
mathematics

Article

Estimating the Major Cluster by Mean-Shift
with Updating Kernel

Ye Tian 1,* and Yasunari Yokota 2

1 Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu-shi 501-1193, Japan
2 Department of EECE, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu-shi 501-1193, Japan;

ykt@edu.gifu-u.ac.jp
* Correspondence: v3814003@edu.gifu-u.ac.jp

Received: 9 July 2019; Accepted: 20 August 2019; Published: 22 August 2019
����������
�������

Abstract: The mean-shift method is a convenient mode-seeking method. Using a principle of the
sample mean over an analysis window, or kernel, in a data space where samples are distributed
with bias toward the densest direction of sample from the kernel center, the mean-shift method is an
attempt to seek the densest point of samples, or the sample mode, iteratively. A smaller kernel leads
to convergence to a local mode that appears because of statistical fluctuation. A larger kernel leads to
estimation of a biased mode affected by other clusters, abnormal values, or outliers if they exist other
than in the major cluster. Therefore, optimal selection of the kernel size, which is designated as the
bandwidth in many reports of the literature, represents an important problem. As described herein,
assuming that the major cluster follows a Gaussian probability density distribution, and, assuming
that the outliers do not affect the sample mode of the major cluster, and, by adopting a Gaussian
kernel, we propose a new mean-shift by which both the mean vector and covariance matrix of the
major cluster are estimated in each iteration. Subsequently, the kernel size and shape are updated
adaptively. Numerical experiments indicate that the mean vector, covariance matrix, and the number
of samples of the major cluster can be estimated stably. Because the kernel shape can be adjusted not
only to an isotropic shape but also to an anisotropic shape according to the sample distribution, the
proposed method has higher estimation precision than the general mean-shift.

Keywords: kernel bandwidth and shape; mean-shift; major cluster; mode estimation; updating kernel

1. Introduction

When measuring a certain physical quantity, a few abnormal values, hereinafter designated
as outliers, are included among the normal measured values, thereby exacerbating measurement
noise. Frequently in science and engineering, some effort is necessary to estimate the true statistical
parameters of the physical quantity from these measured values and the included outliers. Because
the measurement noise generally follows a Gaussian distribution with mean zero, all samples from
the major cluster are Gaussian-distributed around the true value. The problem described above is
summarized to estimate the parameters of the major cluster, such as the mean, covariance matrix,
and the number of samples included in the major cluster.

Because the mean equals the mode in a Gaussian distribution, if the outliers do not affect the
sample mode of the major cluster, then the problem above can be replaced by a mode-seeking problem
of the major cluster. Fukunaga and Hostetler [1] first proposed the mean-shift method, which was
subsequently generalized by Cheng [2]. It is therefore known as a convenient iterative method for
mode-seeking. The mean-shift was shown to be equivalent to the method that seeks a local maximum
by the steepest gradient algorithm for the probability density distribution estimated using the kernel
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method [3,4]. Therefore, the bandwidth, which is the size of the used kernel, deeply affects both the
estimation accuracy and precision in the mean-shift as well as in kernel density estimation [5].

Usually in kernel density estimation, the bandwidth is determined such that the difference
between the true distribution and the estimated distribution is minimized [6–8]. In mean-shift, because
the normalized norm affects the convergence speed, a method for determining the bandwidth is
proposed for the isotropic kernel [9] and anisotropic kernel [10] such that the norm of the mean-shift
vector normalized by the bandwidth is maximized. A method for selecting the most stable bandwidth
was also proposed [10,11]. Moreover, mean-shift with bandwidth that varies depending on the
coordinate in data space was proposed [9,11]. Nevertheless, these methods entail high calculation
costs because they require some provisional estimate of the probability density distribution, which is
described as the pilot or initial estimate in some reports of the literature. Other theoretical studies of
mean-shift, such as convergence, have been further proven. Li [12] proved its convergence by further
imposing some commonly acceptable conditions. Ghassabeh [13] modified the mean-shift to guarantee
its convergence. Although the mean-shift has been used widely in many applications [14–16], the use
of bandwidth for mean-shift has been largely ignored in studies reported in the literature.

