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Abstract

:

In this article, we discuss new characterizations of Cohen-Macaulay bipartite edge ideals. For arbitrary bipartite edge ideals I(G), we also discuss methods to recognize regular elements on I(G)s for all s≥1 in terms of the combinatorics of the graph G.
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1. Introduction


The interplay between the combinatorics of finite simple graphs G and the algebra of the underlying edge ideals I(G) has been studied by various researches during the last few decades. The algebraic invariants that have been particularly prone to combinatorial interpretation are regularity, projective dimension, depth, and Betti numbers. In this article, we study the depth of powers of edge ideals of bipartite graphs. Combinatorics of bipartite graphs have been particularly ripe with interesting algebraic counterparts in the edge ideals and their powers. Interested readers are referred to [1,2,3], etc. In this paper, we continue the study pursued by the same authors in [3]. We study the closely related topics of combinatorial characterization of regular elements and Cohen-Macaulayness of various powers of bipartite edge ideals.



In section two of this paper, we offer a new characterization of Cohen-Macaulay bipartite edge ideals. We characterize it using colon ideals of the form (I(G)2:e), where e is an edge/generator of I(G), somehow in the same way as it is done in [3,4], etc., in the study of regularity. An often quoted and important characterization of Cohen-Macaulay bipartite edge ideals is due to Herzog-Hibi in [2]. In this article, we also give a new proof of this characterization ([2]). One important feature of our proof is that it does not use Hall’s marriage theorem or any variant of it as it was done in [2]. Throughout this article, we refer to S as the polynomial ring k[x1,⋯,xn,y1,⋯,yn]. Our main results in this section are as follows:



Theorem 1.

Let G be a bipartite graph with partition V1={x1,⋯,xn} and V2={y1,⋯,yn′}. Then the following are equivalent




	1.

	
S/I(G) is Cohen-Macaulay




	2.

	
n=n′ and there exists a re-ordering of the vertex sets V1,V2 such that




	(a) 

	
xiyi∈I(G) for all i




	(b) 

	
If xiyj∈I(G) then i≤j.




	(c) 

	
If xiyj,xjyk∈I(G) then xiyk∈E.










	3.

	
I(G) is unmixed and S/I(G) is connected in codimension one.




	4.

	
n=n′ and there exists exactly n edges e1,⋯,en such that (I(G)2:ei)=I(G) and for i≠j, ei and ej are disjoint.




	5.

	
n=n′ and there exists exactly n edges e1,⋯,en such that (I(G)2:ei) is Cohen-Macaulay and for i≠j, ei and ej are disjoint.











For arbitrary bipartite edge ideals, it is often hard to compute the depth of powers of its edge ideals I(G)s for all s≥1. Even if G is Cohen-Macaulay, it is not so easy to compute the depthS/I(G)s for s≥2. It is well known that depthS/I(G)s is asymptotically equal to the number of connected components of G ([5]). An important invariant related to the study of depth S/I(G)s is the dstab I(G) which measures the minimal t for which depth S/I(G)t equals the number of connected components of G. To study such invariants the same authors in [3] characterized regular elements on I(G)s for any unmixed bipartite graphs G. In the third section of this paper we characterize elements of the form xν−yμ that are regular on the powers I(G)s of a bipartite edge ideal G. This is a generalization of the similar result proved in [3]. Our characterization turns out to be the exactly same as the ☆-condition proved there. To signify its usefulness we call it the neighborhood properties (we refer to the definition in Definition 12) Our main result proved here is as follows:



Theorem 2.

Let G be a bipartite graph and suppose that xμ∈V1 and yν∈V2 satisfies the neighborhood properties. Then xμ−yν is an regular element on S/I(G)s for all s.






2. Structure of Cohen-Macaulay and Unmixed Bipartite Graphs


A characterization theorem for Cohen-Macaulay bipartite graphs was given by Herzog-Hibi in [2].



Theorem 3.

(Herzog-Hibi, [2]) Let G be a bipartite graph with partition V1={x1,⋯,xn} and V2={y1,⋯,yn′}. Then the following are equivalent




	1.

	
S/I(G) is Cohen-Macaulay




	2.

	
n=n′ and there exists a re-ordering of the vertex sets V1,V2 such that




	(a) 

	
xiyi∈I(G) for all i




	(b) 

	
If xiyj∈I(G) then i≤j.




	(c) 

	
If xiyj,xjyk∈I(G) then xiyk∈E.

















The following theorem is an improvement of the Herzog-Hibi characterization (Theorem 3). We are grateful to Prof. Huneke for the ideas presented in this proof. It is important to notice here that the following theorem does not make use of the Halls marriage theorem which is an important element of any proofs known to us of Theorem 3.



Definition 1.

(Definition, p. 498, [6]) Let I be an ideal in a polynomial ring S such that I=P1∩⋯∩Pk,Pi∈Spec(S),1≤i≤k. We say that the ring S/I is connected in codimension one if for any two primes Q′,Q″∈Min(S/I), there is a sequence of minimal primes Q′=Q1,⋯,Qr=Q′′∈Min(S/I) such that for each i=1,2,⋯,r−1, ht(Qi+Qi+1)=1 in S/I.





Theorem 4.

Let G be a bipartite graph with partition V1={x1,⋯,xn} and V2={y1,⋯,yn′}. Then the following are equivalent




	1.

