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Abstract

:

In this paper, we focus on studying the split feasibility problem (SFP) in Hilbert spaces. Based on the CQ algorithm involving the self-adaptive technique, we introduce a three-step iteration process for approximating the solution of SFP. Then, the convergence results are established under mild conditions. Numerical experiments are provided to show the efficiency in signal processing. Some comparisons to various methods are also provided in this paper.
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1. Introduction


In the present work, we aim to study the split feasibility problem (SFP), which is to find a point


x∗∈C such that Ax∗∈Q,



(1)




where C and Q are non-empty, closed, and convex subsets of RM and RN, and A is an M×N matrix. The SFP was first investigated in 1994 by Censor-Elfving [1]. Subsequently, Xu [2,3] also studied this problem in finite dimensional Hilbert spaces. There have also been real-world applications, such as image processing and signal recovery.



Censor et al. [4] (see also [5]) introduced the Split Inverse Problem (SIP). In this, let X and Y be two vector spaces and A:X→Y be a linear operator, such that two inverse problems are involved. Denote IP1 and IP2 by such inverse problems in X and Y, respectively. Given these data, the SIP is formulated as follows: find a point x∗∈X that solves IP1, and such that the point y∗=Ax∗∈Y solves IP2.



It is known that the special case of the SFP can be reformulated to the following constrained minimization:


minx∈C ∥PQ(Ax)−Ax∥.



(2)







Due to this reformulation, it can be seen as the following linear equation:


x∗∈C and Ax∗=b.



(3)







In 2002, Byrne [6,7] introduced a new projection algorithm for the SFP. It was defined as follows:


xn+1=PC(xn−τnA∗(I−PQ)Axn)



(4)




where PC and PQ are projections onto C and Q, and A∗ denotes the adjoint operator of A. This method is often called the CQ algorithm. In this case, the convergence is guaranteed when the step-size τn is in (0,2∥A∥2), where ∥A∥2 is the spectral radius of the operator A∗A and I stands for the identity operator. However, it should be noted that projections are not easy to be calculated, and also come with costs of computation.



In practical applications, the sets C and Q are usually defined by


C={x∈H1:c(x)≤0} and Q={y∈H2:q(y)≤0},



(5)




where c:H1→R and q:H2→R are convex and sub-differential functions on H1 and H2. We always assume that ∂c and ∂q are bounded operators.



In 2004, Yang [8] presented the relaxed CQ algorithm, which follows from the idea of Fukushima [9]. The relaxed CQ algorithm, PC and PQ, has been replaced by PCn and PQn, respectively, where Cn and Qn are defined by


Cn={x∈H1:c(xn)≤⟨ξn,xn−x⟩},



(6)




where ξn∈∂c(xn) and


Qn={y∈H2:q(Axn)≤⟨ζn,Axn−y⟩},



(7)




where ζn∈∂q(Axn). It is easily seen that Cn⊃C and Qn⊃Q for all n≥1. Next, we set


fn(x)=12∥(I−PQn)Ax∥2, n≥1.



(8)







In this case, we get


∇fn(x)=A∗(I−PQn)Ax.



(9)







Since these sets are half-spaces, the computation for these projections is easy. However, if the step-size depends on the norm of operators, it is not an easy task to undertake. In fact, the relaxed CQ algorithm in a finite-dimentional Hilbert space was introduced by Yang [8] as follows:


xn+1=PCn(xn−τn∇fn(xn)),



(10)




where τn∈(0,2/∥A∥2). We note that the norm of A turned out to be costly in the computation. In particular, A is a dense matrix and has a large dimension.



To overcome this difficultly, in 2012, López et al. [10] presented a new step-size τn as follows:


τn=ρnfn(xn)∥∇fn(xn)∥2,



(11)




where {ρn} is a sequence in (0,4) such that infn∈Nρn(4−ρn)>0. It was shown that {xn}, with the step-size (11), converged weakly to a solution of SFP.



Another algorithm that can produce strong convergence is the Halpern-type algorithm. It is defined by


xn+1=αnu+(1−αn)PCn(xn−τn∇fn(xn)),



(12)




where u∈H1 is fixed and τn is defined by (11). It was claimed that {xn} converges strongly to PSu when αn→0 and ∑n=1∞αn=∞.



