting (32) into the (29), we have


x¯(t):=ω+1Γα∫0tt−sα−1hs,x¯(s)ds−tTα∫0TT−sα−1hs,x¯(s)ds+tTαB−1d(ω,ϕ)−B−1A+Inω,











Moreover, the limit function x* is a solution of the (25), (26) for ψ=ψω,ϕ of the form (27) and satisfies the boundary conditions (5).


x*(t,ω,ϕ,ψ)=ω+1Γα∫0tt−sα−1hs,x*(t,ω,ϕ,ψ)ds+tαψΓα+1.



(33)







Similarly, we start with the solution x*(T,ω,ϕ,ψ) of the integral equation:


x*(T,ω,ϕ,ψ)=ω+1Γα∫0TT−sα−1hs,x*(T,ω,ϕ,ψ)ds+TαψΓα+1.



(34)







Then, the limit function x* satisfies the following boundary conditions


Ax*(0,ω,ϕ,ψ)+Bx*(T,ω,ϕ,ψ)=d(ω,ϕ)



(35)




with the initial condition


x*(0,ω,ϕ,ψ)=ω.











From (35), we obtain


x*(T,ω,ϕ,ψ)=B−1d(ω,ϕ)−Aω.



(36)







By using relations (34) and (36) we get


ψω,ϕ=−αTα∫0TT−sα−1hs,x*(s,ω,ϕ,ψ)ds−ΓαB−1d(ω,ϕ)−B−1A+Inω.



(37)







After substituting relation (37) into (33), we have


x*(t,ω,ϕ,ψ):=ω+1Γα∫0tt−sα−1hs,x*(s,ω,ϕ,ψ)ds−tTα∫0TT−sα−1hs,x*(s,ω,ϕ,ψ)ds+tTαB−1d(ω,ϕ)−B−1A+Inω.











Taking the difference between x− and x*, we get


x*(t,ω,ϕ,ψ)−x−(t)=1Γα∫0tt−sα−1hs,x*(s,ω,ϕ,ψ)−hs,x−(s)ds−tTα∫0TT−sα−1hs,x*s,ω,ϕ,ψ−hs,x−(s)ds.











Thus, we have the following inequalities between x* and x−


x*(t,ω,ϕ,ψ)−x−(t)≤LΓα∫0tt−sα−1x*(s,ω,ϕ,ψ)−x−(s)ds+∫0TT−sα−1x*(s,ω,ϕ,ψ)−x−(s)ds≤Lκ∞x*−x−∞.











Thus,


x*−x−∞≤Lκ∞x*−x−∞.











It can be written


1−Lκ∞x*−x−∞≤0.











Therefore, we have


x*−x−∞=0⟹x*−x−=0⟹x*=x−.











This means that the function x− coincides with x*. Also, by using (32) and (37), we obtain ψω,ϕ=ψ¯. The theorem is proved. ☐





Theorem 3.

Assume that the conditions A, B and C are satisfied for the Caputo-type fractional differential Equation (1) with nonlinear boundary conditions (2). Then, x*·,ω*,ϕ*,ϕ* is a solution of the parametrized boundary-value problem (1), (5) if and only if ω*=ω1*,ω2*,….,ωn* and ϕ*=ϕ1*,ϕ2*,….,ϕn* satisfy the system of determining algebraic or transcendental equations


Ωω,ϕ=−αTα∫0TT−sα−1hs,x*(s,ω,ϕ)ds−ΓαB−1d(ω,ϕ)−B−1A+Inω=0,



(38)






x*T,ω,ϕ=ϕ.



(39)









Proof. 

The result is obtained from the Theorem 2 and by observing that the differential Equation (11) coincides with (1) if and only if the couple ω*,ϕ* satisfies the equation


Ωω*,ϕ*=0.








 ☐





The following assertion indicates the determining system of Equations (38), (39) shows all possible solution of the Caputo-type differential Equation (1) with nonlinear boundary conditions (2).



Remark 3.