	
S/I(G) is Cohen-Macaulay




	2.

	
n=n′ and there exists a re-ordering of the vertex sets V1,V2 such that




	(a) 

	
xiyi∈I(G) for all i




	(b) 

	
If xiyj∈I(G) then i≤j.




	(c) 

	
If xiyj,xjyk∈I(G) then xiyk∈E.










	3.

	
I(G) is unmixed and S/I(G) is connected in codimension one.











Proof. 

First we show (2)⇒(1). We prove by induction on n. If n=1, then I(G)=(x1y1) and hence clearly S/I(G) is Cohen-Macaulay. Now assume that the result is true for n−1 and let G be a graph which satisfies the conditions (a)−(c) of (2) on 2n vertices (with partition V1={x1,⋯,xn} and V2={y1,⋯,yn}). Consider


0→S(I(G):x1)→SI(G)→S((I(G),x1)→0



(1)







Notice that (I(G),x1)=(I(G′),x1), where G′ is the graph obtained by deleting x1 and y1 from G. Clearly G′ satisfies the conditions (a)−(c) of (2) and hence S/I(G′) is Cohen-Macaulay (on 2n−2 vertices) by induction. So S/(I(G),x1) is Cohen-Macaulay of dimension n. Let {y1,yi1,....,yik}⊆(I(G):x1) for some i1,....,ik. Let xijyl∈I(G) for some 1≤j≤k. As x1yij∈I(G) by the condition (c), x1yl∈I(G) and hence l∈{1,i1,....,ik}. So (I(G):x1)=(I(G″),y1,....,yik), where G″ is the graph obtained from G by deleting x1,y1,xi2,yi2,⋯,xik,yik. But by induction, S/I(G′) is Cohen-Macaulay of dimension n−k. Hence S/(I(G):x1) is Cohen-Macaulay of dimension n. Now in (1), both S/(I(G):x1) and S/(I(G),x1) are Cohen-Macaulay of dimension n, we have S/I(G) is also Cohen-Macaulay of dimension n ((Proposition 1.2.9, [7]) and the fact that dimension of S/I(G) is the maximum of the dimensions of S/(I(G):x1) and S/(I(G),x1)).



The implication (1)⇒(3) is a consequence of (Corollary 2.4, [6]).



We finally show (3)⇒(2). We first observe that n=n′ as I(G) is unmixed and both (x1,...,xn) and (y1,...,yn′) are minimal primes. Next, we prove that the existence of conditions (a) and (b) by induction. Let ∅≠L⊂{1,....,n} and define


yL=∏i∈LyixL=∏i∈LxiTL={j|xjyi∉I(G)foranyi∈L}uL=yLxTL.











Note that uL∉I(G) for any subset S⊆{1,⋯,n}. We now consider the ideals (I(G):uL). If L′={1,....,n} then (I(G):uL′)=(x1,....,xn) which shows that (x1,⋯,xn)∈Ass(I(G)). Since I(G) is unmixed, we have htI(G)=n. Clearly for any L⊆{1,....,n}, (I(G):uL)=(xj1,...,xjt,yl1,....,ylt′) where for each 1≤i≤t, xjiyri∈I(G) for some ri∈S and for each 1≤k≤t′, xwkylk∈I(G) for some wk∈Ts. Since I(G) is unmixed of height n and (xj1,...,xjt,yl1,....,ylt′)∈Ass(I(G)), we have t+t′=n.



Now choose yi with minimum vertex degree. Without loss of generality we may assume i=1. Let x1,...,xt be neighbors of y1 and L={1}. Then as in the previous paragraph, consider (I(G):uL)=(x1,⋯,xt,yl1,⋯,yln−t). After relabeling, we may assume y1,⋯,yt are only connected to x1,⋯,xt. Let G′ be the induced subgraph on x1,...,xt,y1,....,yt. By our choice of y1, of minimal vertex degree t, notice that every other vertex yj has to have vertex degree at least t. In other words, since t is minimal, each vertex yi,1≤i≤t in G′ has at least t neighbors and hence G′ is a complete bipartite graph.



Since S/I(G) is connected in codimension one and (x1,⋯,xn),(y1,⋯,yn)∈Ass(I(G)), there exists a sequence of minimal primes (x1,⋯,xn)=P1,⋯,Pr=(y1,⋯,yn) such that ht(Pi+Pi+1)=1 in S/I(G). If any minimal prime Pl of I(G) does not contain some xi,1≤i≤t then it has to contain every yj,1≤j≤t (as G′,as defined in the previous paragraph, is a complete bipartite graph). Let 1≤l≤r such that for all 1≤i≤l, Pi contains all of x1,⋯,xt (alternatively, Pi’s do not contain any of y1,⋯,yt). Now Pl+1 does not contain at least one of x1,⋯,xt, hence it has to contain all y1,⋯,yt. So ht(Pl+Pl+1)≥t in S/I(G). Thus t=1 and hence y1 is only connected to x1.



Now consider (I(G),x1). Since I(G) is an intersection of minimal primes, (I(G),x1) is an intersection of minimal primes of I(G) containing x1. Thus any minimal prime of (I(G),x1) is a minimal prime of I(G), and so (I(G),x1) is unmixed. We now show that (I(G),x1) is connected at codimension one. Any minimal prime of I(G) has to contain either x1 or y1 (as it is minimal it cannot contain both as y1 is only connected to x1). Let P′,P″∈Min(I(G),x1). As P′,P″∈MinI(G), there exists a sequence of minimal primes P′=P1,⋯,Pr=P″ such that htPi+Pi+1=1. For any 1≤i≤r,


Pi′=Piifx1∈Pi(Pi\{y1})∪{x1}ifx1∉Pi.