Recently, in 2005, Qu-Xiu [11] suggested the relaxed CQ algorithm by using Armijo-linesearch in Euclidean spaces, and then Gibali et al. [12] generalized the results of Qu-Xiu [11] to real Hilbert spaces as follows:


xn+1=PCn(xn−τn∇fn(yn))yn=PCn(xn−τn∇fn(xn)),



(13)




where σ>0, ρ,μ∈(0,1), τn=σρμn, and μn is the smallest non-negative integer, such that


τn∥∇fn(xn)−∇fn(yn)∥≤μ∥xn−yn∥.



(14)







It was shown that {xn} converges weakly to a solution of SFP. Various iterative methods have been established to solve the SFP and some related problems—see, for example, [2,3,4,5,13,14,15,16,17].



We aim to suggest a new three-step iteration process by using the CQ algorithm with step-sizes that employ the self-adaptive terminology. We remark that our assumptions do not depend on the operator norms, which is an easy task in practice. We then establish weak and strong convergence results under suitable conditions. Finally, we apply our results to compressed sensing. Some comparisons are also given to those of Yang [8], Gibali et al. [12], and López et al. [10].



Moreover, based on the three-step iterative methods, some convergence results, including its efficiency, have been established—see, for example, [18,19,20,21,22,23].




2. Basic Concepts


We next recall some useful basic concepts that will be used in our proof. Let H be a real Hilbert space. Let T:H→H be a nonlinear mapping. Then, T is called




	(i)

	
nonexpansive if


∥Tx−Ty∥≤∥x−y∥, for all x,y∈H.



(15)








	(ii)

	
firmly nonexpansive if, for all x,y∈H,


∥Tx−Ty∥2≤⟨x−y,Tx−Ty⟩.



(16)













A function f:H→R is convex if


f(λx+(1−λ)y)≤λf(x)+(1−λ)f(y), for all λ∈(0,1), for all x,y∈H.



(17)







A function f:H→R is weakly lower semi-continuous (w-lsc) at x if xn⇀x implies


f(x)≤lim infn→∞f(xn).



(18)







The projection of a non-empty, closed, and convex set C onto H is defined by


PCx:=argminy∈C∥x−y∥2, x∈H.



(19)







We note that PC and I−PC are firmly non-expansive. From [7], we know that if


f(x)=12∥(I−PQ)Ax∥2,








then ∇f is ∥A∥2-Lipschitz continuous. Moreover, in real Hilbert spaces, we know that [24]




	(i)

	
⟨x−PCx,z−PCx⟩≤0 for all z∈C;




	(ii)

	
∥PCx−PCy∥2≤⟨PCx−PCy,x−y⟩ for all x,y∈H;




	(iii)

	
∥PCx−z∥2≤∥x−z∥2−∥PCx−x∥2 for all z∈C.









Lemma 1.

[25] Let H be a real Hilbert space and S be a non-empty, closed, and convex subset of H. Let {xn} be a sequence in H that satisfies the following conditions:




	(i) 

	
For each x∈S, limn→∞∥xn−x∥ exists;




	(ii) 

	
ωw(xn)⊂S.









Then, {xn} converges weakly to a point in S.





Lemma 2.

[26] Let {sn} be a non-negative real sequence, such that


sn+1≤(1−αn)sn+αnμn,n≥1,sn+1≤sn−λn+υn,n≥1,



(20)




where {αn}⊆(0,1), {λn} is a non-negative, real sequence, and {μn} and {υn} are real sequences such that




	(i) 

	
∑n=1∞αn=∞;




	(ii) 

	
limn→∞υn=0;




	(iii) 

	
limk→∞λnk=0 implies lim supk→∞μnk≤0 for any subsequence {nk} of {n}.









Then, limn→∞sn=0.





Next, we propose Algorithms 1 and 2 for solving the split feasibility problem in Hilbert spaces.




3. Weak Convergence Result


We next introduce a new CQ algorithm and derive the weak convergence of the proposed method.








	Algorithm 1: The proposed algorithm for weak convergence.