Assume that all conditions of Theorem 1 are satisfied and there exist vectors ω∈Dδ and ϕ∈D satisfying the system of determining Equations (38) and (39). Then the Caputo-type differential Equation (1) with nonlinear boundary conditions (2) have the solution x(·) such that


x(0)=ω,x(T)=ϕ.








Also, this solution has the following form


x(t)=x*t,ω,ϕ,t∈0,T,



(40)




where x* is the limit function of sequence (7). Conversely, if the Caputo-type differential Equation (1) with nonlinear boundary conditions (2) has a solution x(·), this solution necessarily has the form (40) and the system of determining Equations (38) and (39) is satisfied for


ω=x(0),ϕ=x(T).













Remark 4.

For some m≥1, a function Ωm:D×D→Rn is defined by the formula


Ωmω,ϕ:=−αTα∫0TT−sα−1hs,xm(t,ω,ϕ)ds−ΓαB−1d(ω,ϕ)−B−1A+Inω,








where ω and ϕ are given by (3). To study the solvability of the parametrized boundary-value problem (5), we consider the approximate determining system of algebraic equations of the form


Ωmω,ϕ=−αTα∫0TT−sα−1hs,xm(t,ω,ϕ)ds−ΓαB−1d(ω,ϕ)−B−1A+Inω=0,



(41)






xmT,ω,ϕ=ϕ,



(42)




where xm is the vector function specified by the recurrence relation (7).






6. Example


Motivated by [5], we consider a system of Caputo-type fractional differential equations


cDαx1=x2=h1t,x1,x2cDαx2=−12x22−12x1+t8x2+t1−α4Γ2−α+2tα+1+116Γ2+α=h2t,x1,x2



(43)




with nonlinear boundary conditions


x1(0)+x112−x2122=2α+1+12α8Γα+2−164,x2(0)+x112−x212=2α+12α8Γα+2−18



(44)







The pair of the functions


x1*=2tα+1+18Γα+2,x2*=t4








are the exact solution of the Caputo-type fractional differential Equation (43) with nonlinear boundary conditions (44). Then, the nonlinear boundary conditions can be shown by the form of matrix vectors as follows:


Ax0+Bx12+gx(0),x12=d,



(45)




where


A=1001,B=101−1,d=2α+1+12α8Γα+2−1642α+12α8Γα+2−18,gx(0),x12=−[x212]20.











Also, det(B)=−1≠0.



Then, new parameters are introduced as follows:


x(0)=ω:=ω1ω2,x12=ϕ:=ϕ1ϕ2



(46)







By using the parameters in (46), the nonlinear boundary condition (44) can be written in the following form:


Ax(0)+Bx12=d−g(ω,ϕ).











Thus,


d(ω,ϕ)=d−g(ω,ϕ)=2α+1+12α8Γα+2−164+ϕ222α+12α8Γα+2−18.



(47)







By using (47), the nonlinear boundary conditions (44) are transformed to the linear conditions as follows:


Ax(0)+Bx12=d(ω,ϕ).



(48)







The conditions of convergence of successive approximations (A), (B), and (C) are checked. At first, the domain D is defined as follows:


D=x1,x2:x1≤1,x2≤34,t∈0,0.5.



(49)







Then, the first condition A which is related with Lipschitz condition is satisfied as follows:


L=max0,1,1/2,7/8











Thus,


L=1.











Then,


κ∞=0.2143








and


h∞≤1.6207








are obtained for α=0.9. The vector δω,ϕ is stated as follows:


δω,ϕ:=κ∞h∞+B−1d(ω,ϕ)−B−1A+Inω≤.0.3473+0.0565+2ϕ24−6ϕ22(−0.111833+ω1)−0.9866ω1+5ω12











Therefore, the condition (C) is satisfied.