The sequence P′=P1′,⋯,Pr′=P″ defined as before has the property that htPi′+Pi+1′=1 and hence (I(G),x1) is connected in codimension one. Now notice that (I(G),x1)=(I(G″),x1) where G″ is the graph obtained from G by deleting x1. By induction hypothesis, S/I(G″) is Cohen-Macaulay. So there exists an ordering {x2,....,xn} and {y2,....,yn} satisfying (a)−(b) of (2). As y1 is only connected to x1, G also satisfies (a)−(b) of (2).



To prove that condition (c) holds, take xiyj and xjyk in E(G) such that i,j,k are distinct. Assume that xiyk is not an edge. Then there is a minimal prime P that does not contain either xi or yk as the ideal generated by all x-variables except xi and all y-variables except yk is a prime ideal that contains I(G) and does not contain xi or yk. Now because I(G) is unmixed, height of this prime has to be n. Since xi and yk are not in P, we get that yj and xj are both in P. As P contains at least one of xm or ym for all m, one observes that height of P is strictly bigger than n, which is a contradiction. □





The following remark is extremely crucial for our work.



Remark 1.

If G is a bipartite graph and ab is an edge then from (Theorem 6.7, [4]) we get (I(G)2:ab))=I(G)+(uv|u∈N(a),v∈N(b)).





Theorem 5.

Let G be a bipartite graph with partition V1={x1,⋯,xn} and V2={y1,⋯,yn′}. Then the following are equivalent




	1.

	
S/I(G) is Cohen-Macaulay




	2.

	
n=n′ and there exists exactly n edges e1,⋯,en such that (I(G)2:ei)=I(G) and for i≠j, ei and ej are disjoint.




	3.

	
n=n′ and there exists exactly n edges e1,⋯,en such that S/(I(G)2:ei) is Cohen-Macaulay and for i≠j, ei and ej are disjoint.











Proof. 

First, we show (1)⇔(2). If S/I(G) is Cohen-Macaulay, we have ordering x1,...,xn and y1,....,yn of the vertices of G which satisfies the conditions of Theorem 4. Condition (c) implies for all i, I(G)2:xiyi=I(G) and conditions (a) and (b) implies for i≠j(I(G)2:xiyj)≠I(G).



Now suppose there exist, after possible reordering, e1=x1y1,....,en=xnyn which satisfied the conditions of (2). First, we show that if Gi is the induced subgraph obtained by deleting xi and yi then the edge ideal Ji related to Gi satisfies the condition with e1,⋯,ei−1,ei+1,⋯,en. Without loss of generality, we prove this for G1. Clearly (J12:ei)=J1 for 2≤i≤n. Suppose there exists an edge xiyj,i≠j such that (J12:xiyj)=J1. Without loss of generality we may assume i=2,j=3. As (I(G)2:x2y3)≠I(G) and x1y1 is an edge we can conclude that there exists a minimal generator of (I(G)2:x2y3) which is an edge that is either of the form x1yl or xmy1 (Theorem 6.7, [4]). Again without loss of generality we may assume it is of the form x1yl as the proof for the other follows simply by interchanging roles of x and y. So x1y3 and x2yl are edges in G (Theorem 6.7, [4]). As (J12:x2y3)=J1 we conclude x3y2 is an edge in G. As (I(G)2:x3y3)=I(G) we observe that x1y2 has to be an edge in G. So l≠2,3. Without loss of generality we may assume l=4. Now (I(G)2:x2y2)=I(G) so x3y4 has to be an edge in G. Again (I(G)2:x3y3)=I(G) hence x1y4 is an edge in G contradicting the assumption. So we may assume for all i the edge ideal I(Gi) of the graph Gi obtained by deleting xi and yi satisfies the conditions in (2).



Now by induction we may assume the result holds for n−1. Pick ei=xiyi such that yi has minimum degree. Let G′ be the induced subgraph on vertices other than xi,yi with edge ideal I(G′). As I(G′) satisfies the condition it is Cohen-Macaulay by induction. Without loss of generality we may assume i=1 and ordering that gives ordering of previous theorem for I(G′) is x2,...,xn,y2,...,yn. As y2 has degree one in G′ it can have at most degree 2 in G. If x1y2 is not an edge, due to minimality degree of y1 is at most 1. If x1y2 is an edge in G and xiy1 is an edge in G for i>2, as (I(G)2:x1y1)=I(G), we have xiy2 is an edge in G and hence in G′ contradicting the assumption. Now if x1y2 and x2y1 both are edges in G. Notice that x2y1 also satisfies the hypothesis (I(G)2:x2y1=I(G)). For, x1 has to be connected to any neighbor of x2 as x1y2 is an edge and x2y2 satisfies the hypothesis (I(G)2:x2y2=I(G)). This leads to a contradiction and hence no xi for i>1 is connected to y1. This guarantees that conditions (a) and (b) of Theorem 4(2) is satisfied. The condition (c) is satisfied as for all i, (I(G)2:xiyi)=I(G).



Next we show (1)⇔(3). To prove the if part, we pick, without loss of generality, y1 with minimum degree and the corresponding edge e1=x1y1. If degree of y1 more than one then degree of any other vertex is more than one; as (I(G)2:e1) is Cohen-Macaulay this will be a contradiction to the fact that any Cohen-Macaulay bipartite graph should have a y-vertex of degree 1 (Theorem 3). So y1 has degree one. Hence (I(G)2:e1)=I(G) and I(G) is Cohen-Macaulay.