As described herein, we propose a new mean-shift method by which adopting the
multi-dimensional Gaussian kernel, the kernel bandwidth and shape are updated to fit the major
cluster size and shape in each iteration with no provisional estimation. We first derive a calculation
equation for calculating the variance (or covariance matrix) of a major cluster from the sample variance
in the kernel (or the sample covariance matrix in the multi-dimensional case) around the mode. Then,
as the update progresses in the mean-shift method, the variance (or covariance matrix) of a major
cluster is estimated using this calculation equation. In addition, the kernel bandwidth and shape are
adjusted adaptively based on this estimated value. Therefore, we propose the mean-shift method
with such an updating kernel. The proposed mean-shift requires no predetermination of the kernel
bandwidth as necessitated by the general mean-shift method.

This paper is organized as follows. A general mean-shift method is introduced in Section 2.
In Section 3, we propose the new mean-shift method in a one-dimensional case. Numerical experiments
are presented to evaluate the proposed mean-shift compared to the general mean-shift method in
Section 4. An explanation of applications and conclusion are presented respectively in Sections 5
and 6. In the appendices, we describe an extension of the general mean-shift method and the proposed
mean-shift to a multi-dimensional case.

2. General Mean-Shift Method

2.1. General Mean-Shift Method

Assuming that the major cluster of NN points follows a Gaussian distribution with mean µN
and standard deviation σN , we are considering the problem of estimating the mean µN of the major
cluster when a fewer outliers of NO points exist in the sample of N = NN + NO points. If the mode of
the sample is not biased from the mean µN under the influence of outliers, then the mean µN can be
estimated as the mode. The mean-shift is a simple and iterative method to estimate the mode of the
major cluster. Letting the sample be xn, n = 1, . . . , N, then the general mean-shift method is realized
using the following iterative process:

1. Letting the mean µx of sample xn, n = 1, . . . , N be the initial value of the mean estimator µ̂N of
major cluster, then

µ̂N ← µx. (1)

2. Consider a Gaussian distribution p(x; µW , σW) with the mean µW and standard deviation σW as
the kernel function in the value direction. Here, the mean µW of kernel function is found by the
mean estimator of major cluster

µW ← µ̂N . (2)
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The standard deviation σW is assigned to be an appropriate size as discussed later in Section 2.2.
3. Weight an, n = 1, . . . , N for each sample xn, n = 1, . . . , N weighted by such a Gaussian kernel is

an = 1
A

p(xn; µW , σW). (3)

However, A in Equation (3) above is a normalization coefficient for which the sum of the weight
an is equal to 1, as

A =
N
∑
k=1

p(xk; µW , σW). (4)

We use this weight an to calculate the sample mean µx with xn, n = 1, . . . , N as

µx =
N
∑
n=1

anxn. (5)

4. The value of mean estimator µ̂N of the major cluster is updated by the following equation:

µ̂N ← µx. (6)

5. If the variation of the value of mean estimator µ̂N is equal to or less than the predetermined fixed
value, then the update process is terminated. Otherwise, return to 2 and repeat the iteration.

2.2. Shortcomings and Solution of the General Mean-Shift Method

The general mean-shift method estimates the modes of the underlying probability density
function. From the definition of a probability density, if the random variable X of N data points
xi, i = 1, 2, 3, . . . , N in one-dimensional space R has density f , then

f (x) = lim
h→0

1
2h

P(x − h < X < x + h). (7)

For any given h (bin bandwidth or kernel bandwidth), we can estimate P(x − h < X < x + h) by the
proportion of the sample falling in the interval (x − h, x + h). Thus, a natural estimator f̂ of the density
is given by choosing a small h and setting

f̂ (x) = 1
2h

Nx

N
. (8)

Here, Nx denotes the number of samples falling in the interval (x − h, x + h). To express the
estimator more transparently, define the weight function ω(x; h) by

ω(x; h) =
⎧⎪⎪⎨⎪⎪⎩

1
2h ∣x∣ < h,

0 others.
(9)

The estimator can be expressed as below [17]:

f̂ (x) = 1
N

N
∑
i=1

ω(x − xi; h). (10)

Replace the weight function ω by a general kernel function K(x; σ) with standard deviation σ,
which satisfies the condition

∫
∞

−∞
K(x)dx = 1, (11)
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and the kernel estimator for the probability density function f̂ (x) at point x can be expressed as

f̂ (x) = 1
N

N
∑
i=1

K(x − xi; σ). (12)

The general mean-shift is an attempt to ascertain the local modes of density function f̂ (x),
which correspond to the zeros of the gradient ▽x f̂ (x) = 0. Therefore, the type of kernel function
K(x; σ) and the kernel bandwidth σ both directly affect the performance of general mean-shift method.
Fixing the type of kernel function to Gaussian kernel, we specifically examine the influence of the
pre-set of the kernel bandwidth in general mean-shift.

