A New Approach for Exponential Stability Criteria of New Certain Nonlinear Neutral Differential Equations with Mixed Time-Varying Delays
Abstract
:1. Introduction
2. Problem Formulation and Preliminary
3. Stability Analysis
4. Numerical Examples
, | |||
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Chen, H. Some Improved Criteria on Exponential Stability of Neutral Differential Equation. Adv. Differ. Equ. 2012, 2012, 170. [Google Scholar] [CrossRef]
- El-Morshedy, H.A.; Gopalsamy, K. Nonoscillation, oscillation and convergence of a class of neutral equations. Nonlinear Anal. 2000, 40, 173–183. [Google Scholar] [CrossRef]
- Kwon, O.M.; Park, J.H. On improved delay-dependent stability criterion of certain neutral differential equations. Appl. Math. Comput. 2008, 199, 385–391. [Google Scholar] [CrossRef]
- Li, X. Global exponential stability for a class of neural networks. Appl. Math. Lett. 2009, 22, 1235–1239. [Google Scholar] [CrossRef] [Green Version]
- Nam, P.T.; Phat, V.N. An improved stability criterion for a class of neutral differential equations. Appl. Math. Lett. 2009, 22, 31–35. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H. Delay-dependent criterion for asymptotic stability of a class of neutral equations. Appl. Math. Lett. 2004, 17, 1203–1206. [Google Scholar] [CrossRef]
- Park, J.H.; Kwon, O.M. Stability analysis of certain nonlinear differential equation. Chaos Solitons Fractals 2008, 37, 450–453. [Google Scholar] [CrossRef]
- Sun, Y.G.; Wang, L. Note on asymptotic stability of a class of neutral differential equations. Appl. Math. Lett. 2006, 19, 949–953. [Google Scholar] [CrossRef] [Green Version]
- Rojsiraphisal, T.; Niamsup, P. Exponential stability of certain neutral differential equations. Appl. Math. Comput. 2010, 217, 3875–3880. [Google Scholar] [CrossRef]
- Gopalsamy, K.; He, X.Z. Stability in asymmetric Hopfield nets with transmission delays. Phys. D Nonlinear Phenom. 1994, 76, 344–358. [Google Scholar] [CrossRef]
- Gopalsamy, K.; Leung, I. Delay induced periodicity in a neural netlet of excitation inhibition. Phys. D Nonlinear Phenom. 1996, 89, 395–426. [Google Scholar] [CrossRef]
- Gopalsamy, K.; Leung, I. Convergence under dynamical thresholds with delays. IEEE Trans. Neural Netw. 1997, 8, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Gopalsamy, K.; Leung, I.; Liu, P. Global Hopf-bifurcation in a neural netlet. Appl. Math. Comput. 1998, 94, 171–192. [Google Scholar] [CrossRef]
- Keadnarmol, P.; Rojsiraphisal, T. Globally exponential stability of a certain neutral differential equation with time-varying delays. Adv. Differ. Equ. 2014, 2014, 32. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Meng, X. An Improved Exponential Stability Criterion for a class of neutral delayed differential equations. Appl. Math. Lett. 2011, 24, 1763–1767. [Google Scholar] [CrossRef]
- Chatbupapan, W.; Mukdasai, K. New delay-range-dependent exponential stability criteria for certain neutral differential equations with interval discrete and distributed time-varying delay. Adv. Differ. Equ. 2016, 2016, 324. [Google Scholar] [CrossRef]
