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Abstract

:

The aim of this paper is to introduce a modified viscosity iterative method to approximate a solution of the split variational inclusion problem and fixed point problem for a uniformly continuous multivalued total asymptotically strictly pseudocontractive mapping in CAT(0) spaces. A strong convergence theorem for the above problem is established and several important known results are deduced as corollaries to it. Furthermore, we solve a split Hammerstein integral inclusion problem and fixed point problem as an application to validate our result. It seems that our main result in the split variational inclusion problem is new in the setting of CAT(0) spaces.
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1. Introduction


1.1. Cat(0) Space


Let (X,d) be a metric space. A geodesic path joining x and y is a map c:[0,l]⊂R→X such that




	
c(0)=x, c(l)=y and d(x,y)=l.



	
c is an isometry: d(c(t),c(s))=|t−s| for all t,s∈[0,l].








In this case, c([0,l]) is called a geodesic segment joining x and y which when unique is denoted by [x,y].



The space (X,d) is said to be a geodesic space if any two points of X are joined by a geodesic segment.



A geodesic triangle Δ(x1,x2,x3) in a geodesic space (X,d) consists of three points in X (the vertices of Δ) and a geodesic segment between each pair of vertices (the edges of Δ).



A comparison triangle for geodesic triangle Δ(x1,x2,x3) in (X,d) is a triangle Δ¯(x¯1,x¯2,x¯3) in (R2,d) such that dR2(x¯i,x¯j)=d(xi,xj) for i,j∈{1,2,3}. Such a triangle always exists (Bridson and Haefliger [2]).



A metric space X is said to be a CAT(0) space if it is geodesically connected and every geodesic triangle in X is at least as ’thin’ as its comparison triangle in the Euclidean plane.



Let Δ be a geodesic triangle in X, and let Δ¯ be its comparison triangle in R2. Then, X is said to satisfy CAT(0) inequality, if, for all x,y∈Δ and all comparison points x¯,y¯∈Δ¯,


d(x,y)≤dR2(x¯,y¯).











If x,y1,y2∈X, and y0 is the midpoint of the segment [y1,y2], then, the CAT(0) inequality implies


d(x,y0)2≤12d(x,y1)2+12d(x,y2)2−14d(y1,y2)2.



(1)







It is well known that the following spaces are CAT(0) spaces: a complete, simply connected Riemannian manifold with non-positive sectional curvature, Pre-Hilbert spaces [2], Euclidean buildings [3], R-trees [18], and Hilbert ball with a hyperbolic metric [10,16].




1.2. Some Basic Concepts in Hilbert Space


Let H be a real Hilbert space with inner product ⟨·,·⟩ and C a nonempty closed and convex subset of H.



The inner product ⟨·,·⟩:H×H→R generates norm via


⟨x,x⟩=∥x∥2








for all x∈H.



A mapping T:C→C is said to be total asymptotically strictly pseudocontractive (see [4]), if there exists a constant γ∈[0,1] such that


∥Tnx−Tny∥2≤∥x−y∥2+γ∥x−Tnx∥2+κnφ(∥x−y∥)+μn








holds for all x,y∈C, the sequences κn,μn∈[0,∞) satisfy limn→∞κn=limn→∞μn=0, and φ:[0,∞)→[0,∞) is strictly increasing and continuous mapping with φ(0)=0.



For concepts such as bounded linear operator and its adjoint operator, maximal monotone operator and metric projection, we refer to Chidume [5].



The metric projection is parity and scale invariant (cf. Proposition 1.26(e) in [30]) in the sense that


λPCx=PλCλx,foreveryλ≥0,x∈H,








consequently,


λ(PC−x(x)−x)=PλC−λx(λx)−λx,foreveryλ≥0,x∈H.












1.3. Counterpart of the above Concepts in the Setting of a Cat(0) Space


A mapping T:C→C is said to be total asymptotically strictly pseudocontractive if there exists γ∈[0,1] such that


d(Tnx,Tny)2≤d(x,y)2+γd(x,Tnx)2+κnφ(d(x,y))+μn



(2)




holds for all x,y∈C, the sequences κn,μn∈[0,∞) satisfy limn→∞κn=limn→∞μn=0, and φ:[0,∞)→[0,∞) is strictly increasing and continuous mapping with φ(0)=0.