To confirm the influence of fixed kernel bandwidth on estimation accuracy in a general mean-shift
method, we set various fixed kernel bandwidths in advance. Here, we summarize the numerical and
experimentally obtained results for general mean-shift method as discussed in Section 4. Figure 1a
presents the bias error between the estimated value in a general mean-shift method and the true
value when we select various kernel bandwidths in advance. The horizontal axis shows a selection of
different kernel bandwidths. The vertical axes respectively show the bias error between the estimated
value for the mean and the true mean value, and the variance of the mean value. While selecting
different fixed kernel bandwidths, we estimated the mean of the major cluster, which is distributed
as shown in Figure 2 for 1000 trials. Furthermore, we computed the bias errors using the equation
described in Section 4.2. Figure 1a shows that, when we enlarge the fixed kernel bandwidth, the mean
estimator is more susceptible to outliers. The bias error in general mean-shift method increases.
Otherwise, when we decrease the kernel bandwidth, the number of samples involved in the mean
estimation decreases. The local mode can easily become the convergence point of the iterative process.
In addition, the bias error in general mean-shift method increases. The kernel bandwidth should be
set in the range of 0.5–1.5. As shown in Figure 1b, with enlargement of the kernel bandwidth, the
estimation variance in general mean-shift method decreases. Therefore, the optimal kernel bandwidth
is 1.5. Because the maximum value of these variances is very small and, because it does not exceed
0.06, if we select the kernel bandwidth within this range of 0.5–1.5, we can ensure the unbiasedness
and consistency of the mean estimator in general mean-shift method. However, not knowing the true
mean of the major cluster beforehand, we cannot calculate the bias error in general mean-shift method.
Therefore, we cannot choose the appropriate kernel bandwidth based on the comparison result shown
in Figure 1a. Indeed, the proper pre-set of the kernel bandwidth constitutes an important difficulty.

0 1 2 3 4 5

0

0.05

0.1

0.15

0 1 2 3 4 5

0

0.02

0.04

0.06

Figure 1. Bias error and estimation variance for various fixed kernel bandwidth σ2 in a general
mean-shift method.
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The optimal kernel bandwidth depends on the existence range of outliers, the number of samples
belonging to the major cluster and the distribution that the major cluster follows. In the absence of prior
knowledge, the kernel bandwidth is often fixed as appropriate to 1/2 the time of the standard deviation
of the whole sample when the whole sample contains the major cluster and the outliers in signal
processing [18]. For clustering in image processing or other multiple applications, it is still difficult to
preset the kernel bandwidth properly in a general mean-shift method. When the kernel bandwidth is
inappropriate, the kernel bandwidth becomes a factor that degrades the estimation accuracy.

As follows, based on the general mean-shift method, we propose a method to change the
kernel bandwidth adaptively in accordance with simultaneous estimation of the mean (for a
multi-dimensional case, the mean vector) and the standard deviation (for a multi-dimensional case,
the covariance matrix) of a major cluster at each iteration. We need not set the kernel bandwidth
properly in advance.

3. One-Dimensional Mean-Shift with Updating Kernel

3.1. Derivation of Major Cluster Standard Deviation σN from Sample Standard Deviation σx

Here, the Gaussian distribution with mean µ and standard deviation σ is represented by p(x; µ, σ).
It is abbreviated as p(x; σ) especially for µ = 0. We use the two following equations for the two
Gaussian distributions:

∫
∞

−∞
p(x; σW)p(x; σN)dx = 1

√
2π

√
σ2

W + σ2
N

, (13)

∫
∞

−∞
x2 p(x; σW)p(x; σN)dx =

σ2
Wσ2

N√
2π(σ2

W + σ2
N) 3

2
. (14)

We assume that the influence of outliers is small such that the sample mode is not biased from the
mean µN . If the general mean-shift method with the sufficiently small fixed kernel bandwidth decided
by the standard deviation of the kernel starts the iteration from an appropriate initial value, then the
influence of the outliers on estimation decreases gradually as the estimate converges. Therefore, it
is sufficient to consider only the samples from the major cluster xn, n = 1, . . . , NN when the estimate
converges to their true value. In addition, the mean µN of the major cluster and the mean µW of the
Gaussian kernel coincide near the convergence point. Even if coordinate transformation is performed
so that both are 0, generality is not lost. Therefore, we let µN = µW = 0 here for analysis. The variance
σ2

x of the sample xn, n = 1, . . . , NN weighted by an, n = 1, . . . , NN is

σ2
x =

NN

∑
n=1

anx2
n. (15)