- Beretta, E.; Breda, D. Discrete or distributed delay? Effects on stability of population growth. Math. Biosci. Eng. 2016, 13, 19–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Jiang, D. Stationary distribution and extinction of a stochastic predator–prey model with distributed delay. Appl. Math. Lett. 2018, 78, 79–87. [Google Scholar] [CrossRef]
- Xu, C.; Shao, Y. Bifurcations in a predator-prey model with discrete and distributed time delay. Nonlinear Dyn. 2012, 63, 2207–2223. [Google Scholar] [CrossRef]
- Karmeshu, V.; Gupta, K.; Kadambari, V. Neuronal model with distributed delay: Analysis and simulation study for gamma distribution memory kernel. Biol. Cybern. 2011, 104, 369–383. [Google Scholar] [CrossRef]
- Sharma, S.K. Neuronal model with distributed delay: Emergence of unimodal and bimodal ISI distributions. IEEE Trans. Nanobiosci. 2013, 12, 1–12. [Google Scholar] [CrossRef]
- Maharajan, C.; Raja, R.; Cao, J.; Rajchakit, G. Novel global robust exponential stability criterion for uncertain inertial-type BAM neural networks with discrete and distributed time-varying delays via Lagrange sense. J. Frankl. Inst. 2018, 355, 4727–4754. [Google Scholar] [CrossRef]
- Maharajan, C.; Raja, R.; Cao, J.; Rajchakit, G.; Alsaedi, A. Novel results on passivity and exponential passivity for multiple discrete delayed neutral-type neural networks with leakage and distributed time-delays. Chaos Solitons Fractals 2018, 115, 268–282. [Google Scholar] [CrossRef]
- Samidurai, R.; Rajavel, S.; Zhu, Q.; Raja, R.; Zhou, H. Robust passivity analysis for neutral-type neural networks with mixed and leakage delays. Neurocomputing 2016, 175, 635–643. [Google Scholar] [CrossRef]
- Zhu, Q.; Senthilraj, S.; Raja, R.; Samidurai, R. Stability analysis of uncertain neutral systems with discrete and distributed delays via the delay partition approach. Int. J. Control Autom. Syst. 2017, 15, 2149–2160. [Google Scholar] [CrossRef]
- Khongja, N.; Botmart, T.; Niamsup, P.; Weera, W. Guaranteed cost control for exponential stability of a nonlinear system with mixed time-varying delays in states and controls. Adv. Differ. Equ. 2018, 2018, 435. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Grace, S.R. Asymptotic Stability of Certain Neutral Differential Equations. Math. Comput. Model. Dyn. Syst. 2000, 31, 9–15. [Google Scholar] [CrossRef]
- El-Metwally, H.; Kulenovi, M.R.S.; Hadziomerspahi, S. Nonoscillatory solutions for system of neutral delay equation. Nonlinear Anal. 2003, 54, 63–81. [Google Scholar] [CrossRef]
- Kulenovi, M.R.S.; Hadziomerspahi, S. Existence of nonoscillatory solution of second order linear neutral delay equation. J. Math. Anal. Appl. 1998, 228, 436–448. [Google Scholar] [CrossRef]
- Kulenovic, M.R.S.; Ladas, G.; Meimaridou, A. Necessary and sufficient conditions for oscillations of neutral differential equations. J. Aust. Math. Soc. Ser. 1987, 28, 362–375. [Google Scholar] [CrossRef]
- Gu, K.; Kharitonov, V.L.; Chen, J. Stability of Time-Delay Systems; Birkhäuser: Berlin, Germany, 2003. [Google Scholar]
- Peng, C.; Fei, M.R. An Improved Result on the Stability of Uncertain T-S Fuzzy Systems with Interval Time-Varying Delay. Fuzzy Sets Syst. 2013, 212, 97–109. [Google Scholar] [CrossRef]
0.1 | 0.4226 | 0.4224 | 0.4223 | 0.4221 | 0.4220 |
