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Abstract

:

In this article, we study differential subordnations in q-analogue. Some properties of analytic functions in q-analogue associated with cardioid domain and limacon domain are considered. In particular, we determine conditions on α such that 1+αz∂qhzhzn(n=0,1,2,3) are subordinated by Janowski functions and hz≺1+43z+23z2. We also consider the same implications such that hz≺1+2z+12z2. We apply these results on analytic functions to find sufficient conditions for q-starlikeness related with cardioid and limacon.
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1. Introduction


We recall here some basic notions from the literature of Geometric Function Theory which are essential for clarity and understandings of the upcoming work. We start with the symbol A which represents the family of analytic functions in D=z:z<1 and any function f in A satisfies the conditions f0=0and f′0−1=0. That is, if f in A, then it has the Taylor series expansion as:


f(z)=z+∑n=2∞anzn,z∈D.



(1)







Also let S denote a subclass of A which contains univalent functions in D. The notion of subordinations between analytic functions is represented by f≺g and is defined as; a function f is subordinated by function g, if we can find an analytic function w with the properties w0=0 and wz<z such that f(z)=g(w(z)). Further, if g is univalent in D, then we have:


f(z)≺g(z)⇔f(0)=g(0)&f(D)⊂g(D).



(2)







Ma and Minda [1] studied the function φ which is analytic and normalized by φ(0)=1 and φ′(0)>0 with Reφz>0 in D. The function φ maps D onto regions which is starlike with respect to 1 and symmetric along the real axis. Further, they introduced the subclasses of starlike and convex functions respectively as


S*φ=f∈A:zf′zfz≺φz,z∈D,Cφ=f∈A:1+zf″zf′z≺φz,z∈D.











If we choose φ(z)=1+Az1+Bz−1≤B<A≤1, then S*[A,B]:=S*1+Az1+Bz is the family of Janowski starlike functions, see [2]. Further by taking A=1−2α with 0≤α<1 and B=−1, we get the class S*(α):=S*[1−2α,−1] of starlike functions of order α. Also, the notation S*:=S*(0) represents the familiar class of starlike functions. The subclass SB*:=S*(1+z) which motivates the researchers was investigated by Sokół et al. [3] , containing functions f∈A such that zf′(z)/f(z) lies in the region bounded by the right-half of the Bernoulli lemniscate given by |w2−1|<1. If we choose φ(z)=1+43z+23z2, then the class S*(φ) coincides with the class SC* studied by Sharma et al. [4], consisting of functions f∈A such that zf′(z)/f(z) lies in the region bounded by the cardioid given by (9x2+9y2−18x+5)2−16(9x2+9y2−6x+1)=0. If we choose φ(z)=1+sinz, then we get the set Ssin*, established by Cho et al. [5]. By selecting φ(z)=1+2z+12z2, we acheive an interesting class SL* containing starlike functions associated with limacon given by (4x2+4y2−8x−5)2−8(4x2+4y2−12x−3)=0. The class SL* was introduced in [6]. Further, by choosing some more particular function φ(z),we get several interesting subclasses of starlike functions. For some details, see [7,8,9,10].



In some recent years, a more intensive approach has been shown by the researchers in quantum calculus (q-calculus) because of its wide spread applications in various branches of sciences particularly in Mathematics and Physics. Among contributors to the study, Jackson was the first who provided basic notions and established the theory of q-calculus [11,12]. The idea of derivative in q-analogue was used for the first time by Ismail et al. [13] to initiate and study the geometry of q-starlike functions. After that, a comprenhensive applications of q-calculus in the field of Geometric Function Theory was contributed by Srivastava in a book chapter (see, for details, [14] (pp. 347 et seq.)) and in the same chapter he also given the usage of q-hypergeometric functions in function theory. The concepts of q-starlikeness was further extended to certain subclasses of starlike functions in q-analogue by Agrawal and Sahoo in [15] (for the recent contributions on this topic, see the work done by Srivastava et al. [16,17,18,19]). Also, with help of Hadamard product, the q-analogue of Ruscheweyh operator has been introduced by Kanas and Răducanu [20] and further studied in [21,22,23,24]. Many researchers contributed in the development of the theory by introducing certain classes with the help of q-calculus. For some details about these contributions, see [25,26,27,28].