Weight an is a Gaussian kernel given by Equations (3) and (4). In addition, N is replaced by NN .
The expected value of the sample variance σ2

x is calculated after substituting Equation (3) into
Equation (15) as

E[σ2
x] = E

⎡⎢⎢⎢⎢⎣

1
A

NN

∑
n=1

p(xn; σW)x2
n

⎤⎥⎥⎥⎥⎦
. (16)

The variance of
1
A

is sufficiently smaller than the dispersion of other parts. Therefore, it can be

approximated to the following equation based on the assumption that the major cluster follows a
Gaussian distribution, as

E[σ2
x] ≃

1
E[A]E

⎡⎢⎢⎢⎢⎣

NN

∑
n=1

p(xn; σW)x2
n

⎤⎥⎥⎥⎥⎦
. (17)
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The approximation is discussed later in Appendix B. Here, we calculate the expected value of A
by Equations (4) and (13) as

E[A] = E
⎡⎢⎢⎢⎢⎣

NN

∑
k=1

p(xk; σW)
⎤⎥⎥⎥⎥⎦

=
NN

∑
k=1

E[p(xk; σW)]

= NN ∫
∞

−∞
p(x; σW)p(x; σN)dx

= NN
√

2π
√

σ2
W + σ2

N

. (18)

The expected value of other part becomes

E
⎡⎢⎢⎢⎢⎣

NN

∑
n=1

p(xn; σW)x2
n

⎤⎥⎥⎥⎥⎦

=
NN

∑
n=1

E[p(x; σW)x2]

= NN ∫
∞

−∞
x2 p(x; σW)p(x; σN)dx

=
NNσ2

Wσ2
N√

2π(σ2
W + σ2

N)3/2 (19)

according to Equation (14). In other words, after being weighted by a Gaussian kernel with mean 0
and standard deviation σW , the expected value of variance σ2

x of the sample which follows a Gaussian
distribution with mean 0 and standard deviation σN is

E[σ2
x] =

σ2
Wσ2

N

σ2
W + σ2

N
(20)

according to Equations (18) and (19). Equation (20) above can be transformed to

σ2
N =

σ2
W E[σ2

x]
σ2

W − E[σ2
x]

. (21)

This expression shows that standard deviation σN can be estimated from the standard deviation
σx of the sample, which is weighted using a Gaussian kernel with mean 0 and standard deviation
σW as

σ̂N =
¿
ÁÁÀ σ2

Wσ2
x

σ2
W − σ2

x
. (22)

In addition, using Equation (18), the number NN of samples belonging to the major cluster can be
estimated as

N̂N = A
√

2π
√

σ2
W + σ̂2

N . (23)

Adaptive change of the standard deviation σW of the kernel related to the estimated value σ̂N of
the standard deviation is sufficient for each update because the mean µN of the major cluster and the
standard deviation σN can also be estimated. Specifically, the standard deviation σW of the kernel is
assigned to be r times the estimated value σ̂N , although it depends on the existence range of outliers.
We designate this r as a scale factor. Regarding appropriate r, we will examine this point in a numerical
experiment discussed later.
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3.2. Mean-Shift with Updating Kernel

Based on the discussion presented in Section 3.1, at each iteration of the general mean-shift
method, the standard deviation σN is estimated simultaneously in addition to the mean value µN .
Therefore, we propose a new mean-shift method that adaptively changes the standard deviation σW of
the kernel. The algorithm is summarized as presented below:

1. Let the mean µx of sample xn, n = 1, . . . , N be the initial value of the mean estimator µ̂N of the
major cluster and let standard deviation σx of this sample be the initial value of the standard
deviation estimator σN of the major cluster as

µ̂N ← µx, (24)

σ̂N ← σx. (25)

2. Consider a Gaussian distribution p(x; µW , σW) with mean µW and standard deviation σW as the
kernel function in the value direction. Here, the mean µW and the standard deviation σW are
given respectively by the estimated value µ̂N of the mean and the estimated value σ̂N of the
standard deviation of the major cluster:

µW ← µ̂N , (26)

σW ← rσ̂N . (27)

Here, mean µW and variance σW of the Gaussian kernel are not estimators, although they change
when the kernel updates.