Define an addition (x,y)↦x⊕y and a scalar multiplication (α,x)↦α·x in the space X as follows: for any z∈X and α,β∈R, we denote the point z=αx⊕βy such that d(x,z)=d((1−α)x,βy).



A mapping A:X→X is said to be linear if for x,y∈X, we have


A(αx⊕βy)=αA(x)⊕βA(y).











A mapping A:X→X is said to be bounded if for all x,y∈X, there exists M≥0 such that


d(Ax,Ay)2≤Md(x,y)2,











Let C be a nonempty subset of a CAT(0) space X.



In [1], a mapping ⟨·,·⟩:(X×X)×(X×X)→R is said to be quasi-linearization in X if


⟨pq→,rs→⟩=12(d(p,s)2+d(q,r)2−d(p,r)2−d(q,s)2),



(3)




holds for all p,q,r,s∈X; here a pair (p,q)∈X×X is denoted by a vector pq→. Consequently, we have




	
⟨pq→,pq→⟩=d(p,q)2,



	
for all p,q,r,s,t,u,v,w∈X,


pq→rs→→,tu→vw→→=pq→,tu→−pq→,vw→−rs→,tu→+rs→,vw→.



(4)












A mapping A∗:X→X is said to be adjoint operator of A if for all x,y,w,z∈X, we have


⟨AxAw→,yz→⟩=⟨Axw→,yz→⟩=⟨xw→,A∗yz→⟩=⟨xw→,A∗yA∗z→⟩.



(5)







Clearly, A∗ is a linear operator when so is A. As in a Hilbert space, we have


d(A∗y,A∗z)2=d(Ax,Aw)2≤Md(x,w)2,








and hence, A∗ is bounded in X.



For any x∈X, there exists a unique point x0∈C such that


d(x,x0)≤d(x,y)∀y∈C,








and the mapping PC:X→C defined by PCx=x0 is called the metric projection of X onto C (cf. Proposition 2.4 in [2]). Equivalently, in view of the characterization of Hossein and Jamal [12], we have


⟨x0x→,yx0→⟩≥0,








consequently,


PCx→:X→Cx→isdefinedbyPCx→(x)x→=x0x→,








equivalently,


x0x→xx→→,yx→x0x→→≥0,⇔x0x→,yx→x0x→→≥0(becausexx→isanadditiveidentityelement),⇔x0x→,yx→−x0x→,x0x→≥0(by(4)),



(6)




where x0x→,yx→∈Cx→.



The metric projection is parity and scale invariant in the sense that


λPCx=PλCλx,foreveryλ≥0,x∈X,








consequently,


λPCx→(x)x→=PλCλx→(λx)λx→,foreveryλ≥0,x∈X.



(7)








1.4. Fixed Point Theory in a Cat(0) Space


Fixed point theory in a CAT(0) space has been introduced by Kirk (see for example [19]). He established that a nonexpansive mapping defined on a bounded, closed and convex subset of a complete CAT(0) space has a fixed point. Consequently, fixed point theorems in CAT(0) spaces have been developed by many mathematicians; see for example [8,29]. More so, some of these theorems in CAT(0) spaces are applicable in many fields of studies such as, graph theory, biology and computer science (see for example [9,18,20,31]).



Let T:X→2X be a multivalued mapping. A point x∈X is called a fixed point of T if x∈Tx and F(T)={x∈X:x∈Tx} is called the fixed point set of T.




1.5. Our Motivation


As a generalized version of the well known split common fixed point problem, Moudafi [25] introduced the following split monotone variational inclusion (SMVI) by using maximal monotone mappings;


findx∗∈H1suchthat0∈f(x∗)+B1(x∗),y∗=Ax∗∈H2solves0∈g(y∗)+B2(y∗),








where B1:H1→2H1 and B2:H2→2H2, A:H1→H2 is a bounded linear operator, f:H1→H1 and g:H2→H2 are given single-valued operators.



In 2000, Moudafi [26] proposed the viscosity approximation method by considering the approximate well-posed problem of a nonexpansive mapping S with a contraction mapping f over a nonempty closed and convex subset; in particular he showed that given an arbitrary x1 in a nonempty closed and convex subset, the sequence {xn} defined by


xn+1=αnf(xn)+(1−αn)Sxn,








where {αn}⊂(0,1) with αn→0 as n→∞, converges strongly to the fixed point set of S, F(S).