	Choose x0∈H1. Let xn+1 be iteratively generated by


zn=xn−τn∇fn(xn)yn=zn−γn∇fn(zn)xn+1=PCn(yn−δn∇fn(yn))



(21)




where Cn is given as (6),


τn=ρnfn(xn)∥∇fn(xn)∥2, γn=ρnfn(zn)∥∇fn(zn)∥2 and δn=ρnfn(yn)∥∇fn(yn)∥2, 0<ρn<4.



(22)










Remark 1.

We see that Algorithm 1 is defined as the iterates zn and yn by a gradient method with the step-size τn and γn, respectively, and the iterate xn+1 is defined by a relaxed CQ algorithm with the step-size δn.





In this paper, we denote S by the solution set of SFP and assume that S is non-empty. Next, we prove its weak convergence theorem as follows:



Theorem 1.

Suppose infnρn(4−ρn)>0. Then, {xn}, defined by Algorithm 1, converges weakly to a point of S.





Proof. 

Let x^∈S. Because C⊆Cn and Q⊆Qn, we have x^=PC(x^)=PCn(x^) and Ax^ = PQ(Ax^) = PQn(Ax^). It follows that ∇fn(x^)=0. Then we obtain


∥xn+1−x^∥2=∥PCn(yn−δn∇fn(yn))−x^∥2≤∥yn−δn∇fn(yn)−x^∥2−∥xn+1−yn+δn∇fn(yn)∥2=∥yn−x^∥2+δn2∥∇fn(yn)∥2−2δn⟨yn−x^,∇fn(yn)⟩−∥xn+1−yn+δn∇fn(yn)∥2.



(23)







From (23) and ∇fn(x^)=0, we see that


⟨yn−x^,∇fn(yn)⟩=⟨yn−x^,∇fn(yn)−∇fn(x^)⟩=⟨yn−x^,A∗(I−PQn)Ayn−A∗(I−PQn)Ax^⟩=⟨Ayn−Ax^,(I−PQn)Ayn−(I−PQn)Ax^⟩≥∥(I−PQn)Ayn∥2=2fn(yn).



(24)







We can also show that


⟨xn−x^,∇fn(xn)⟩≥2fn(xn)



(25)




and


⟨zn−x^,∇fn(zn)⟩≥2fn(zn).



(26)







So, by (26), it follows that


∥yn−x^∥2=∥zn−γn∇fn(zn)−x^∥2=∥zn−x^∥2+γn2∥∇fn(zn)∥2−2γn⟨zn−x^,∇fn(zn)⟩≤∥zn−x^∥2+γn2∥∇fn(zn)∥2−4γnfn(zn).



(27)







Moreover, by (25), we obtain


∥zn−x^∥2=∥xn−τn∇fn(xn)−x^∥2=∥xn−x^∥2+τn2∥∇fn(xn)∥2−2τn⟨xn−x^,∇fn(xn)⟩≤∥xn−x^∥2+τn2∥∇fn(xn)∥2−4τnfn(xn).



(28)







Combining (23)–(28), we have


∥xn+1−x^∥2≤∥xn−x^∥2+τn2∥∇fn(xn)∥2−4τnfn(xn)+γn2∥∇fn(zn)∥2−4γnfn(zn)+δn2∥∇fn(yn)∥2−4δnfn(yn)−∥xn+1−yn+δn∇fn(yn)∥2=∥xn−x^∥2+ρn2fn2(xn)(∥∇fn(xn)∥2)2∥∇fn(xn)∥2−4ρnfn2(xn)∥∇fn(xn)∥2+ρn2fn2(zn)(∥∇fn(zn)∥2)2∥∇fn(zn)∥2−4ρnfn2(zn)∥∇fn(zn)∥2+ρn2fn2(yn)(∥∇fn(yn)∥2)2∥∇fn(yn)∥2−4ρnfn2(yn)∥∇fn(yn)∥2−∥xn+1−yn+δn∇fn(yn)∥2=∥xn−x^∥2+ρn2fn2(xn)∥∇fn(xn)∥2−4ρnfn2(xn)∥∇fn(xn)∥2+ρn2fn2(zn)∥∇fn(zn)∥2−4ρnfn2(zn)∥∇fn(zn)∥2+ρn2fn2(yn)∥∇fn(yn)∥2−4ρnfn2(yn)∥∇fn(yn)∥2−∥xn+1−yn+δn∇fn(yn)∥2=∥xn−x^∥2−ρn(4−ρn)fn2(xn)∥∇fn(xn)∥2−ρn(4−ρn)fn2(zn)∥∇fn(zn)∥2−ρn(4−ρn)fn2(yn)∥∇fn(yn)∥2−∥xn+1−yn+δn∇fn(yn)∥2.