Let q∈0,1 and z∈D with z≠0. Then the q-derivative of f is defined by


∂qf(z)=f(z)−fqzz1−q.



(3)







By the virtue of (1) and (3) we easily calculated that for n∈N and z∈D


∂qf(z)=1+∑n=2∞n,qanzn−1,



(4)




where


n,q:=1−qn1−q=1+∑k=1n−1ql,and0,q=0.











Using the definition of q-derivative, Seoudy and Aouf [29] introduced the class Sq*φ. Also, for this class, the familiar Fekete-Szegö problem was obtained by the authors. This class is defined as;


Sq*φ=f∈A:z∂qfzfz≺φz,z∈D.











By choosing particular functions instead of the function φ, we obtain several interesting subclasses of starlike functions associated with different image domains. We define few of them as follows.


SBq*=f∈A:z∂qfzfz≺ϕBz,z∈D,SCq*=f∈A:z∂qfzfz≺ϕCz,z∈D,SLq*=f∈A:z∂qfzfz≺ϕLz,z∈D,








where the particular functions ϕBz,ϕCz and ϕLz are given by


ϕBz=1+z,ϕCz=1+43z+23z2,ϕLz=1+2z+12z2.











Recently, Ali et al. [30] have studied some differential subordinations. More precisely they studied the differental subordination 1+αzp′(z)/pn(z)≺1+z and found that pz≺1+z, where n=0,1,2 for some particular range of α. Similar kind of differential subordinations are also discussed by various authors. They used these results to find sufficient conditions for starlike functions, see [31,32,33,34,35,36]. Motivated by the above work, we introduce and investigate some q-differential subordinations. In particular, we determine conditions on α so that 1+αz∂qhzhzn are subordinated by Janowski functions and hz is subordinated by 1+43z+23z2, where n=0,1,2,3. Similar results are also obtained for hz≺1+2z+12z2,z∈D. We use these results to find sufficient conditions for q-starlike functions associated with cardioid and limacon.



To prove our main results we need the following.



Lemma 1

([37] (q-Jack’s Lemma)).Let w be analytic in D with w0=0. If w attains its maximum value on the circle z=1 at z0=reiθ, for θ∈−π,π,then for 0<q<1


z0∂qwz0=mwz0,








where m is real and m≥1.






2. Differential Subordination Related with Cardioid


Theorem 1.

Assume that


α≥3A−B21−q1−B,−1<B<A≤1



(5)




and h is an analytic function defined on D with h(0)=1 satisfying


1+αz∂qhz≺1+Az1+Bz,z∈D.



(6)







In addition, we suppose that


1+αz∂qhz=1+Awz1+Bwz,z∈D,








where w is an analytic in D with w(0)=0. Then


hz≺1+43z+23z2,z∈D.













Proof. 

We define a function


pz=1+αz∂qhz,



(7)




where p is analytic and p0=1. Consider


hz=1+43wz+23w2z.



(8)







To prove our result, it will be enough to show that wz<1. Using (7) and (8) we obtain


pz=1+α3z∂qwz41+wz−21−qz∂qwz.











Also


pz−1A−Bpz=1+α3z∂qwz4+4wz−21−qz∂qwz−1A−B1+α3z∂qwz4+4wz−21−qz∂qwz=αz∂qwz4+4wz−21−qz∂qwz3A−B+αBz∂qwz4+4wz−21−qz∂qwz.











Suppose that there exists a point z0∈D such that


maxz≤z0wz=wz0=1.