3. Weight an, n = 1, . . . , N for each sample xn, n = 1, . . . , N weighted by such a Gaussian kernel
p(x; µW , σW) is calculated using Equations (3) and (4). We use this weight an to calculate the
sample mean µx and standard deviation σx with xn, n = 1, . . . , N as shown below:

µx =
N
∑
n=1

anxn, (28)

σx =

¿
ÁÁÀ N
∑
n=1

an(xn − µx)2. (29)

4. The values of mean estimator µ̂N , standard deviation estimator σ̂N , and number of samples
estimator N̂N of the sample are updated, respectively, by the following equations:

µ̂N ← µx, (30)

σ̂N ←
¿
ÁÁÀ σ2

Wσ2
x

σ2
W − σ2

x
, (31)

N̂N ← A
√

2π
√

σ2
W + σ̂2

N . (32)

5. If the variations of the values of these estimators are equal to or less than the predetermined fixed
value, then the update process is terminated. Otherwise, return to 2 and repeat the iteration.

4. Numerical Experiment

4.1. Update Process of Mean-Shift with an Updatable Kernel

For the proposed method, we use iteration to confirm the process by which the estimated values
of the mean vector, the covariance matrix, and the number of samples converge to true values of the
major cluster. Although no restriction is made of the dimension of data to which the proposed method
is applicable, to illustrate and explain the distribution of data and update process, two-dimensional
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data are targeted for analysis. Herein, we obtain the major cluster with NN = 3000 points generated
in two-dimensional normal distribution with the mean vector µN = (0, 0)T and variance covariance
matrix as

CN = (3 2
2 3

) .

The outliers with NO = 200 points are distributed uniformly within the range of
x1 ∈ [−2,−1], x2 ∈ [3, 4]. Figure 2 shows an example of the generated sample in (x1, x2) space. Symbol ●
in the figure represents the coordinates of each point. The points spreading in the central elliptical shape
belong to the major cluster. Other points distributed in a square shape on the upper left are outliers. In the
figure, the solid ellipse represents a contour line where 99% of the M-dimensional normal distribution
defined by the mean vector µN and the covariance matrix CN fall within it. Later, we present the mean
vector µN and covariance matrix CN, or their estimates.

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

Figure 2. Example of a sample set for numerical experiments.

In general, as discussed in Appendix C.2, the initial estimated value of the mean µ̂N and covariance
matrix ĈN for major cluster can be assigned respectively to the mean and covariance matrix of all
samples. However, we set the initial kernel having mean vector µ̂N = (−2, 3)T and covariance matrix

ĈN = ( 1.25 −0.75
−0.75 1.25

)

intentionally to be located and shaped sufficiently apart from the major cluster. To demonstrate how
the estimated value converges to the true value with updating, the scale factor is r = 1.0. The update
ends when it satisfies all conditions for which the sum of squares of the change amount µ̂N is 0.01 or
fewer, the sum of squares of the change amount of ĈN is 0.01 or fewer, and the square of the change
amount of N̂N is 30 or less.

As described earlier, the solid ellipse shown in Figure 3 represents the estimated value of mean
vector µ̂N , covariance matrix ĈN , and number N̂N of samples for each update in the proposed method.
In Figure 3, the estimated values µ̂N , ĈN , N̂N are shown to converge to the true values µN , CN , NN
corresponding to Figure 2 as the update progresses, although they start from more or less bad initial
values. Here, for the estimated value N̂N , we have accuracy to one decimal place.
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(c) Estimate after 2nd update
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(d) Estimate after 3rd update
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(e) Estimate after 4th update
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-5

0

5

(f) The last estimate

Figure 3. Updates of the estimated major cluster.

4.2. Influence of Kernel Bandwidth on Estimation Accuracy (Unbiasedness)

An exceedingly important property required for estimators is unbiasedness: a property by which
the expected value of the estimated value coincides with the true value. If no statistical bias in the
estimated value exists, then it represents that the estimation is accurate. Assuming that the parameter
is θ, we investigate the unbiasedness of the estimator θ̂. If parameter θ is a scalar, then the bias error is
the difference E[θ̂]− θ between the expected value and the true value θ of the estimator. Otherwise,
if parameter θ is a vector or matrix, then the bias error is the square root

√
∥E[θ̂]− θ∥2 of the sum of

squares over all the elements. It can be evaluated whether the bias error is zero. As explained below,
it demonstrates that the initial value of the kernel bandwidth has less influence on the unbiasedness of
the estimated value in the proposed method discussed in Appendix C than in the general mean-shift
method introduced in Appendix A.