In [28], viscosity approximation method for split variational inclusion and fixed point problems in Hilbert Spaces was presented as follows.


un=JλB1(xn+γnA∗(JλB2−I)Axn);xn+1=αnf(xn)+(1−αn)Tn(un),∀n≥1,



(8)




where B1 and B2 are maximal monotone operators, JλB1 and JλB2 are resolvent mappings of B1 and B2 respectively, f is a Meir-Keeler mapping, T a nonexpansive mapping, A∗ is an adjoint of A, γn,αn∈(0,1) and λ>0.



In this paper, motivated by (8), we present a modified viscosity algorithm sequence and prove strong convergence theorem for split variational inclusion problem and fixed point problem of a total asymptotically strictly pseudocontractive mapping in the setting of two different CAT(0) spaces. It seems that our main result is new in the setting of CAT(0) spaces.





2. Preliminaries


Denote by CB(X), the collection of all nonempty closed and bounded subsets of X and let H be the Hausdorff metric with respect to the metric d; that is,


H(A,B)=max{supa∈Ad(a,B),supb∈Bd(b,A)}



(9)




for all A,B∈CB(X), where d(a,B)=infb∈Bd(a,b) is the distance from the point a to the subset B.



Let X be a complete CAT(0) space with its dual X∗ (for details, see [17]). A mapping G:D(G)⊂X→2X is said to be monotone if


⟨xy→,x∗y∗→⟩≥0∀x,y∈D(G),x∗∈Gx,y∗∈Gy.











A mapping G:D(G)⊂X→2X is said to be maximal monotone if it is monotone and also has no monotone extension, that is, its graph gr(G):={(x,x∗)∈X×X∗:x∗∈G(x)} is not properly contained in the graph of any other monotone operator on X.



For γ>0, a mapping BγG=(I+γG)−1:X→2X defined by BγG(x)={z∈X:[1γzx→]∈G(z)} is said to be a resolvent of G.



The operator G is said to satisfy the range condition if for every γ>0, D(BγG)=X.



Let X be a complete CAT(0) space and {xn} be a bounded sequence in X. Then the asymptotic center of {xn} is defined by


A({xn})={x∈X:lim supn→∞d(x,xn)≤lim supn→∞d(z,xn),∀z∈X}.











The asymptotic center A({xn}), consists of exactly one point ([6]).



Definition 1.

A sequence {xn} in a CAT(0) space X is said to be Δ-convergent to x∈X if x is the unique asymptotic center of any subsequence {xnk}⊂{xn}. Symbolically, we write it as Δ−limn→∞xn=x [21,22].





Lemma 1.

Let {xn} be a bounded sequence in a complete CAT(0) space X [21]. Then




	i. 

	
{xn} has a Δ-convergent subsequence.




	ii. 

	
the asymptotic center of {xn}⊂C⊂X is in C, where C is nonempty, closed and convex.











Lemma 2.

Let {xn} be a bounded sequence in a complete CAT(0) space and A({xn})={x}. Let {xnk} be an arbitrary subsequence of {xn} and A({xnk})={y}. If limn→∞d(xn,y) exists, then x=y [7].





Let C be closed and convex subset of a CAT(0) space X and {xn} a bounded sequence in C. Then the relation xn⇀x is described by


lim supn→∞d(xn,x)=infy∈Clim supn→∞d(xn,y).











Lemma 3.

[27] Let C be closed and convex subset of a CAT(0) space X and {xn} a bounded sequence in C. Then Δ−limn→∞xn=x implies that xn⇀x.





Lemma 4.

[7] Let X be a CAT(0) space and x,y,z∈X. Then




	i. 

	
d((1−t)x⊕ty,z)≤(1−t)d(x,z)+td(y,z),t∈[0,1],




	ii. 

	
d((1−t)x⊕ty,z)2≤(1−t)d(x,z)2+td(y,z)2−t(1−t)d(x,y)2,t∈[0,1].











Lemma 5.

[13] Let X be a complete CAT(0) space, {xn} a sequence in X and x∈X. Then {xn}, Δ−converges to x if and only if lim supn→∞⟨xnx→,yx→⟩≤0 for all y∈X.





Lemma 6.

[34] Let X be a complete CAT(0) space. Then for all x,y,z∈X, the following inequality holds


d(x,z)2≤d(y,z)2+2⟨xy→,xz→⟩.