(29)







This implies that, since 0<ρn<4,


∥xn+1−x^∥≤∥xn−x^∥.



(30)







Thus, limn→∞∥xn−x^∥ exists and {xn} is bounded. Since infn∈Nρn(4−ρn)>0, there is a ρ such that ρn(4−ρn)≥ρ(4−ρ)>0. Again, from (29), it yields


∥xn−x^∥2−∥xn+1−x^∥2≥ρ(4−ρ)fn2(xn)∥∇fn(xn)∥2+ρ(4−ρ)fn2(zn)∥∇fn(zn)∥2 +ρ(4−ρ)fn2(yn)∥∇fn(yn)∥2+∥xn+1−yn+δn∇fn(yn)∥2.



(31)







So, we obtain


0=limn→∞∥xn+1−x^∥2−∥xn−x^∥2≥limn→∞[ ρ(4−ρ)fn2(xn)∥∇fn(xn)∥2+ρ(4−ρ)fn2(zn)∥∇fn(zn)∥2+ρ(4−ρ)fn2(yn)∥∇fn(yn)∥2+∥xn+1−yn+δn∇fn(yn)∥2 ]≥0.



(32)







This shows that


limn→∞fn2(xn)∥∇fn(xn)∥2=0,limn→∞fn2(zn)∥∇fn(zn)∥2=0,limn→∞fn2(yn)∥∇fn(yn)∥2=0,limn→∞∥xn+1−yn+δn∇fn(yn)∥2=0.



(33)







We can check that {∥∇fn(xn)∥} is bounded. So limn→∞fn(xn)=0. This means limn→∞∥(I−PQn)Axn∥ = 0. Also limn→∞fn(zn)=limn→∞∥(I−PQn)Azn∥=0 and limn→∞fn(yn)=limn→∞∥(I−PQn)Ayn∥ = 0.



Furthermore, from (33), we get


limn→∞∥xn+1−yn+δn∇fn(yn)∥=0.



(34)







We note that


δn∥∇fn(yn)∥=ρnfn(yn)∥∇fn(yn)∥2∥∇fn(yn)∥→0, as n→∞.



(35)







Hence, by (34) and (35), limn→∞∥xn+1−yn∥=0. Further, by (21) and τn∥∇fn(xn)∥→0 as n→∞, we get limn→∞∥zn−xn∥=0. Since γn∥∇fn(xn)∥→0 as n→∞, we also get limn→∞∥yn−zn∥=0. Hence limn→∞∥xn+1−xn∥=0.



By the boundedness of {xn}, the set ωw(xn) is non-empty. Let x∗∈ωw(xn). Then, there is a subsequence {xnk} of {xn} that xnk⇀x∗∈H1.



Next, we show that x∗ is in S. Since xnk+1∈Cnk, by the definition of Cnk, we get


c(xnk)≤⟨ξnk,xnk−xnk+1⟩



(36)




where ξnk∈∂c(xnk). It follows, by the boundedness of ∂c, that


c(xnk)≤∥ξnk∥∥xnk−xnk+1∥→0, as k→∞.



(37)







By the w-lsc of c, xnk⇀x∗ and (37), we see that


c(x∗)≤lim infk→∞c(xnk)≤0.



(38)







Thus, x∗∈C.



Next, we will show that Ax∗∈Q. Since PQnk(Axnk)∈Qnk,


q(Axnk)≤⟨ηnk,Axnk−PQnk(Axnk)⟩



(39)




where ηnk∈∂q(Axnk). So, we obtain


q(Axnk)≤∥ηnk∥∥Axnk−PQnk(Axnk)∥→0, as k→∞.



(40)







The w-lsc of q and (40) give that


q(Ax∗)≤lim infk→∞q(Axnk)≤0.



(41)







Thus, Ax∗∈Q. By Lemma 1, we can deduce that {xn} converges weakly to a point in S. □






4. Strong Convergence Result


We next discuss the strong convergence of the sequence generated by the Halpern-type iteration.