For the only if part let e1=(x1y1),...,en=(xnyn) be as the ordering prescribed by the Herzog-Hibi (Theorem 3) characterization. All we need to show is that J=(I(G)2:xiyj) is not Cohen-Macaulay for i>j. This follows as (J2:e)=J for e=xjyi (which is a minimal monomial generator of J) as well as for e1,...,en. To see this first we show that (J2:ek)=J for all k. Here at every step we use the description of colon ideal provided by (Theorem 6.7, [4]). If xlym is a minimal monomial generator of (J2:ek) which is not in J then xlyk and xkym are in J. Both of them cannot belong to I(G) as from (I(G)2:ek)=I(G) that will imply xlym belongs to I(G) and as a result will belong to J, contradicting the assumption. Without loss of generality assume xkym does not belong to I(G). Then xkyj and xiym is in I(G). If xlyk does not belong to I(G) then xlyj and xiyk belong to I(G). If xlyk is in I(G) as xkyj is in I(G) and (I(G)2:ek)=I(G) we have xlyj is in I(G). In either case we have xlyj and xiym belong to I(G). Hence xlym belongs to J contradicting our assumption.



Next we show that (J2:xjyi)=J. If xlyk is a minimal monomial generator of (J2:xjyi) which is not in J then xjyk and xlyi is in J. As xjyk is in J it is either in I(G) or yk is a neighbor of xi in G. If xjyk is in I(G) as (I(G)2:xjyj)=I(G) we have xiyk is in I(G). By symmetry xlyj is in I(G). Hence xlyk is in J contrary to the assumption. Hence J is not Cohen-Macaulay. □





The next theorem gives insight into the associated graded ring of a Cohen-Macaulay bipartite edge ideal. The proof of this theorem uses the description of the colon of the nth power of an edge ideal with n−1 edges introduced in [4].



Theorem 6.

Let I(G) be Cohen-Macaulay bipartite edge ideal with an ordering of vertices satisfying Theorem 3(2) and ei=xiyi for 1≤i≤n. Then for all i and for all k, (I(G)k:ei)=I(G)k−1. Hence eis are non zero divisors in the associated graded ring of I(G).





Proof. 

Let f∈(I(G)k:ei)⊂(I(G)k−1:ei) be a minimal monomial generator of (I(G)k:ei). By induction (I(G)k−1:ei)=I(G)k−2. So f=gh1....hk−2 where hjs are minimal monomial generators of I(G) and g any monomial. So eih1....hk−2g∈I(G)k. As f is a minimal monomial generator, without loss of generality we may assume g is of degree 2 and eih1..hk−2g is a minimal monomial generator of I(G)k. Let g=xkyl,k≤l. If g is an edge we are done. Otherwise by ([4], Theorem 6.7), xk and yl are even connected with respect to eih1...hk−2. If xiyl is an edge and for some j,m,p, hj=xmyp and xmyi is an edge. Then by Theorem 4(2(c)) xmyl is an edge and hence proceeding inductively we show g is an edge and the result follows. □





We illustrate this theorem for k=3,4.



Example 1.

Let S=k[x1,x2,x3,y1,y2,y3] and I=(x1y1,x2y2,x3y3,x1y2,x1y3,x2y3). One can check using Macaulay 2, that (I3:x1y1)=(I3:x2y2)=(I3:x3y3)=I2 and (I4:x1y1)=(I4:x2y2)=(I4:x3y3)=I3.





In a private communication, Prof. Villarreal mentioned that results similar to Theorems 5 and 6 can be found in [8,9].




3. Regular Elements in Powers of Bipartite Edge Ideals


This section presents methods to recognize regular elements on the power of bipartite edge ideals based on the combinatorics of the graph. We first present some examples to motivate the definition and the results.



Example 2.

Consider the ring S=k[x1,x2,x3,y1,y2,y3] and the bipartite edge ideal I(G)=(x1y1,x2y2,x3y3,x1y2,x1y3,x2y3) corresponding to



 [image: Mathematics 07 00762 i001]



Macaulay2 computations show that x3−y1 is a regular element on I(G)s for 1≤s≤10. Notice that I(G) is Cohen-Macaulay. This can also be recovered from (Theorem 3.8, [3]).





One would be tempted to generalize that xn−y1 is always a regular element for bipartite graphs. But it is not always the case as it is shown in this example.



Example 3.

Consider the ring S=k[x1,x2,x3,y1,y2,y3] and the bipartite edge ideal I(G)=(x1y1,x2y2,x3y3,x1y2,x2y1,x2y3) corresponding to



 [image: Mathematics 07 00762 i002]



Macaulay2 computations show that x3−y1 is not a regular element S/I(G) or S/I(G)2.





Studying more such examples, we came up with the following definition involving the combinatorial nature of the graphs.



Definition 2.

Let G be a bipartite graph. Then xμ∈V1,yν∈V2 satisfies the neighborhood condition if


N(xμ)⊆N(xai)foralli,1≤i≤pwhereN(yν)={xa1,⋯,xap}.



(2)









Remark 2.

Condition (2) of Definition 2 is equivalent to the following condition


N(yν)⊆N(ybj) for all i,1≤j≤q where N(xμ)={yb1,⋯,ybq}.