3. Main Results


Let X1 and X2 be two CAT(0) spaces, C⊂X1 be a closed and convex subset, A:X1→X2 bounded linear and unitary operator, U:X1→2X1 and S:X2→2X2 be uniformly continuous and maximal monotone operators, f:X1→X1 contraction mapping and T:C→CB(C) be uniformly continuous multivalued total asymptotically strictly pseudocontractive mapping defined as


H(Tnx,Tny)2≤d(x,y)2+γd(x,Tnx)2+κnφ(d(x,y))+μn








where x,y∈C and the sequences κn,μn∈[0,∞) satisfy ∑n=1∞κn<∞ and ∑n=1∞μn<∞. Suppose that γ∈[0,1] and φ:[0,∞)→[0,∞) is strictly increasing and continuous mapping such that φ(0)=0, and PAC:X2→AC and PACAx→:X2→ACAx→ are the metric projections onto, respectively, nonempty closed and convex subset AC and ACAx→ of X2, where AC={Ax,∀x∈C} and ACAx→={AyAx→,∀y∈CandAxfixed}. Let, for γ>0, BγU:2X1→X1 and BγS:2X2→X2 be resolvent operators for U and S, respectively. Denoted by VIP(U,γ) and VIP(S,γ), and F(T) the solution set of variational inequality problems with respect to U and S and fixed point problem with respect to T.



As in [25], we define the split variational inclusion (SVI) as follows:


findx∈X1suchthatxx→∈U(x)andAx∈X2solvesAxAx→∈S(Ax),








where xx→ and AxAx→ are the additive identity elements in X1 and X2, respectively.



Denoted by F(T) is the fixed point set of a map T, let F(T)≠∅ and p∈F(T). Then T is multivalued total quasi-asymptotically strictly pseudocontractive mapping if


H(Tnx,Tnp)2≤d(x,p)2+γd(x,Tnx)2+κnφ(d(x,p))+μn.











Remark 1.

Please note that a multivalued total asymptotically strictly pseudocontractive mapping is multivalued total quasi-asymptotically strictly pseudocontractive provided, its fixed point set is nonempty.





Throughout this paper we shall strictly employ the above terminology.



For a bounded sequence {xn} in C, we employ the notion:


lim supn→∞d(xn,x)=infy∈Clim supn→∞d(xn,y),



(10)




equivalently x is the asymptotic center of each subsequence of {xn}



Following Karapinar et al [14], we first establish a demiclosedness principle based on (10).



Lemma 7.

(Demiclosedness of T) Let T be a multivalued total asymptotically strictly pseudocontractive mapping on a closed and convex subset C of a CAT(0) space X. Let {xn} be a bounded sequence in C such that Δ−limn→∞xn=x and limn→∞d(xn,Txn)=0. Then x∈Tx.





Proof. 

By the hypothesis Δ−limn→∞xn=x and so by Lemma 3, we get {xn}⇀x. Then by Lemma 1 (ii), we arrive at A({xn})={x}. Let limn→∞d(xn,Txn)=0. So we obtain


lim supn→∞d(xn,y)=lim supn→∞d(y,Txn),



(11)




for all y∈C. From the hypothesis that T is multivalued total asymptotically strictly pseudocontractive mapping and by (11), choosing y∈Tx, we have


lim supn→∞d(xn,y)2=lim supn→∞d(y,Txn)2≤lim supn→∞H(Txn,Tx)2≤lim supn→∞{d(xn,x)2+γd(xn,Txn)2+κnφ(d(xn,x))+μn}=lim supn→∞d(xn,x)2.



(12)




 □





By (1), we get


dxn,x⊕y22≤12d(xn,x)2+12d(xn,y)2−14d(x,y)2.











Let n→∞ and take superior limit on the both sides of the above inequality and get


lim supn→∞dxn,x⊕y22≤12lim supn→∞d(xn,x)2+12lim supn→∞d(xn,y)2−14d(x,y)2.











Since A({xn})={x}, therefore we have


lim supn→∞d(xn,x)2≤lim supn→∞dxn,x⊕y22≤12lim supn→∞d(xn,x)2+12lim supn→∞d(xn,y)2−14d(x,y)2,








which implies that


lim supn→∞d(xn,x)2≤lim supn→∞d(xn,y)2.



(13)







By (12) and (13), we conclude that x=y and therefore x∈Tx, as desired.



Next, we prove our main result as follows.



Theorem 1.