Then by using Lemma 1, there exists a number m≥1 such that z0∂qwz0=mwz0.Suppose wz0=eiθ,θ∈−π,π. Then for z0∈D, we have


pz0−1A−Bpz0=αmwz04+4wz0−21−qmwz03A−B+αBmwz04+4wz0−21−qmwz0≥mα4+4eiθ−21−qmeiθ3A−B+αmB4+4eiθ−21−qmeiθ=mα16+4−21−qm2+84−21−qmcosθ3A−B+mαB16+4−21−qm2+84−21−qmcosθ.











Consider the function


Ψθ=mα16+4−21−qm2+84−21−qmcosθ3A−B+mαB16+4−21−qm2+84−21−qmcosθ,








for θ∈−π,π. It is clear that Ψ is an even function, therefore we find the minimum value of Ψ when θ∈0,π. Now


Ψ′θ=−12αmA−B4−21−qmsinθ16+4−21−qm2+84−21−qmcosθ3A−B+αB16+4−21−qm2+84−21−qmcosθ2.











It is easy to see that Ψ′θ=0 when θ=0,π. Similarly, we can see that Ψ″θ>0, when θ=π. Hence Ψθ≥Ψπ. Consider the function


Φm=αm16+4−21−qm2−84−21−qm3A−B+αB16+4−21−qm2−84−21−qm=2α1−qm23A−B+2αB1−qm2











Then


Φ′m=12α(1−q)A−B3A−B+2m2αB(1−q)2>0.








which shows that Φ is an increasing function and it has its minimum value at m=1, so


pz0−1A−Bpz0≥2α1−q3A−B+2αB1−q.











Now by (5), we have


pz0−1A−Bpz0≥1,








which contradicts (6). Hence wz<1 and so we get the desired result. □





If we put pz=z∂qfzfz in Theorem 1, we get the following result.



Corollary 1.

Let α≥3A−B21−q1−B,−1<B<A≤1 and f∈A satisfy the subordination


1+αz∂qz∂qfzfz≺1+Az1+Bz,z∈D.



(9)







Then f∈SCq*





If we choose A=1 and B=0 in Corollary 1, then we obtain the following result.



Corollary 2.

Let α≥31−q,−1<B<A≤1 and f∈A satisfy the subordination


1+αz∂qz∂qfzfz≺1+z,z∈D.



(10)







Then f∈SCq*.





Theorem 2.

Assume that


α≥(A−B)21−q(1−B),−1<B<A≤1



(11)




and h is an analytic function defined on D with h(0)=1 satisfying


1+αz∂qhzhz≺1+Az1+Bz,z∈D.



(12)







In addition, we suppose that


1+αz∂qhzhz=1+Awz1+Bwz,z∈D,








where w is an analytic in D with w(0)=0. Then


hz≺1+43z+23z2,z∈D.













Proof. 

We define a function


pz=1+αz∂qhzhz,



(13)




where p is analytic and p0=1. Consider


hz=1+43wz+23w2z.



(14)







Using (13) and (14), we obtain


pz=1+αz∂qwz4+4wz−21−qz∂qwz31+43wz+23w2z.











Therefore


pz−1A−Bpz=αz∂qwz4+4wz−21−qz∂qwz3+4wz+2wz2A−B+αB4+4wz−21−qz∂qwzz∂qwz.











Hence by applying Lemma 1, we conclude that


pz0−1A−Bpz0≥2α1−qA−B+2αB1−q.











By using (11), we have


pz0−1A−Bpz0≥1,








which contradicts (12). Hence we get the desired result. □





If we put pz=z∂qfzfz in the above theorem, we get the following result.



Corollary 3.

Let α≥(A−B)21−q(1−B),−1<B<A≤1 and f∈A such that


1+αzfzz∂qfz∂qz∂qfzfz≺1+Az1+Bz,z∈D.



(15)







Then f∈SCq*.





Theorem 3.

Assume that


α≥A−B61−q1−B,−1<B<A≤1



(16)




and h is an analytic function defined on D with h(0)=1 satisfying


1+αz∂qhzh2z≺1+Az1+Bz,z∈D.



(17)







In addition, we suppose that


1+αz∂qhzh2z=1+Awz1+Bwz,z∈D,








where w is an analytic in D with w(0)=0. Then


hz≺1+43z+23z2,z∈D.