Suppose (2) of Definition 2 is true. Then {yb1,⋯,ybq}=N(xμ)⊆N(xai), where N(yν)={xa1,⋯,xap}. This means xai∈N(ybj) where 1≤i≤p,1≤j≤q. In other words, N(yν)⊆N(ybj), where 1≤j≤q. The other direction is analogous.





We show in [3] that xn−y1 is a regular element on S/I(G)s for all s≥1 when G is an unmixed bipartite graph. Of course, when G is unmixed bipartite, xn and y1 satisfies the neighborhood conditions. In this section, we show that the difference of vertices which satisfies the neighborhood condition are the right candidates for being a regular element on S/I(G)s for any bipartite graph G.



Theorem 8 is the main theorem we study in this section. We break up the proof of this theorem into three main parts, where Theorem 7, Lemma 1 provide all the tools required to prove Theorem 8.



Theorem 7.

Let G be a bipartite graph and suppose that xμ∈V1 and yν∈V2 satisfies the neighborhood properties. If m is a monomial such that mxμk,myνk∈I(G)s, then m∈I(G)s for s,k≥1.





Proof. 

We prove by induction on k. Suppose k=1. Then mxμ,myν∈I(G)s. As mxμ∈I(G)s, then either m∈I(G)s or m=m′yt for some yt∈NG(xμ) and m′∈I(G)s−1. If m∈I(G)s, then the claim is obviously true.



Suppose m=m′yt with m′∈I(G)s−1\I(G)s. Let m′=ae1⋯es−1 for e1,⋯,ek∈I(G),a∈S. We assume ei=(xuiyvi),1≤i≤s−1. Since myν∈I(G)s, we have m′ytyν∈I(G)s. Thus


m′ytyν=ae1⋯es−1ytyν∈I(G)s=bf1⋯fsforf1,⋯,fs∈I(G),b∈S



(3)







Suppose a neighbor of yt divides a, then clearly m=m′yt∈I(G)s. Now suppose a neighbor of yν divides a. Since xμ and yν satisfies the neighborhood properties, any neighbor of yν is also a neighbor of yt and hence m=m′yt∈I(G)s.



Suppose that no neighbor of yt or yν divide a. Now in the decomposition in (3), if yν does not divide f1⋯fs, then f1⋯fs divides m′yt=m and hence m∈I(G)s. Now if yt does not divide f1⋯fs, then f1⋯fs divides m′yν. Thus m′yν=b1f1⋯fs. If yν divides b1, then f1⋯fs divides m′ and hence m∈I(G)s. Now suppose yν divides, say f1=(xδyν). Again, since xμ and yν satisfy the neighborhood properties, any neighbor of yν is a neighbor of yt and hence m=m′yt=b1(xδyt)f2⋯fs∈I(G)s.



Now suppose that ytyν divides f1⋯fs. Since ytyν divides f1⋯fs, we assume, without loss of generality, f1=xu1yt and f2=(xu2yν). Thus we have


m′ytyν=af1f2e3⋯es−1yv1yv2∈I(G)s=bf1⋯fsforf1,⋯,fs∈I(G),b∈S



(4)







Now a neighbor of yv1, say x0, divides a, then


m=m′yt=a′(x0yv1)(xu1yt)e2⋯es−1∈I(G)swherea=a′x0











Similarly if a neighbor of yv2, say x0, divides a, then


m=m′yt=a″(x0yv2)e1(xu2yt)e2⋯es−1∈I(G)swherea=a″x0











Now suppose no neighbor of yv1 or yv2 divides a. Consider (4). If yv1 does not divide f3⋯fs, then


m′ytyν=af1f2e3⋯es−1yv1yv2=b′yv1f1⋯fs=b′yv1(xu1yt)(xu2yν)f3⋯fs=b′(xu1yv1)(xu2yt)f3⋯fsyν=b′e1(xu2yt)f3⋯fsyν











Deleting yν on both sides, we get m=m′yt=b′(xu1yv1)(xu2yt)f3⋯fs∈I(G)s. Thus we assume yv1 divides f3⋯fs and hence assume, without loss of generality f3=(xu3yv1). Now we have


m′ytyν=af1f2f3e4⋯es−1yv2yv3∈I(G)s=bf1⋯fsforf1,⋯,fs∈I(G),b∈S



(5)







Now if yv2 does not divides f4⋯fs, then


m′ytyν=af1f2f3e4⋯es−1yv2yv3=b′yv2f1⋯fs=b′yv2(xu1yt)(xu2yν)f3⋯fs=b′(xu1yt)(xu2yv2)f3⋯fsyν=b′f1e2f3⋯fsyν











Deleting yν on both sides we get m=m′yt=b′f1e2f3⋯fs∈I(G)s.



Thus we assume yv2 divide f4⋯fs and hence assume, without loss of generality, f4=(xu4yv2). We now have


m′ytyν=af1f2f3f4e5⋯es−1yv3yv4∈I(G)s=bf1⋯fsforf1,⋯,fs∈I(G),b∈S



(6)







We continue in the same fashion and arrive at the j-th decomposition


m′ytyν=af1⋯f2j−1f2je2j+1⋯es−1yv2j−1yv2j∈I(G)s=bf1⋯fsforf1,⋯,fs∈I(G),b∈S



(7)







Also f2r−1=(xu2r−1yv2r−3) and f2r=(xu2ryv2r−2) for 2≤r≤j. Now if a neighbor of yv2j−1, say x0, divides a, then


m=m′yt=a′(x0yv2j−1)f1e2f3e4⋯e2j−2f2j−1e2je2j+1⋯es−1∈I(G)swherea=a′x0



(8)