Let x1∈X1 be chosen arbitrarily and the sequence {xn} be defined as follows;


yn=BγnUαnxn⊕(1−αn)λnA∗PACnAxn→BγnS(Axn)Axn→xn+1=βnf(xn)⊕(1−βn)zn,zn∈{Tnyn},n≥1,



(14)




where A∗ is the adjoint operator of A, and M,λn,αn,βn∈[0,1]. Suppose that AC is closed and convex, PACBγS is demiclosed and Γ={x∈VIP(U,γ):Ax∈VIP(S,γ)}∩{x∈F(T)}≠∅, and the following conditions are satisfied;




	1. 

	
there exists constant N>0 such that φ(r)≤Nr, r≥0;




	2. 

	
limn→∞βn=limn→∞αn=0;




	3. 

	
T satisfies the asymptotically regular condition limn→∞d(yn,Tnyn)=0.









Then {xn} converges strongly to a point x∈Γ, where PACBγS(Ax)=BγS(Ax).





Proof. 

We will divide the proof into three steps.



Step one. We prove that {xn} is bounded.



If p∈Γ, then by Lemma 4(ii) and (9) we obtain


d(yn,p)2=dBγnUαnxn⊕(1−αn)λnA∗PACnAxn→BγnS(Axn)Axn→,p2≤αndxn,p2+(1−αn)dλnA∗PACnAxn→BγnS(Axn)Axn→,p2



(15)




whereas, by (6), (4), (5), and boundedness, linearity and unitary property of A, we have,


dλnA∗PACnAxn→BγnS(Axn)Axn→,p2=λnA∗PACnAxn→BγnS(Axn)Axn→p→,λnA∗PACnAxn→BγnS(Axn)Axn→p→=λnPACnAxn→BγnS(Axn)Axn→Ap→,λnPACnAxn→BγnS(Axn)Axn→Axn→−ApAxn→,λnPACnAxn→BγnS(Axn)Axn→Axn→−λnPACnAxn→BγnS(Axn)Axn→Axn→,ApAxn→+ApAxn→,ApAxn→≤−λnPACnAxn→BγnS(Axn)Axn→Axn→,ApAxn→+Mdxn,p2.



(16)







Substituting (16) into (15), we get


d(yn,p)2≤−(1−αn)λnPACnAxn→BγnSn(Axn)Axn→Axn→,ApAxn→










+(M(1−αn)+αn)dxn,p2       



(17)






≤dxn,p2.             



(18)







By Remark 1, (14), (2), Lemma 4(ii) and (9), we get


d(xn+1,p)2=dβnf(xn)⊕(1−βn)zn,p2 ≤βndf(xn),p2+(1−βn)dzn,p2−βn(1−βn)df(yn),zn2 ≤βn(df(xn),f(p)2+df(p),p2)+(1−βn)HTnyn,Tnp2 ≤βndf(p),p2+(1−(1−ζ)βn)(1+κnN))dxn,p2 +(1−βn)γdyn,Tnyn2+(1−βn)μn.



(19)







Since ∑n=1∞κn<∞, ∑n=1∞μn<∞ and γ is arbitrary in [0,1], therefore by (19), we get


d(xn+1,p)2≤βndf(p),p2+(1−(1−ζ)βn)dxn,p2≤max{dxn,p2,11−ζdf(p),p2}⋮≤max{dx1,p2,11−ζdf(p),p2}.



(20)







By (18) and (20), we have that {xn} and {yn} are bounded. Hence {Tnyn} and {f(xn)} are also bounded.



Step two. We will show that limn→∞d(PACnBγnS(Axn),Axn)=0.



By Lemmas 1 and 2, there exists a subsequence {xnk} of {xn} such that Δ−limn→∞xnj=x∈C. Thus, Δ−limn→∞xn=x. By Lemmas 5 and 6, we get


dxn+1,xn2≤2dxn+1,x2+2dx,xn2=2xn+1x→,xn+1x→+2xnx→,xnx→⟶0asn→∞.



(21)







This implies that xn→x as n→∞.



In addition, by Lemma 4(ii) we have


dyn,xn+12=dyn,βnf(xn)⊕(1−βn)zn2≤βndyn,f(xn)2+(1−βn)dyn,zn2≤βndyn,f(xn)2+(1−βn)dyn,Tnyn2⟶0asn→∞,



(22)




and therefore by (21), (22) and Lemma 6, we get


dyn,xn2≤dyn,xn+12+dxn+1,xn2⟶0asn→∞.