The distributions that major cluster and outliers follow, the numbers of samples NN , NO, scale
factor r, and update ending condition are the same as those described in Section 4.1. The initial
estimated value of mean vector µ̂N is the mean vector of all samples. The initial estimated value of
covariance matrix is assigned to ĈN = σ2 I. In the general mean-shift method, the covariance matrix
of the kernel is CW = σ2 I. Under the conditions presented above, the mean vector µN , the covariance
matrix CN , and the number NN of samples are estimated using the general mean-shift method and
the proposed method. In addition, because it is impossible to obtain the expected value in numerical
experiments, the expected value is replaced by the average value of the estimated values for 1000 trials
that change the random number.

In the proposed method, σ2 is the initial value of the kernel bandwidth. It corresponds to the
pre-set value of the kernel bandwidth in a general mean-shift method. When this σ2 is changed
to various values, the bias errors of the estimated value of the mean vector µN , covariance matrix
CN , and number NN of samples are calculated. Results are presented respectively in Figure 4a–c.
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The horizontal axis shows the selection of different kernel bandwidth. The vertical axes respectively
show the bias errors for estimators µN , CN , and NN . In this figure, symbol ◯ corresponds to the
proposed method. The symbol △ represents the bias errors in a general mean-shift method. However,
because the covariance matrix and number of samples cannot be estimated in a general mean-shift
method, only the results obtained using the proposed method are shown in Figure 4b,c. The scale on
the vertical axis of the figures is fixed to represent 10% of errors at full scale. In the following figures,
the same scale applied to these figures will be used unless specified otherwise.

0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

Proposed method

General mean-shift method

0 1 2 3 4 5
0

0.5

1

0 1 2 3 4 5
-3

-2

-1

0

1

2

3
10

2

Figure 4. Bias errors for various initial kernel bandwidths σ2 in the proposed method and the general
mean-shift method.

Figure 4a shows that the bias error increases linearly and that the unbiasedness is lost when the
kernel bandwidth σ2 approximately exceeds the range of 0.5–1.5 represented by symbol ↓ in a general
mean-shift method because, as the kernel becomes larger, the outliers fall within the range of the
kernel, which greatly affects the mean estimation of the major cluster. For this reason, the proper set of
the kernel bandwidth is an important difficulty in a general mean-shift method. However, the kernel
bandwidth is adjusted according to the estimated value of covariance matrix of a major cluster at each
iteration in the proposed method. Therefore, it is less susceptible to the influence of initial value σ2.
Furthermore, in Figure 4b,c, it is the same situation in the estimations of covariance matrix CN and
number NN of samples.

While maintaining the ratio of the number NN of samples of major cluster and the number NO of
samples of the outliers to 3000:200 and changing the number N = NN + NO of samples from 1000 to
90,000, the variance of each estimate value of the mean vector µN , covariance matrix CN , and number
NN of samples are obtained using our proposed method, as shown in Figure 5. The horizontal axis
shows the selection of different numbers of samples corresponding to the whole samples. The vertical
axes respectively represent the bias errors for estimators µN , CN , and NN . Because the proposed
method is independent of the initial value σ2, the initial value σ2 is fixed to 1.5. Figure 5 shows that
these estimators are unbiased for a finite number of samples.
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Figure 5. Bias errors for various numbers N of samples in the proposed method.

4.3. Influence of the Scale Factor r Value on Estimation Accuracy

In the proposed method, we need not select the initial value of kernel bandwidth in advance
because the kernel bandwidth is changed adaptively. The pre-set of the initial value shows some
difficulty in influencing the estimation accuracy. Instead, the problem of optimal setting of the scale
factor r occurred. Scale factor r represents the ratio of the kernel bandwidth (standard deviation) to the
major cluster width (standard deviation). Therefore, the smaller the scale factor, the smaller the kernel
bandwidth (standard deviation) is set with respect to the major cluster width (standard deviation).
From the viewpoint of estimation accuracy, the kernel bandwidth (standard deviation) should be
sufficiently large but not cover the outliers. In other words, if the outliers exist at the distance from the
mode of major clusters more than three times the standard deviation of the major cluster, according
to three-sigma rule of thumb, the kernel bandwidth should be the same as the standard deviation of
major cluster, which means r = 1. Otherwise, if there are a certain number of outliers within a standard
deviation away from the mode of the major cluster, the kernel bandwidth is expected to be 1/3 of the
standard deviation of the major cluster, which means r = 1/3. If the distribution of the major cluster
and the outliers is specified completely, then it is possible to derive the theoretical formula of the
optimal scale factor r as a parameter. However, because the purpose is to estimate the distribution
of the major cluster and the outliers, then, even if a theoretical formula for scale factor r is derived,
it cannot be used for estimation. Derivation of the theoretical formula for scale factor r has no great
value. Therefore, as described below, we investigate the influence of the selected value of this scale
factor on the estimation accuracy.