	Algorithm 2: The proposed algorithm for strong convergence.



	Choose x0∈H1. Assume xn, zn and yn have been constructed. Compute the sequence xn+1 by


zn=xn−τn∇fn(xn)yn=zn−γn∇fn(zn)xn+1=αnu+(1−αn)PCn(yn−δn∇fn(yn))



(42)




where u∈H1 and {αn}⊂(0,1), Cn is given as (6),


τn=ρnfn(xn)∥∇fn(xn)∥2, γn=ρnfn(zn)∥∇fn(zn)∥2 and δn=ρnfn(yn)∥∇fn(yn)∥2, 0<ρn<4.



(43)










Theorem 2.

Assume that {αn} and {ρn} satisfy the conditions:




	(a) 

	
limn→∞αn=0 and ∑n=1∞αn=∞;




	(b) 

	
infnρn(4−ρn)>0.









Then, {xn}, defined by Algorithm 2, converges strongly to PSu.





Proof. 

Set x^=PSu. By using the same argument as in Theorem 1, we can show that


∥PCn(yn−δn∇fn(yn))−x^∥2≤∥yn−x^∥2−ρn(4−ρn)fn2(yn)∥∇fn(yn)∥−∥PCn(yn−δn∇fn(yn))−yn+δn∇fn(yn)∥2.



(44)







So,


∥yn−x^∥2≤∥zn−x^∥2−ρn(4−ρn)fn2(zn)∥∇fn(zn)∥2



(45)




and


∥zn−x^∥2≤∥xn−x^∥2−ρn(4−ρn)fn2(xn)∥∇fn(xn)∥2.



(46)







Also, we obtain


∥xn+1−x^∥2=∥αn(u−x^)+(1−αn)(PCn(yn−δn∇fn(yn))−x^)∥2≤(1−αn)∥PCn(yn−δn∇fn(yn))−x^∥2+2αn⟨u−x^,xn+1−x^⟩.



(47)







Combining (44)–(47), we obtain


∥xn+1−x^∥2≤(1−αn)∥xn−x^∥2−(1−αn)ρn(4−ρn)fn2(xn)∥∇fn(xn)∥2−(1−αn)ρn(4−ρn)fn2(zn)∥∇fn(zn)∥2−(1−αn)ρn(4−ρn)fn2(yn)∥∇fn(yn)∥2−(1−αn)∥PCn(yn−δn∇fn(yn))−yn+δn∇fn(yn)∥2+2αn⟨u−x^,xn+1−x^⟩.



(48)







Next, we will show that {xn} is bounded. Again, using (44)–(46), we get


∥xn+1−x^∥=∥αnu+(1−αn)PCn(yn−δn∇fn(yn))−x^∥≤αn∥u−x^∥+(1−αn)∥yn−x^∥≤αn∥u−x^∥+(1−αn)∥zn−x^∥≤αn∥u−x^∥+(1−αn)∥xn−x^∥.



(49)







This shows that {xn} is bounded. From Lemma 2 and (48), we set


sn=∥xn−x^∥2;υn=2αn⟨u−x^,xn+1−x^⟩;μn=2⟨u−x^,xn+1−x^⟩;λn=(1−αn)∥PCn(yn−δn∇fn(yn))−yn+δn∇fn(yn)∥2+(1−αn)ρn(4−ρn)fn2(xn)∥∇fn(xn)∥2+(1−αn)ρn(4−ρn)fn2(yn)∥∇fn(yn)∥2+(1−αn)ρn(4−ρn)fn2(zn)∥∇fn(zn)∥2.



(50)







So (48) can be transformed to the inequalities


sn+1≤(1−αn)sn+αnμn,n≥1sn+1≤sn−λn+υn.



(51)







Let {nk} be a subsequence of {n}, such that


limk→∞λnk=0.