Proof. 

We define a function


pz=1+αz∂qhzhz2,



(18)




where p is analytic and p0=1. Consider


hz=1+43wz+23w2z











After some simple calculations, we obtain


pz=1+3αz∂qwz4+4wz−21−qz∂qwz3+4wz+2w2z2.











Therefore


pz−1A−Bpz=3αz∂qwz4+4wz−21−qz∂qwz3+4wz+2w2z2A−B−3αBz∂qwz4+4wz−21−qz∂qwz.











Hence by applying Lemma 1, we conclude that


pz0−1A−Bpz0≥6α1−qA−B+6αB1−q.











Now by using (16), we have


pz0−1A−Bpz0≥1,








which contradicts (17). Hence we get the required result. □





If we put pz=z∂qfzfz in the above theorem, we get the following result.



Corollary 4.

Let α≥A−B61−q1−B,−1<B<A≤1 and f∈A satisfy


1+αzfzz∂qfz2∂qz∂qfzfz≺1+Az1+Bz,z∈D.



(19)







Then f∈SCq*.





Theorem 4.

Assume that


α≥A−B181−q1−B,−1<B<A≤1



(20)




and h is an analytic function defined on D with h(0)=1 satisfying


1+αz∂qhzh3z≺1+Az1+Bz,z∈D.



(21)







In addition, we suppose that


1+αz∂qhzh3z=1+Awz1+Bwz,z∈D,








where w is an analytic in U with w(0)=0. Then


hz≺1+43z+23z2,z∈D.













Proof. 

Here we define a function


pz=1+αz∂qhzhz3,



(22)




where p is analytic and p0=1. Consider


hz=1+43wz+23w2z.











After some simplifications, we obtain


pz=1+αz∂qwz4+4wz−21−qz∂qwz31+43wz+23w2z3.











Therefore


pz−1A−Bpz=9αz∂qwz4+4wz−21−z∂qwz3+4wz+2wz23A−B+9αBz∂qwz4+4wz−21−qz∂qwz.











Hence by Lemma 1, we conclude that


pz0−1A−Bpz0≥18α1−qA−B+18αB1−q.











Now by using (20), we have


pz0−1A−Bpz0≥1,








which is contradiction. We complete the required proof. □





If we put pz=z∂qfzfz in the above theorem, we get the following result.



Corollary 5.

Let α≥A−B181−q1−B,−1<B<A≤1 and f∈A such that


1+αzfzz∂qfz3∂qz∂qfzfz≺1+Az1+Bz,z∈D.



(23)







Then f∈SCq*.





Theorem 5.

Assume that


α≥A−B2.3n−11−q1−B,−1<B<A≤1



(24)




and h is an analytic function defined on D with h(0)=1 satisfying


1+αz∂qhzhzn≺1+Az1+Bz,z∈D.



(25)







In addition, we suppose that


1+αz∂qhzhzn=1+Awz1+Bwz,z∈D,








where w is an analytic in D with w(0)=0. Then


hz≺1+43z+23z2,z∈D.













Proof. 

The proof of Theorem 5 is similar to the theorems proved above and so here we choose to omit the details. □





If we put pz=z∂qfzfz in the above theorem, we get the following result.



Corollary 6.

Let α≥A−B2.3n−11−q1−B,−1<B<A≤1 and f∈A such that


1+αzfzz∂qfzn∂qz∂qfzfz≺1+Az1+Bz,z∈D.



(26)







Then f∈SCq*.






3. Differential Subordination Related with Limacon


Theorem 6.

Assume


α≥2A−B8+1+q1+q−421−B,−1<B<A≤1



(27)




and h is an analytic function defined on D with h(0)=1 satisfying


1+α∂qhz≺1+Az1+Bz,z∈D.



(28)







In addition, we suppose that


1+α∂qhz=1+Awz1+Bwz,z∈D








with w0=0, then


hz≺1+2z+12z2,z∈D.













Proof. 