If a neighbor of yv2j, say (x0), divides a, then


m=m′yt=a′(x0yv2j)e1(xu2yt)e3f4e5f6⋯e2j−1f2je2j+1e2j+2⋯es−1∈I(G)swherea=a′x0



(9)







Now suppose no neighbor of yv2j−1 or yv2j divides a. Now consider (7). If yv2j−1 does not divide f2j+1⋯fs, then


m′ytyν=af1⋯f2j−1f2je2j+1⋯es−1yv2j−1yv2j=b′yv2j−1f1⋯fs=b′e1(xu2yt)e3f4e5f6⋯f2j−2e2j−1f2jf2j+2⋯fsyν



(10)







Deleting yν on both sides we have m=m′yt=b′e1(xu2yt)e3f4e5f6⋯f2j−2e2j−1f2jf2j+2⋯fs∈I(G)s. Thus we assume yv2j−1 divides f2j+1⋯fs and hence assume, without loss of generality, f2j+1=(xu2j+1yv2j−1). We now have


m′ytyν=af1⋯f2j−1f2jf2j+1e2j+2⋯es−1yv2j−1yv2j∈I(G)s=bf1⋯fsforf1,⋯,fs∈I(G),b∈S



(11)







Again, if yv2j does not divide f2j+2⋯fs, then


m′ytyν=af1⋯f2j−1f2jf2j+1e2j+2⋯es−1yv2j−1yv2j=b′yv2jf1⋯fs=b′f1e2f3e4f5⋯f2j−1e2jf2j+2f2j+2⋯fsyν



(12)







Deleting yν on both sides, we get m=m′yt=b′f1e2f3e4f5⋯f2j−1e2jf2j+2f2j+2⋯fs∈I(G)s. Thus we assume yv2j divides f2j+2⋯fs and hence assume, without loss of generality, f2j+2=(xu2j+2yv2j).



Continuing in the same fashion we may reach the final decomposition


m′ytyν=af1⋯fs−1yvs−2yvs−1∈I(G)s=bf1⋯fsforf1,⋯,fs∈I(G),b∈S



(13)







Recall that every stage we make sure that none of the neighbors of the y’s appearing in f1,⋯,fs−1 divide a. Thus a neighbor of yvs−2 or yvs−1 divides a. Now we can use the decomposition in (8) and (9) to show that m∈I(G)s depending on whether s−2 or s−1 is odd or even. This concludes the proof of claim of this theorem in k=1 case.



Now assume by induction, that if mxμl,myνl∈I(G)s for 1≤l≤k−1, then m∈I(G)s. Suppose mxμk,myνk∈I(G)s. We also assume that k≤s. For, if k>s, then mxμs,myνs∈I(G)s and hence by induction hypothesis, we have m∈I(G)s.



We claim that it is enough to show that mxμk−1∈I(G)s or myνk−1∈I(G)s. Suppose we show that mxμk−1∈I(G)s. We now have mxμk−1,myνk∈I(G)s. Thus mxμk−1yν,myνk−1yν∈I(G)s and hence (myν)xμk−1,(myν)yνk−1∈I(G)s. Since myν is a monomial, we use induction hypothesis to conclude that myν∈I(G)s. Thus we now have mxμk−1,myν∈I(G)s. As before, we have (mxμk−2)xμ,(mxμk−2)yν∈I(G)s. Again, since mxμk−2 is a monomial, we use induction hypothesis to conclude that mxμk−2∈I(G)s. We now have mxμk−2,myν∈I(G)s. We continue the process to get mxμ2,myν∈I(G)s. We still have (mxμ)xμ,(mxμ)yν∈I(G)s. Since mxμ is a monomial, by induction hypothesis, we get mxμ∈I(G)s. We now have mxμ,myν∈I(G)s. This is the k=1 case. We now use the induction hypothesis to get m∈I(G)s. On the other hand, if we show that myνk−1∈I(G)s, then we can analogously show that m∈I(G)s.



Now we go to the induction step. We have mxμk,myνk∈I(G)s. Since mxμk∈I(G)s and mxμl∉I(G)s for any l<k, we have m=m′yt1⋯ytk where m′∈I(G)s−k,yt1,⋯,ytk∈NG(xμ) and not all yt1,⋯,ytk may be distinct. Suppose a neighbor of yt1,⋯,ytk divides a, then mxμk−1∈I(G)s.



Now suppose no neighbor of yt1,⋯,ytk divide a. Since myνk∈I(G)s we have


myνk=m′yt1⋯ytkyνk∈I(G)s=bf1⋯fswheref1,⋯,fs∈I(G),b∈S



(14)







We observe that m′ may be written divisible by many minimal monomial generators of I(G)s−k. We can take m′=ae1...es−k such that m′e1...es−k has smallest number of x variables in common with f1....fs.



It is clear that yνk must divide f1....fs, otherwise myνl∈I(G)s for some l<k and hence myνk−1∈I(G)s. Recall the no neighbor of yt1,⋯,ytk divides a. Thus we can assume that no neighbor of yν, divides a as that will make mxμk−1∈I(G)s. So without loss of generality we may assume for 1≤i≤k,fi=xuiyν where for every j, ej=xujyvj.