(52)







Then, we have


limk→∞ (1−αnk)∥PCnk(ynk−δnk∇fnk(ynk))−ynk+δnk∇fnk(ynk)∥2+(1−αnk)ρnk(4−ρnk)fnk2(xnk)∥∇fnk(xnk)∥2+(1−αnk)ρnk(4−ρnk)fnk2(znk)∥∇fnk(znk)∥2+(1−αnk)ρnk(4−ρnk)fnk2(ynk)∥∇fnk(ynk)∥2=0



(53)




which implies by our assumptions that


fnk2(xnk)∥∇fnk(xnk)∥2→0, fnk2(znk)∥∇fnk(znk)∥2→0, fnk2(ynk)∥∇fnk(ynk)∥2→0 and∥PCnk(ynk−δnk∇fnk(ynk))−ynk+δnk∇fnk(ynk)∥→0








as k→∞. Since {∥∇fnk(xnk)∥}, {∥∇fnk(znk)∥} and {∥∇fnk(ynk)∥} are bounded, it follows that fnk(xnk)→0, fnk(znk)→0 and fnk(ynk)→0 as k→∞. We also get limk→∞∥(I−PQnk)Axnk∥=0, limk→∞∥(I−PQnk)Aznk∥=0 and limk→∞∥(I−PQnk)Aynk∥=0.



As in Theorem 1, we can show that ωw(xnk)⊂S. Hence, there is a subsequence {xnki} of {xnk}, such that xnki⇀x∗∈S. So, we obtain


lim supk→∞⟨u−x^,xnk−x^⟩=limi→∞⟨u−x^,xnki−x^⟩=⟨u−x^,x∗−x^⟩≤0.



(54)







On the other hand, we see that


∥xnk+1−ynk∥=∥αnku+(1−αnk)PCnk(ynk−δnk∇fnk(ynk))−ynk∥≤αnk∥u−ynk∥+(1−αnk)∥PCnk(ynk−δnk∇fnk(ynk))−ynk∥≤αnk∥u−ynk∥+(1−αnk)∥PCnk(ynk−δnk∇fnk(ynk))−ynk+δnk∇fnk(ynk)∥+(1−αnk)δnk∥∇fnk(ynk)∥→0 as k→∞.



(55)







We see that


limk→∞∥znk−xnk∥=0 and limk→∞∥ynk−znk∥=0.











Hence, we obtain


∥xnk+1−xnk∥≤∥xnk+1−ynk∥+∥ynk−znk∥+∥znk−xnk∥→0 as k→∞.



(56)







By (54) and (56), we obtain


lim supk→∞⟨u−x^,xnk+1−x^⟩≤0.



(57)







Hence, we get


lim supk→∞μnk≤0.



(58)







By Lemma 2, we can deduce that {xn} converges strongly to x^=PSu. □






5. Numerical Examples


Finally, we provide numerical experiments of the compressed sensing in signal recovery. We demonstrate the performance of the relaxed CQ algorithms defined by Yang [8], López et al. [10], Gibali et al. [12] and our CQ algorithms. The compressed sensing can be modeled as the linear equation:


y=Ax+ε,



(59)




where x∈RN is a recovered vector with m non-zero components, y∈RM is the observed data with noisy ε, and A:RN→RM(M<N). It is noted that (59) can be seen as solving the LASSO problem:


minx∈RN12∥y−Ax∥2 subjectto ∥x∥1≤t,



(60)




where t>0. In particular, in case C={x∈RN:∥x∥1≤t} and Q={y}, the LASSO problem can be considered as the SFP (1). From this point of view, we can apply the CQ algorithm to solve (60).



In our experiment, one matrix A∈RM×N is generated from a normal distribution with mean zero and invariance one. The sparse vector x∈RN is generated from uniform distribution in the interval [−1,1] with m nonzero elements. The observation y is generated by white Gaussian noise with signal-to-noise ratio SNR=40. Let t=m and x1=0.



The stopping criterion is defined by the mean square error (MSE):


MSE=1N∥x^−x∥22<10−5,



(61)




where x^ is an approximated signal of x.



In what follows, let τn=1∥A∥2 in the CQ algorithm (10) by Yang [8], τn=ρn∥Ax−y∥22∥AT(Ax−y)∥2 with ρn=2 in (11) of López et al. [10], τn defined by (14) with σ=1, ρ=μ=0.5 in that of Gibali et al. [12] and τn,γn,δn defined by (22) with ρn=2. The numerical results are reported as follows.