(23)







This implies that yn→x as n→∞.



As λn is arbitrary in [0,1], so by (17), (3) and (7) we arrive at


(1−αn)λnPACnAxn→BγnS(Axn)Axn→Axn→,ApAxn→≤d(xn,p)2−d(yn,p)2⟹2(1−αn)dλnPACnAxn→BγnS(Axn)Axn→,Axn2≤d(xn,p)2−d(yn,p)2⟹2(1−αn)dPλnACnλnAxn→BγnS(λnAxn)λnAxn→,Axn2≤d(xn,p)2−d(yn,p)2⟹2(1−αn)dPACnAxn→BγnS(Axn)Axn→,Axn2≤d(xn,p)2−d(yn,p)2⟶0asn→∞.



(24)







It follows from (24) that


dPACnBγnS(Axn),Axn⟶0asn→∞.



(25)







Step three. We show that xn→x∈Γ.



By (14), we obtain


αnxn⊕(1−αn)λnA∗PACnAxn→BγnS(Axn)Axn→∈yn⊕γnUn(yn)⟹xn∈yn⊕γnUn(yn)(sinceαnisarbiraryin[0,1]).⟹xnyn→∈γnUn(yn)



(26)







Since U and S are uniformly continuous, therefore it follows by (26), as n→∞, that xx→∈U(x). In addition, it is clear that Δ−limn→∞Axn=Ax. So by using (25) and applying the demiclosedness of PACBγS, we have that AxAx→∈SAx, as PACBγSAx=BγSAx. On the other hand, by Lemma 7 and Δ−limn→∞yn=x (by (23)), we have by the hypothesis limn→∞d(Tyn,yn)=0 that x∈Tx, as T is uniformly continuous. Hence, x∈Γ. □





The proof is completed.



If U:X1→X1 and S:X2→X2 are total asymptotically strictly pseudocontractive in Theorem 1 and their fixed point sets F(U) and F(S) are nonempty, then we get:



Corollary 1.

Let x1∈X1 be chosen arbitrarily and the sequence {xn} be defined as follows;


yn=Unαnxn⊕(1−αn)λnA∗PACnAxn→Sn(Axn)Axn→xn+1=βnf(xn)⊕(1−βn)zn,zn∈{Tnyn},n≥1,








where A∗ is the adjoint operator of A, and M,λn,αn,βn∈[0,1]. Suppose that AC is closed and convex, Γ={x∈F(U):Ax∈F(S)}∩{x∈F(T)}≠∅, and the following conditions are satisfied;




	1. 

	
there exists constant N>0 such that φ(r)≤Nr, r≥0;




	2. 

	
limn→∞βn=limn→∞αn=0;




	3. 

	
T satisfies the asymptotically regular condition limn→∞d(yn,Tnyn)=0.









Then {xn} converges strongly to a point x∈Γ, where PACS(Ax)=S(Ax).





Remark 2.

Corollary 1 is about split common fixed point problem and fixed point problem. Hence, this result is new in the literature; in particular, it generalizes similar results in [24,33] from Banach space setting to CAT(0) spaces.





In Theorem 1, let PACnAxn→(Axn)Axn→=PACnAxn→BγnS(Axn)Axn→ and PC=BγnU, where PC:X1→C is the metric projection of X1 onto C. Then we get the following result.



Corollary 2.

Let x1∈X1 be chosen arbitrarily and the sequence {xn} be defined as follows;


yn=PCnαnxn⊕(1−αn)λnA∗PACnAxn→(Axn)Axn→xn+1=βnf(xn)⊕(1−βn)zn,zn∈{Tnyn},n≥1,








where A∗ is the adjoint operator of A, and M,λn,αn,βn∈[0,1]. Suppose that AC is closed and convex, Γ={x∈C:Ax∈AC}∩{x∈F(T)}≠∅, and the following conditions are satisfied;




	1. 

	
there exists a constant N>0 such that φ(r)≤Nr, r≥0;




	2. 

	
limn→∞βn=limn→∞αn=0;




	3. 

	
T satisfies the asymptotically regular condition limn→∞d(yn,Tnyn)=0.









Then {xn} converges strongly to a point x∈Γ.





Remark 3.