Now we observe that if any neighbor of yvi for 1≤i≤k divide a then, clearly, mxμk−1∈I(G)s. For, without loss of generality, say x0yv1 is an edge where x0 divides a. As xu1yν is an edge, so is xu1yt1 (by neighborhood properties). Thus we have m=(ax0)(x0yv1)e2....es−k(xu1yt1)....ytk∈I(G)s−k+1. Hence this will force mxμk−1∈I(G)s. So we assume no neighbor of yvi for 1≤i≤k divide a.



As there are s many x variables in f1⋯fs and k<s, some of the x variables of f1⋯fs divides a. We also have that no neighbor of any yti divides a and yνk divides f1⋯fs. Let fk+1=x0yvk+1 where x0 divides a and ek+1=xuk+1yvk+1. We may write m′=a′e1...ekfk+1ek+2....es−k where a′=(ax0xuk+1). But this is an expression of m′ with a′ having less number of x variables in common with f1...fs than a which is a contradiction. Thus, one of the neighbors of yvi for some 1≤i≤k divides a and hence m∈I(G)s. □





Lemma 1.

Let G be a bipartite graph and suppose that xμ∈V1 and yν∈V2 satisfies the neighborhood properties. Now assume m1,⋯,mk∈S are monomials of the same degree such that (m1+⋯+mk)(xμ−yν)∈I(G)s. Further suppose,


m1xμ=m2yν



(15)






mixμ=mi+1yνfor2≤i≤k−1



(16)






m1yν,mkxμ∈I(G)s



(17)




Then mj∈I(G)s for 1≤j≤k.





Proof. 

First, assume that NG(yν)={xν1,⋯,xνp}. We prove by induction on k. If k=1, then clearly the claim is true by Theorem 7. By induction, assume the claim is true for (m1+⋯+ml)(xμ−yν)∈I(G)s satisfying (15)–(17) and l≤k−1. Now suppose we have


(m1+⋯+mk)(xμ−yν)∈I(G)s








satisfying (15)–(17). We show that m1∈I(G)s. This will show that (m2+⋯+mk)(xμ−yν)∈I(G)s satisfying (15)–(17). Thus by induction hypothesis we have mj∈I(G)s for 2≤j≤k proving the claim.



From (15), we have m1=myν and m2=mxν where m∈S, a monomial. From (16), we have m3=m2xμyν=mxμ2yν. Subsequently, we show that


mi=mxμi−1yνi−2for2≤i≤k



(18)







Since m1yν∈I(G)s, we have m1∈I(G)s or m1=ae1⋯es−1xνt for some t∈{1,⋯,p} where NG(yν)={xν1,⋯,xνp}.



Suppose m1=ae1⋯es−1xν1. Since m1=myν, yν divides a or one of the ei’s. If yν divides a, then m1∈I(G)s.



Now suppose yν divides, say e1=xνbyν for some b∈{1,⋯,p}. Since m1=myν, we have m=ae2⋯es−1xν1xνb. Using this equality in (18), we have


mk=mxμk−1yνk−2=ae2⋯es−1xν1xνbxμk−1yνk−2











Since yν does not divide a, then yν divides some of the e1,⋯,es−k and hence we have k−2≤s−2 or k≤s. Without loss of generality, assume yν divides e2,⋯,ek−1. Thus


mk=aek⋯es−1xν1l1⋯xνplpxμk−1where∑j=1plj=k











Let u=aek⋯es−1xν1l1⋯xνplp. Now as mkxμ∈I(G)s, we have uxμk∈I(G)s. Also, notice that


uyνk=mkxμk−1yνk=myνk−2yνk=myν2=m1yν∈I(G)s











Since u is a monomial, we have u∈I(G)s, by Theorem 7. Now m1=uyνk−1∈I(G)s and hence we are done. □





We now prove one of the main results of this section. In this theorem, we attempt to rearrange the sum m1+⋯+mk into a configuration shown in the previous lemma.



Theorem 8.

Let G be a bipartite graph and suppose that xμ∈V1 and yν∈V2 satisfies the neighborhood properties. Then xμ−yν is an regular element on S/I(G)s for all s.





Proof. 

Consider (m1+⋯+mk)(xμ−yν)∈I(G)s where mi’s are monomials of the same degree. We prove m1,⋯,mk∈I(G)s by induction on k.



Suppose k=1 and m1(xμ−yν)=m1xμ−m1yν∈I(G)s. Thus m1xμ,m1yν∈I(G)s. Now we use Theorem 7, to show that m1∈I(G)s proving the base case of induction.



Suppose (m1+⋯+ml)(xμ−yν)∈I(G)s for l≤k−1 implies m1,⋯,ml∈I(G)s. Now consider


(m1+⋯+mk)(xμ−yν)=m1xμ−m1yν+m2xμ−m2yν+⋯+mkxμ−mkyν∈I(G)s.



(19)




where all mi’s are distinct. We show mi∈I(G)s for 1≤i≤k.



Observe that if m1xμ,m1yν∈I(G)s, then we have m1(xμ−yν)∈I(G)s and (m2+⋯+mk)(xμ−yν)∈I(G)s. Now we use induction hypothesis to show that mi∈I(G)s for 1≤i≤k.



Now we first consider the following configuration, i.e., after possible re-ordering of mi’s we have


m1xμ=m2yν



(20)






mixμ=mi+1yν,for2≤i≤k−1



(21)






mkxμ=m1yν



(22)







We refer to this case as the k-cancellation case. Using (20), we get m1=myν and m2=mxμ. Using this and (20), we get


mi=mxμi−1yνi−2for3≤i≤k



(23)







Thus mk=mxμk−1yνk−2. Using this description in (22) we get xμk=yνk, a contradiction.