From Table 1 and Figure 1 and Figure 2, we observe that the convergence behavior of Algorithm 1 outperforms those of Yang [8], López et al. [10], Gibali et al. [12]. Indeed, Algorithm 1 has less number of iterations than other methods.



Next, we discuss the strong convergence of the relaxed CQ algorithm (12) by López et al. [10] and Algorithm 2. We set each step-sizes τn as in the weak convergence and let αn=1100n+1. The initial vector x1=0 and u is generated randomly. Then, we have the following numerical results.



From Table 2 and Figure 3 and Figure 4, it is observed that Algorithm 2 has a smaller number of iterations than that of López et al. [10].



We provide the numerical examples in L2-space, which is an infinite Hilbert space, by using Algorithm 2. Let H1=H2=L2[0,1] with the inner product given by


⟨f,g⟩=∫01f(t)g(t)dt.











Let C={x∈L2[0,1]: ∥x∥L2≤1} and Q={x∈L2[0,1]:⟨x,t2⟩≤0}. Find x∈C such that Ax∈Q, where (Ax)(t)=x(t)2. We take αn=110n+1, ρn=1.75. The stopping criterion is defined by


En=12∥Axn−PQAxn∥L22<10−4.











From Table 3 and Figure 5, we see that our algorithm is better than that of López et al. [10] in terms of number of iterations and CPU time.




6. Conclusions


In this work, we have introduced new three-step iterative methods involving the self-adaptive technique for the SFP in Hilbert spaces. Weak and strong convergence was discussed under suitable conditions. Preliminary numerical experiments showed that our proposed methods outperform those of Yang [8], López et al. [10], and Gibali et al. [12]. In future work, we aim to investigate the SFP in Banach spaces, and to also establish its convergence under suitable conditions.
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Figure 1. MSE versus number of iterations of Algorithm 1 in case N= 4096, M = 2048, and m = 200. 
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Figure 2. From top to bottom: original signal, observation data, recovered signal by Algorithms of Yang [8], López et al. [10], Gibali et al. [12], and Algorithm 1 with N=4096, M=2048 and m=200. 






Figure 2. From top to bottom: original signal, observation data, recovered signal by Algorithms of Yang [8], López et al. [10], Gibali et al. [12], and Algorithm 1 with N=4096, M=2048 and m=200.
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Figure 3. MSE versus number of iterations of Algorithm 2 in case N = 4096, M = 2048 and m = 200. 
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Figure 4. From top to bottom: original signal, observation data, recovered signal by Algorithms (12) of López et al. [10] and Algorithm 2. 






Figure 4. From top to bottom: original signal, observation data, recovered signal by Algorithms (12) of López et al. [10] and Algorithm 2.
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Figure 5. Error versus numberof iterations of Algorithm 2 in L2-space. 
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Table 1. Number of iterations for Algorithm 1.
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	Case 1: N=512, M=256
	Yang (10)
	López et al. (11)
	Gibali et al. (13)
	Algorithm 1



	m=10
	74
	65
	106
	39



	m=20
	217
	184
	246
	111



	Case 2: N=4096, M=2048
	Yang (10)
	López et al. (11)
	Gibali et al. (13)
	Algorithm 1



	m=100
	87
	77
	117
	48



	m=200
	184
	156
	220
	94
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Table 2. Number of iterations for Algorithm 2.
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	Case 1: N=512, M=256
	López et al. (12)
	Algorithm 2



	m=10
	85
	43



	m=20
	119
	64



	Case 2: N=4096, M=2048
	López et al. (12)
	Algorithm 2



	m=100
	85
	48



	m=200
	230
	140
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Table 3. Numberof iterations for Algorithm 2 in L2-space.
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	López et al. (12)
	Algorithm 2





	u=t
	No. of Iter.
	9
	4



	x1=7t2+2
	cpu (time)
	6.3707
	4.0171



	u=t+1
	No. of Iter.
	9
	4



	x1=4t2+t+3
	cpu (time)
	6.5169
	4.1789



	u=t2
	No. of Iter.
	10
	4



	x1=2t2+3et
	cpu (time)
	9.4818
	5.5274



	u=t3
	No. of Iter.
	6
	3



	x1=5t3+sin(t)+1
	cpu (time)
	3.7478
	2.9404











© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
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