We define a function


pz=1+αz∂qhz,



(29)




where p is analytic and p0=1. Consider


hz=1+2wz+12w2z.



(30)







To prove our result, it will be enough to show that wz<1. Using (29) and (30), we obtain


pz=1+αz∂qwz222+2wz−1−qz∂qwz.











Also


pz−1A−Bpz=1+αz∂qwz222+2wz−1−qz∂qwz−1A−B1+αz∂qwz222+2wz−1−qz∂qwz=αz∂qwz22+2wz−1−qz∂qwz2A−B+αBz∂qwz22+2wz−1−qz∂qwz.











Suppose that there exists a point z0∈D such that


maxz≤z0wz=wz0=1.











Then by using Lemma 1, there exists a number m≥1 such that z0∂qwz0=mwz0. Suppose wz0=eiθ,θ∈−π,π. Then for z0∈D, we have


pz0−1A−Bpz0=αmwz022+2wz0−1−qmwz02A−B+αBmwz022+2wz0−1−qmwz0≥mα22+2eiθ−1−qmeiθ2A−B+mαB22+2eiθ−1−qmeiθ=mα8+2−1−qm2+422−1−qmcosθ2A−B+mαB8+2−1−qm2+422−1−qmcosθ.











Consider the function


Θ1θ=mα8+2−1−qm2+422−1−qmcosθ2A−B+mαB8+2−1−qm2+422−1−qmcosθ.











For θ∈−π,π. It is clear that Θ1 is an even function, therefore we find the minimum value of Θ1 when θ∈0,π. Now


Θ1′θ=−42mαA−Basinθ8+a2+42acosθ2A−B+mαB8+a2+42acosθ2,








where a=2−1−qm. It is easy to see that Θ1′θ=0 when θ=0,π. Similarly, we can see that Θ1″θ>0, when θ=π. Hence Θ1θ≥Θ1π. Now consider the function


Λ1m=mα8+2−1−qm2−422−1−qm2A−B+mαB8+2−1−qm2−422−1−qm.











Now


Λ1′m=4αA−B6−42+3bm2−1+b2m2)8+(2−bm)2+42(bm−2)2A−B+mαB8+(2−bm)2−42(2−bm)2>0,








where b=1−q. This shows that Λ is an increasing function and it has its minimum value at m=1, so


pz0−1A−Bpz0≥α8+2−1−q2−422−1−q2A−B+αB8+2−1−q2−422−1−q.











Now by (27), we have


pz0−1A−Bpz0≥1,








which contradicts (28). Hence wz<1 and so we get the desired result. □





If we put pz=z∂qfzfz in the above theorem, we get the following result.



Corollary 7.

Let α≥2A−B8+1+q1+q−421−B,−1<B<A≤1 and f∈A satisfy


1+α∂qz∂qfzfz≺1+Az1+Bz,z∈D.



(31)







Then f∈SLq*.





Theorem 7.

Assume


α≥A−B28−1621−B8+1+q1+q−42,−1<B<A≤1



(32)




and h is an analytic function defined on D with h(0)=1 satisfying


1+αz∂qhzhz≺1+Az1+Bz.



(33)







In addition, we suppose that


1+αz∂qhzhz=1+Awz1+Bwz,z∈D,








where w is an analytic in D with w(0)=0,then


hz≺1+2z+12z2.













Proof. 

We define a function


pz=1+αz∂qhzhz,



(34)




where p is analytic and p0=1. Consider


hz=1+2wz+12w2z.



(35)







Using (34) and (35), we obtain


pz=1+αz∂qwz22+2wz−1−qz∂qwz22+22wz+w2z.2.











Therefore


pz−1A−Bpz=αz∂qwz22+2wz−1−qz∂qwz2+22wz+w2zA−B+αBz∂qwz22+2wz−1−qz∂qwz.











Then using the similar method as in Theorem 7, we obtain


pz0−1A−Bpz0≥α8+2−1−q2−422−1−q28−162A−B+αB8+2−1−q2−422−1−q.