As Corollary 2 deals with split feasibility problem and fixed point problem so it is a new result in the literature. It also extends similar results in Banach spaces [15,32] to the case of CAT(0) spaces.






4. Application to Split Hammerstein Integral Inclusion and Fixed Point Problem


An integral equation of Hammerstien-type is of the form


u(x)+∫Ck(x,y)f(y,u(y))dy=g(x)








(see [11]).



By writing the above equation in the following form


u+KFu=g,








without loss of generality, we have


u+KFu=0.



(27)







If instead of the singlevalued maps f and k, we have the multivalued functions f and k, then we obtain Hammerstein integral inclusion in the form 0∈u⊕KFu, where F:X1→CB(X1) defined by Fu(y):={v(y):vissomeselectionoff(·,u(·))} and K:X1→CB(X1) defined by Kv(x):={w(x):wissomeselectionofk(·,y)}, are bounded and maximal monotone operators (see for example [23]).



So the split Hammerstein integral inclusion problem is formulated as: find x∗,y∗∈X1×X1 such that, for v(·)∈Fu(·) and w(·)∈Kv(·)


x∗⊕w(v(x∗))=0withv(x∗)=y∗andw(y∗)⊕x∗=0








and Ax∗,Ay∗∈X2×X2 such that, for v′(·)∈F′u′(·) and w′(·)∈K′v′(·),


Ax∗⊕w′(v′(Ax∗))=0withv′(Ax∗)=Ay∗andw′(Ay∗)⊕Ax∗=0








where F′:X2→CB(X2) and K′:X2→CB(X2), defined as F and K, respectively, are also bounded and maximal monotone.



Lemma 8.

Let X be a CAT(0) space, E:=X×X and let F:dom(F)⊆X→CB(X), K:dom(K)⊆X→CB(X) be two multivalued maps. Define D:dom(F)×dom(K)→CB(E) by D(x,y):=Fxy→×(Ky⊕x)∀x,y∈dom(F)×dom(K)=(v(y)y→,w(x)⊕x):v(y)∈Fu(y),w(x)∈Kv(x). Suppose that F and K are monotone. Then D is monotone.





Proof. 

Let z1=(x1,y1),z2=(x2,y2)∈E and let w¯1∈D(z1),w¯2∈D(z2). Then z¯1=(v1(y1)y1→,w1(x1)⊕x1), z¯2=(v2(y2)y2→,w2(x2)⊕x2), for some v1(y1)∈Fu1, v2(y2)∈Fu2, w1(x1)∈Ky1 and w2(x2)∈Ky2. Therefore, by monotonicity of F and K, we get


⟨z1z2→,z¯1z¯2→⟩=⟨(x1x2→,y1y2→),(v1(y1)v2(y2)→y1→⊕y2,w1(x1)w2(x2)→⊕x1x2→)⟩=⟨x1x2→,v1(y1)v2(y2)→y1→⊕y2⟩+⟨y1y2→,w1(x1)w2(x2)→⊕x1x2→⟩=⟨x1x2→,v1(y1)v2(y2)→y1→⟩−⟨x1x2→,y1y2→⟩+⟨y1y2→,w1(x1)w2(x2)→⟩+⟨y1y2→,x1x2→⟩=⟨x1x2→,v1(y1)v2(y2)→⟩+⟨y1y2→,ηw1(x1)w2(x2)→⟩≥0.








 □





This completes the proof of the lemma.



By Lemma 8, we have two resolvent mappings,


BγD=(I+γD)−1andBγD′=(I+γD′)−1,








where D′:dom(F′)×dom(K′)→CB(E) is defined by


D′(Ax,Ay):=F′AxAy→×(K′Ay⊕Ax)








∀Ax,Ay∈dom(F′)×dom(K′)=(v′(Ay)Ay→,w′(Ax)⊕Ax):v′(Ay)∈F′u(Ay),w′(Ax)∈K′v′(Ax).



Now D and D′ are maximal monotone by Lemma 8. When U=D and S=D′ in Theorem 1, the algorithm (1) becomes


yn=BγnDαnxn⊕(1−αn)λnA∗PACnAxn→BγD′(Axn)Axn→xn+1=βnf(xn)⊕(1−βn)zn,zn∈{Tnyn},n≥1,








and its strong convergence is guaranteed, which solves the split Hammerstein integral inclusion problem and fixed point problem for the mappings involved in this scheme.
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