0.2 | 0.3984 | 0.3990 | 0.3978 | 0.3979 | 0.3970 |
0.3 | 0.3726 | 0.3724 | 0.3722 | 0.3720 | 0.3719 |
0.4 | 0.3460 | 0.3447 | 0.3445 | 0.3443 | 0.3440 |
0.5 | 0.3148 | 0.3145 | 0.3141 | 0.3142 | 0.3138 |
0.05 | 302.5884 | 181.7944 | 90.5145 | 20.6635 |
0.1 | 249.3654 | 157.9067 | 78.0361 | 13.1826 |
0.15 | 211.5763 | 137.6965 | 66.6394 | 6.1042 |
0.2 | 182.2537 | 120.1813 | 56.1530 | 4.0409 |
0.1 | 0.4269 | 0.3036 | 0.1950 | 0.0971 | 0.0130 |
0.2 | 0.4024 | 0.2838 | 0.1793 | 0.0886 | 0.0108 |
0.3 | 0.3764 | 0.2622 | 0.1633 | 0.0792 | 0.0094 |
0.4 | 0.3485 | 0.2410 | 0.1456 | 0.0685 | 0.0078 |
0.5 | 0.3181 | 0.2129 | 0.1253 | 0.0558 | 0.0057 |
0.05 | 0.3563 | 0.3012 | 0.2009 | 0.1111 | 0.0296 |
0.1 | 0.3538 | 0.2969 | 0.1942 | 0.1031 | 0.0208 |
0.15 | 0.3509 | 0.2930 | 0.1880 | 0.0946 | 0.0116 |
0.2 | 0.3477 | 0.2867 | 0.1791 | 0.0855 | 0.0019 |
0.25 | 0.3439 | 0.2806 | 0.1705 | 0.0757 | 0.0110 |
e | |||||
---|---|---|---|---|---|
0.05 | 0.3358 | 0.2292 | 0.1825 | 0.1401 | 0.1022 |
0.1 | 0.3181 | 0.2129 | 0.1670 | 0.1253 | 0.0883 |
0.15 | 0.3005 | 0.1965 | 0.1513 | 0.1106 | 0.0744 |
0.2 | 0.2828 | 0.1802 | 0.1357 | 0.1019 | 0.0605 |
0.25 | 0.2651 | 0.1638 | 0.1201 | 0.0820 | 0.0466 |
e | |||||
---|---|---|---|---|---|
0.05 | 0.3317 | 0.2531 | 0.1879 | 0.1307 | 0.0792 |
0.1 | 0.3099 | 0.2335 | 0.1697 | 0.1135 | 0.0629 |
0.15 | 0.2881 | 0.2150 | 0.1515 | 0.0964 | 0.0464 |
0.2 | 0.2664 | 0.2010 | 0.1334 | 0.0792 | 0.0301 |
0.25 | 0.2447 | 0.1749 | 0.1154 | 0.0622 | 0.0138 |
f | |||||
---|---|---|---|---|---|
0.05 | 0.3712 | 0.2619 | 0.2137 | 0.1697 | 0.1310 |
0.1 | 0.3536 | 0.2456 | 0.1981 | 0.1549 | 0.1161 |
0.15 | 0.3358 | 0.2292 | 0.1825 | 0.1401 | 0.1022 |
0.2 | 0.3181 | 0.2129 | 0.1669 | 0.1253 | 0.0883 |
0.25 | 0.3005 | 0.1965 | 0.1513 | 0.1106 | 0.0745 |
f | |||||
---|---|---|---|---|---|
0.05 | 0.3748 | 0.2930 | 0.2242 | 0.1651 | 0.1130 |
0.1 | 0.3534 | 0.2726 | 0.2061 | 0.1479 | 0.1010 |
0.15 | 0.3317 | 0.2531 | 0.1879 | 0.1307 | 0.0792 |
0.2 | 0.3099 | 0.2335 | 0.1697 | 0.1135 | 0.0629 |
0.25 | 0.2881 | 0.2150 | 0.1515 | 0.0964 | 0.0464 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tranthi, J.; Botmart, T.; Weera, W.; Niamsup, P. A New Approach for Exponential Stability Criteria of New Certain Nonlinear Neutral Differential Equations with Mixed Time-Varying Delays. Mathematics 2019, 7, 737. https://doi.org/10.3390/math7080737
Tranthi J, Botmart T, Weera W, Niamsup P. A New Approach for Exponential Stability Criteria of New Certain Nonlinear Neutral Differential Equations with Mixed Time-Varying Delays. Mathematics. 2019; 7(8):737. https://doi.org/10.3390/math7080737
Chicago/Turabian StyleTranthi, Janejira, Thongchai Botmart, Wajaree Weera, and Piyapong Niamsup. 2019. "A New Approach for Exponential Stability Criteria of New Certain Nonlinear Neutral Differential Equations with Mixed Time-Varying Delays" Mathematics 7, no. 8: 737. https://doi.org/10.3390/math7080737
APA StyleTranthi, J., Botmart, T., Weera, W., & Niamsup, P. (2019). A New Approach for Exponential Stability Criteria of New Certain Nonlinear Neutral Differential Equations with Mixed Time-Varying Delays. Mathematics, 7(8), 737. https://doi.org/10.3390/math7080737