Thus, it is verified that all needed conditions are fulfilled. Hence, we can proceed with the procedure of the numerical-analytic scheme described above. Therefore, the sequence of approximate solutions are constructed. For the Caputo-type boundary-value problem (43), (48) the successive approximations (7) have the following form:


xm,1t,ω,ϕ:=ω1+1Γα∫0tt−sα−1h1s,xm−1,1s,ω,ϕ,xm−1,1s,ω,ϕds−tTα∫0TT−sα−1h1s,xm−1,1s,ω,ϕ,xm−1,1s,ω,ϕds+tTα2α+1+12α8Γα+2−164+ϕ22−2ω1,










xm,2t,ω,ϕ:=ω2+1Γα∫0tt−sα−1h2s,xm−1,1s,ω,ϕ,xm−1,1s,ω,ϕds−tTα∫0TT−sα−1h2s,xm−1,1s,ω,ϕ,xm−1,1s,ω,ϕds+tTα18Γ(α+2)+764+ϕ22−ω1,whereα=0.9.











Then, by using the program Mathematica, we get following results for α=0.9.



Iteration 1: We start from the approximate system of algebraic Equations (41) and (42) for m=1. Then, the approximate system has the following solutions:


ω1=ω11=0.0656973365195,



(50)






ω2=ω12=−0.00219529679272,



(51)






ϕ1=ϕ11=0.179133148137,



(52)






ϕ2=ϕ12=0.239437851344.



(53)







Substituting (50)–(53) into the equations of x1,1 and x1,2. Then, we obtain x1,1t and x1,2t. Figure 1 shows the graphic of x1,1t and x1t. On the other hand, Figure 2 indicates the graphic of x1,2t and x2t.



Also, for the first iteration, the maximum deviations of the exact solution are


maxt∈0,1x1*(t)−x11(t)≤0.02893










maxt∈0,1x2*(t)−x12(t)≤0.01547











Similarly, we use (41) and (42) to find the unknown parameters for each iteration. Also, for each iteration the solutions of approximate systems are so close with (50)–(53). Therefore, for the next iterations, components of exact and approximate solutions are shown by figures and with their maximum errors.



Iteration 50: The graphs of the first and second components of the exact and approximate (in the fifth iteration) solutions are shown in Figure 3 and Figure 4 respectively.



The following inequalities are related to the maximum deviation of the exact solution with its fifth approximations.


maxt∈0,1x1*(t)−x501(t)≤0.02096










maxt∈0,1x2*(t)−x502(t)≤0.01744











Iteration 100: The graphs of the first and second components of the exact and approximate (in the hundredth iteration) solutions are shown in Figure 5 and Figure 6 respectively.



For the hundredth approximation the maximum deviations of the exact solution are


maxt∈0,1x1*(t)−x1001(t)≤0.01311










maxt∈0,1x2*(t)−x1002(t)≤0.01471











Iteration 150: The graphs of the first and second components of the exact and approximate (in the one hundred and fifth iteration) solutions are shown on Figure 7 and Figure 8 respectively.



The following inequalities are related with the maximum deviations of the exact solution with its one hundred and fifth approximations.


maxt∈0,1x1*(t)−x1501(t)≤0.008333










maxt∈0,1x2*(t)−x1502(t)≤0.01077











Iteration 200: The graphs of the first and second components of the exact and approximate (in the two hundredth iteration) solutions are shown in Figure 9 and Figure 10, respectively.



For the two hundredth iteration, the maximum deviations of the exact solution are


maxt∈0,1x1*(t)−x2001(t)≤0.00487










maxt∈0,1x2*(t)−x2002(t)≤0.006097











Iteration 250: The graphs of the first and second components of the exact and approximate (in the two hundredth and fifth iteration) solutions are shown in Figure 11 and Figure 12, respectively.



The following inequalities are related with the maximum deviations of the exact solution with its two hundredth and fifth approximations


maxt∈0,1x1*(t)−x2501(t)≤0.0004704










maxt∈0,1x2*(t)−x2502(t)≤0.0006233











Iteration 300: The graphs of the first and second components of the exact and approximate (in the three hundredth iteration) solutions are shown in Figure 13 and Figure 14, respectively.