The distributions that major cluster and outliers follow, number NN , NO of samples, and update
ending condition are the same as those in Section 4.1. As shown in Section 4.2, the initial values of
the estimated value of mean vector and covariance matrix µ̂N , ĈN are given, respectively, by the mean
vector and covariance matrix of the whole samples. We select scale factor r to be various values and
estimate the mean vector µN , covariance matrix CN , and number NN of samples using the proposed
method. The bias errors of each estimated value is presented in Figure 6a,c. The horizontal axis
represents the selection of various scale factors r. The vertical axes respectively represent the bias
errors for estimators µN , CN , and NN .
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Figure 6. Bias errors for various scale factors r in the proposed method.

Figure 6 shows that the bias errors of any estimate increases and that the unbiasedness is lost when
scale factor r is selected as a value larger than a certain value because, when the kernel bandwidth
increases, it becomes more susceptible to outliers, as with the general mean-shift method shown in
Figure 6. However, when scale factor r is selected as a small value, the bias error is increased extremely.
The unbiasedness is lost relative to the covariance matrix CN and number NN of samples, although it
is not readily apparent on mean vector µN . The reason for this is explainable as presented below.

If we select scale factor r as a value smaller than one, the kernel bandwidth becomes small
because of a lack of the practical number of samples that contribute to the estimation. For that
reason, the estimation precisions of mean vector µx and standard deviation σx,m are deteriorated.
The deterioration of this estimation accuracy results from the small number of samples. Consequently,
the estimated error has normality, but does not include bias error. As shown in Equation (A32),
the estimated value µ̂N of the mean vector is the sample mean vector µx. The estimation equation of
the standard deviation σ̂N and number N̂N of samples is a nonlinear function of the sample standard
deviation σx,m, as shown in Equations (A19) and (A20). In general, normality is lost by a nonlinear
transformation. Therefore, the estimation errors of both the standard deviation σ̂N and the number N̂N
of samples are converted to the bias errors by the nonlinear transformations, even if the estimation
error of the sample standard deviation σx,m had normality.

Figure 6 shows that the appropriate value of the scale factor r is in the range of 0.5 ≤ r ≤ 1.5,
but it depends on the characteristic of the target data. For example, the lower limit increases when the
number of samples is small. The upper limit decreases when the outliers approach a major cluster.
Comparing the bias error with the general mean-shift indicates that the selection of scale factor r need
not be the same as the situation of kernel bandwidth as shown in Figure 4 because the range in which
the bias error can be kept low is wide.

4.4. Verification of Consistency

The goodness of the estimator is evaluated by accuracy and precision. Accuracy is evaluated as the
bias error, as discussed in Section 4.2, whereas the precision is evaluated by the variance of estimated
values. Before comparing the estimation precision of a general mean-shift method with the proposed
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method, one must confirm the consistency of the estimated values in both methods. Consistency is an
important property required for the estimator. It indicates the characteristics by which the variance of
the estimated values approaches 0 as the number of samples used for estimation increases.

The distributions that major cluster and outliers follow, in addition to the update ending
conditions, are the same as those described in Section 4.1. As shown in Appendix C.2, the initial
values µ̂N , ĈN of the estimate values of the mean vector and covariance matrix are given respectively
by mean vector µx and covariance matrix Cx of the whole samples. To ensure that the estimator is
unbiased, we select the scale factor as r = 1.0 based on the discussion of the proposed method in
Section 4.3, and the kernel as CW = σ2 I, σ2 = 1.5 based on the discussion for a general mean-shift
method in Section 4.2.

While maintaining the ratio of the number NN of samples of major cluster and the number NO of
samples of the outliers to 3000 ∶ 200 and changing the number N = NN + NO of samples from 1000 to
90,000, the variance of each estimate value of the mean vector µN , covariance matrix CN , and number
NN of samples is obtained using both methods. The estimation variance is replaced by the sample
variance of each estimate for 1000 trials as the sample number changes. The estimation variances
Var[µ̂N], Var[ĈN], Var[N̂N] are shown in Figure 7a–c. The horizontal axis shows the logarithm
of various numbers of samples N̂N . The vertical axes respectively show logarithms for estimation
variances Var[µ̂N], Var[ĈN], Var[N̂N]. In this figure, symbol ◯ corresponds to the proposed method.
Symbol △ represents the general mean-shift method. Because the covariance matrix and number of
samples can not be estimated in the general mean-shift method, only the results obtained using the
proposed method are presented in Figure 7b,c.