By using (32), we have


pz0−1A−Bpz0≥1,








which contradicts (33). Hence we get the desired result. □





If we put pz=z∂qfzfz in the above theorem, we get the following result.



Corollary 8.

Let α≥A−B28−1621−B8+1+q1+q−42,−1<B<A≤1 and f∈A satisfy


1+αzfzz∂qfz∂qz∂qfzfz≺1+Az1+Bz.



(36)







Then f∈SLq*.





Theorem 8.

Assume


α≥12−82A−B1−B8+1+q1+q−42,−1<B<A≤1



(37)




and h is an analytic function defined on D with h(0)=1 satisfying


1+αz∂qhzhz2≺1+Az1+Bz.











In addition, we suppose that


1+αz∂qhzhz2=1+Awz1+Bwz,z∈D,








where w is an analytic in D with w(0)=0,then


hz≺1+2z+12z2.













Proof. 

We define a function


pz=1+αz2∂qhzhz2,



(38)




where p is analytic and p0=1. Consider


hz=1+2wz+12w2z.











After some simple calculations, we obtain


pz=1+αz∂qwz22+2wz−1−qz∂qwz22+22wz+w2z.22.











Therefore


pz−1A−Bpz=αz∂qwz22+2wz−1−qz∂qwz2+22wz+w2z22A−B+αBz∂qwz22+2wz−1−qz∂qwz.











Using similar method as in Theorem 7, we obtain


pz0−1A−Bpz0≥α8+2−1−q2−422−1−q12−82A−B+αB8+2−1−q2−422−1−q.











Now by using (37), we have


pz0−1A−Bpz0≥1,








which is contradiction. Hence we get the required result. □





If we put pz=z∂qfzfz in the above theorem, we get the following result.



Corollary 9.

Let α≥12−82A−B1−B8+1+q1+q−42,−1<B<A≤1 and f∈A such that


1+αzfzz∂qfz2∂qz∂qfzfz≺1+Az1+Bz.











Then f∈SLq*.





Theorem 9.

Assume


α≥28−16232A−B41−B8+1+q1+q−42,−1<B<A≤1



(39)




and h is an analytic function defined on D with h(0)=1 satisfying


1+αz3∂qhzhz3≺1+Az1+Bz.



(40)







In addition, we suppose that


1+αz3∂qhzhz3=1+Awz1+Bwz,z∈D,








where w is an analytic in D with w(0)=0,then


hz≺1+2z+12z2.













Proof. 

Here we define a function


pz=1+αz3∂qhzhz3,



(41)




where p is analytic and p0=1. Consider


hz=1+2wz+12w2z.











After some simplifications, we obtain


pz=1+αz∂qwz22+2wz−q−1z∂qwz22+22wz+w2z.23.











Therefore


pz−1A−Bpz=αz∂qwz22+2wz−1−qz∂qwz2+22wz+w2z34A−B+αBz∂qwz22+2wz−1−qz∂qwz.











Therefore by using Lemma 1, we obtain


pz0−1A−Bpz0≥α12−82+1−q2+42−11−q28−162324A−B+αB12−82+1−q2+42−11−q.











Next by using (39), we have


pz0−1A−Bpz0≥1,








which is contradiction. Hence, we get the required proof. □





If we put pz=z∂qfzfz in the above theorem, we get the following result.



Corollary 10.

Let α≥28−16232A−B41−B8+1+q1+q−42,−1<B<A≤1 and f∈A satisfy


1+αzfzz∂qfz3∂qz∂qfzfz≺1+Az1+Bz.











Then f∈SLq*.






4. Conclusions


In this article, we have studied some q-differential subordinations. We have determined conditions on α and


1+αz∂qhzhzn≺1+Az1+Bzn=0,1,2,3,



(42)




then hz≺1+43z+23z2. Similar results are also investigated involving the function 1+2z+12z2. Further we have deduced sufficiency criterion for q-starlikeness related with cardioid and limacon from our main results. Moreover, by choosing particular functions instead of h, sufficient conditions for other analytic functions can be found.
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