The following inequalities are related with the maximum deviations of the exact solution with its three hundredth approximations.


maxt∈0,1x1*(t)−x3001(t)≤0.00007809










maxt∈0,1x2*(t)−x3002(t)≤0.00006241











Iteration 364: The graphs of the first and second components of the exact and approximate (in the three hundred and sixty-fourth iteration) solutions are shown in Figure 15 and Figure 16, respectively.



The following inequalities are related with the maximum deviations of the exact solution with its three hundred and sixty-fourth approximations.


maxt∈0,1x1*(t)−x1001(t)≤1.209×10−6










maxt∈0,1x2*(t)−x1002(t)≤5.813×10−6











The results of the 1st component of the exact solution and its 1st approximation are compared for some t values in Table 1 with errors.



The results of the second component of the exact solution and its 1st approximation are compared for some t values in Table 2 with errors.



The results of the 1st component of the exact solution and its last approximation are compared for some t values in Table 3 with errors.



Note that, for example, 1.563 × 10−8 means to multiply 1.563 by 0.00000001. The results of the second component of the exact solution and its last approximation are compared for some t values in Table 4 with errors.




7. Conclusions


In this article, we studied Caputo-type fractional differential equations with parametrized boundary conditions. To study of the solution of the Caputo-type fractional differential equation, successive approximations are considered. It is shown that these successive approximations are uniformly convergent and the relationship between the limit function and the exact solution of the boundary-value problem is stated.
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Figure 1. The first component of the exact solution and its first approximation. 






Figure 1. The first component of the exact solution and its first approximation.
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Figure 2. The second component of the exact solution and its first approximation. 






Figure 2. The second component of the exact solution and its first approximation.
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Figure 3. The first component of the exact solution and its fifth approximation. 






Figure 3. The first component of the exact solution and its fifth approximation.
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Figure 4. The second component of the exact solution and its fifth approximation. 






Figure 4. The second component of the exact solution and its fifth approximation.
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Figure 5. The first component of the exact solution and its hundredth approximation. 






Figure 5. The first component of the exact solution and its hundredth approximation.
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Figure 6. The second component of the exact solution and its hundredth approximation. 






Figure 6. The second component of the exact solution and its hundredth approximation.
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Figure 7. The first component of the exact solution and its one hundred and fifth approximation. 






Figure 7. The first component of the exact solution and its one hundred and fifth approximation.
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Figure 8. The second component of the exact solution and its one hundred and fifth approximation. 






Figure 8. The second component of the exact solution and its one hundred and fifth approximation.
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Figure 9. The first component of the exact solution and its two hundredth approximation. 






Figure 9. The first component of the exact solution and its two hundredth approximation.
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Figure 10. The second component of the exact solution and its two hundredth approximation. 






Figure 10. The second component of the exact solution and its two hundredth approximation.
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Figure 11. The first component of the exact solution and its two hundredth and fifth approximation. 






Figure 11. The first component of the exact solution and its two hundredth and fifth approximation.
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Figure 12. The second component of the exact solution and its two hundredth and fifth approximation. 






Figure 12. The second component of the exact solution and its two hundredth and fifth approximation.
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Figure 13. The first component of the exact solution and its three hundredth approximation. 






Figure 13. The first component of the exact solution and its three hundredth approximation.
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Figure 14. The second component of the exact solution and its three hundredth approximation. 






Figure 14. The second component of the exact solution and its three hundredth approximation.
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Figure 15. The first component of the exact solution and its three hundred and sixty-fourth approximation. 






Figure 15. The first component of the exact solution and its three hundred and sixty-fourth approximation.
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Figure 16. The second component of the exact solution and its three hundred and sixty-fourth approximation. 






Figure 16. The second component of the exact solution and its three hundred and sixty-fourth approximation.
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Table 1. Comparing approximated and first component of exact Solution with error.