Now consider (19). Without loss of generality, after possible reordering, assume that m1xμ=m2yν. If m1yν=m2xμ, then we get (m1+m2)(xμ−yν)∈I(G)s and (m3+⋯+mk)(xμ−yν)∈I(G)s. Now using induction hypothesis, we get mi∈I(G)s.



Suppose, if m1yν=m3xμ we introduce the re-ordering


m1(1)=m3,m2(1)=m1,m3(1)=m2mi(1)=mifor4≤i≤k−1











Notice that (m1+⋯+mk)(xμ−yν)=m1(1)+⋯+mk(1)(xμ−yν). Thus it is enough to show that mi(1)∈I(G)s. Under this re-ordering m1(1)xμ=m2(1)yν and m2(1)xμ=m3(1)yν. If m1(1)yν=m3(1)xμ, then we get (m1(1)+m2(1)+m3(1))(xμ−yν)∈I(G)s and (m4(1)+⋯+mk(1))(xμ−yν)∈I(G)s. Now using induction hypothesis, we get mi(1)∈I(G)s and hence mi∈I(G)s.



Now if m1(1)yν=m4(1)xμ, we introduce a new ordering


m1(2)=m4(1)ml(2)=ml−1(1)for2≤l≤4mq(2)=mq(1)for5≤q≤k











As before we consider if m1(2)yν=m4(2)xμ or m1(2)yν=m5(2)xμ and introduce new ordering, if necessary.



We now continue this process and arrive at the j-th re-ordering defined as follows


m1(j)=mj+2(j−1)ml(j)=ml−1(j−1)for2≤l≤j+2mq(j)=mq(j−1)forj+3≤q≤k








with the following configuration


mi(j)xμ=mi+1(j)yνfor1≤i≤j+1











First, suppose j=k−2. As before, we consider two cases m1(j)yν=mj+2(j)xμ or m1(j)yν≠mj+2(j)xμ. If m1(j)yν=mj+2(j)xμ, then we arrive at the k-cancellation case discussed above, which leads to a contradiction. So we have m1(j)yν≠mj+2(j)xμ which is discussed separately in Lemma 1, showing that mi∈I(G)s.



Now we assume j<k−2 and m1(j)yν≠mt(j)xμ for 2≤t≤k. If mj+2(j)xμ≠mt(j)yν for j+3≤t≤k, then we have (m1(j)+⋯+mj+2(j))(xμ−yν)∈I(G)s and (mj+2(j)+⋯+mk(j))(xμ−yν)∈I(G)s and we use induction hypothesis to conclude that mi(j)∈I(G)s and hence mi∈I(G)s for 1≤i≤k.



Thus assume mj+2(j)xμ=mt(j)yν for some j+3≤t≤k. Now we use the ordering


mj+3(j,1)=mt(j),mt(j,1)=mj+3(j)mi(j,1)=mi(j)fori≠j+3,t








with the configuration mi(j,1)xμ=mi+1(j,1)yν for 1≤i≤j+2.



Now if mj+3(j,1)xμ≠ma(j,1)yν for j+4≤a≤k, then (m1(j,1)+⋯+mj+3(j,1))(xμ−yν)∈I(G)s and (mj+4(j,1)+⋯+mk(j,1))(xμ−yν)∈I(G)s and we use induction hypothesis to conclude that mi(j,1)∈I(G)s and hence mi∈I(G)s for 1≤i≤k.



Now if mj+3(j,1)xμ=ma(j,1)yν for some j+4≤a≤k, then we use the ordering as before


mj+4(j,2)=ma(j,1),ma(j,2)=mj+4(j,1)mi(j,2)=mi(j,1)fori≠j+4,a








with the configuration mi(j,2)xμ=mi+1(j,2)yν for 1≤i≤j+3.



We continue in the same fashion to reach (j,l)-th re-ordering to get


(m1(j,l)+⋯mk(j,l))(xμ−yν)∈I(G)s








with the following configuration


mi(j,l)xμ=mi+1(j,l)yνfor1≤i≤j+l+1











Suppose j+l=k−2, then m1(j,l)yν,mk(j,l)xμ∈I(G)s. Now using Lemma 1 we have mi(j,l)∈I(G)s,1≤i≤k and hence mi∈I(G)s for 1≤i≤k.



If j+l<k−2, then there exists a term mb(j,l) such that mb(j,l)(xμ−yν)∈I(G)s and ∑t≠bmt(j,l)(xμ−yν)∈I(G)s and hence we are done by induction. □





Corollary 1.

Let G be a bipartite graph. Suppose xμ∈V1,yν∈V2. Then xμ and yν satisfies the neighborhood properties, if and only if xμ−yν is regular on S/I(G)s for all s.





Proof. 

Suppose xμ and yν satisfies the neighborhood properties, then xμ−yν is regular on S/I(G)s for all s by Theorem 8.



Now if xμ and yν does not satisfy the neighborhood properties, then there exists yp such that xμyp∈E(G) and xν1yp∉E(G) where xν1∈N(yν). Thus for all s and e=xν1yν1∈I(G),


es−1(xν1yp)(xμ−yν)=es−1((xν1yp)xμ−(xν1yp)yν)=es−1(xν1(ypxμ)−(xν1yν)yp)








Since ypxμ,xν1yν∈I(G), we get es−1(xν1yp)(xμ−yν)∈I(G)s. Thus xμ−yν is not a regular element on I(G)s. □
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