Table 1. Comparing approximated and first component of exact Solution with error.





	t
	Exact Solution
	Approximated Solution
	Error
	Relative Errors





	0.1
	0.06375
	0.07704
	0.01329
	0.2085



	0.2
	0.0675
	0.08838
	0.02088
	0.3093



	0.3
	0.07375
	0.09973
	0.02598
	0.3523



	0.4
	0.0825
	0.1111
	0.02857
	0.3467



	0.5
	0.09375
	0.1224
	0.02867
	0.3056



	0.6
	0.1075
	0.1338
	0.02626
	0.2447



	0.7
	0.1238
	0.1451
	0.02135
	0.1721



	0.8
	0.1425
	0.1564
	0.01395
	0.0975



	0.9
	0.1638
	0.1678
	0.00404
	0.0244



	1
	0.1875
	0.1791
	0.008367
	0.0448
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Table 2. Comparing Approximated and second component of exact solution with error.






Table 2. Comparing Approximated and second component of exact solution with error.





	t
	Exact Solution
	Approximated Solution
	Error
	Relative Errors





	0.1
	0.025
	0.01992
	0.005082
	0.2032



	0.2
	0.05
	0.04215
	0.007847
	0.1570



	0.3
	0.075
	0.06464
	0.01036
	0.1381



	0.4
	0.1
	0.08749
	0.01251
	0.1251



	0.5
	0.125
	0.1108
	0.01416
	0.1136



	0.6
	0.15
	0.1348
	0.01518
	0.1013



	0.7
	0.175
	0.1595
	0.01546
	0.0886



	0.8
	0.2
	0.1851
	0.01487
	0.0745



	0.9
	0.225
	0.2117
	0.01328
	0.0591



	1
	0.25
	0.2394
	0.01056
	0.0424
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Table 3. Comparing Approximated and first component of exact solutions with error.






Table 3. Comparing Approximated and first component of exact solutions with error.





	t
	Exact Solution
	Approximated Solution
	Error
	Relative Errors





	0.1
	0.06375
	0.06375
	1.563 × 10−8
	2.418 × 10−7



	0.2
	0.0675
	0.0675
	6.25 × 10−8
	9.2593 × 10−7



	0.3
	0.07375
	0.07375
	1.406 × 10−7
	1.9064 × 10−6



	0.4
	0.0825
	0.0825
	0.00000025
	3.0303 × 10−6



	0.5
	0.09375
	0.09375
	3.906 × 10−7
	4.1664 × 10−6



	0.6
	0.1075
	0.1075
	5.625 × 10−7
	5.2326 × 10−6



	0.7
	0.1238
	0.1238
	7.656 × 10−7
	6.1842 × 10−6



	0.8
	0.1425
	0.1425
	0.000001
	7.0175 × 10−6



	0.9
	0.1638
	0.1638
	0.000001266
	7.7289 × 10−6



	1
	0.1875
	0.1875
	0.000001563
	8.3360 × 10−6
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Table 4. Comparing Approximated and second component of exact Solutions with error.






Table 4. Comparing Approximated and second component of exact Solutions with error.





	t
	Exact Solution
	Approximated Solution
	Error
	Relative Errors





	0.1
	0.025
	0.025
	0.000000625
	2.5000 × 10−5



	0.2
	0.05
	0.05
	0.00000125
	2.5000 × 10−5



	0.3
	0.075
	0.075
	0.000001875
	2.5000 × 10−5



	0.4
	0.1
	0.1
	0.0000025
	2.5000 × 10−5



	0.5
	0.125
	0.125
	0.000003125
	2.5000 × 10−5



	0.6
	0.15
	0.15
	0.00000375
	2.5000 × 10−5



	0.7
	0.175
	0.175
	0.000004375
	2.5000 × 10−5



	0.8
	0.2
	0.2
	0.000005
	2.5000 × 10−5



	0.9
	0.225
	0.225
	0.000005625
	2.5000 × 10−5



	1
	0.25
	0.25
	0.00000625
	2.5000 × 10−5
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