3 3.2 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5
-4
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-1

Proposed method

General mean-shift method
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Figure 7. Variance of the estimates µ̂N , ĈN , N̂ for various numbers N of samples in the proposed
method and the general mean-shift method.

From Figure 7a–c, it is readily apparent that the variance Var[⋅]→ 0 for sample number N →∞.
Therefore, estimators µ̂N , ĈN , N̂N have consistency. Figure 7a–c are drawn as a logarithmic graph;
the slope should be −1 in fact. Therefore, the relation between the sample number of samples and the
estimation variance is approximated using a linear polynomial with the slope fixed at −1. The straight
line represented by the approximate linear polynomial is superimposed by a solid line in these figures.
These results demonstrate the validity of the approximation. Here, we simply define the estimation
variance as the 0-order coefficient of the approximate linear polynomial or the virtual estimation
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variance corresponding to sample number N = 1. Regarding to the estimation variance, we compare
the estimation precision of proposed method with the general mean-shift method.

4.5. Estimation Precisions of the Proposed and General Mean-Shift Methods

The distributions that major cluster and outliers follow, the number NN , NO of samples, and the
update ending condition are the same as those described in Section 4.1. As shown in Appendix C.2,
the initial values of the estimated value of mean vector and covariance matrix µ̂N , ĈN are given,
respectively, by the mean vector µx and covariance matrix Cx of the whole samples.

We select scale factor r to be various values and use the proposed method to estimate the mean
vector µN , covariance matrix CN , and number NN of samples. Figure 8a–c respectively present the
estimation variances corresponding to the estimated values of the mean vector µN , covariance matrix
CN , and number NN of samples. The horizontal axis shows the logarithm of various scale factor r.
The vertical axes respectively show the estimation variances Var[µ̂N], Var[ĈN], Var[N̂N]. Similarly,
letting the covariance matrix of kernel be CW = σ2 I, we estimate the mean vector µN using the general
mean-shift method while the kernel bandwidth σ2 is changed to various values. The estimation
variance of estimated value µ̂N is presented in Figure 9.

From Figure 8a–c, the estimation variance of each estimated value of the mean vector µN ,
covariance matrix CN , and number NN of samples decreases with respect to r, monotonically. If r
is small, then the kernel bandwidth decreases. The number of substantial points involved in the
estimation decreases. Therefore, the estimation precision deteriorates. On one hand, if r is large,
then the estimation precision decreases. Because bias error occurs as shown in Figure 6, it is not
desirable as an estimator. However, the estimation variance related to general mean-shift method
decreases monotonically with respect to kernel bandwidth σ2, as shown in Figure 9. The reason is
exactly the same as in the case of the proposed method.

Finally, the estimation precision of a general mean-shift method and that of the proposed method
are compared. Regarding the general mean-shift method, the estimation is unbiased if σ2 ≤ 1.5,
as shown in Figure 4. However, the estimation precision increases as σ2 becomes larger, as shown
in Figure 9. In the general mean-shift method, the optimal selected value of the kernel bandwidth
is σ2 = 1.5. The estimation variance at kernel bandwidth σ2 = 1.5 is read from Figure 9: its value is
shown by a horizontal dotted line in Figure 8a. In the proposed method, 0.5 ≤ r ≤ 1.5 is the suitable
range of the scale factor r. In this range, the estimation variance of the proposed method is half or
less than half of that of the general mean-shift method. The proposed method has higher estimation
precision than the general mean-shift method that has the optimal kernel bandwidth for the following
reason. In the general mean-shift method, the kernel shape is expressed as an isotopic shape because
the covariance matrix of the kernel is represented as a diagonal matrix in which all diagonal elements
are equal. Otherwise, in the proposed method, the kernel shape can take an arbitrary anisotropic shape
because the covariance matrix of the kernel can take an arbitrary matrix that satisfies the condition as a
covariance matrix. The practical number of samples that contribute to the estimation can be maximized
by adjusting the kernel shape to the distribution of samples.
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Figure 8. Estimating the variance of the estimates µ̂N , ĈN , N̂ for various scale factors r of the
proposed method.
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Figure 9. Estimating the variance of the estimate µ̂N for various kernel bandwidths σ2 in the general
mean-shift method.

4.6. Discussion

Numerical experiments in two-dimensions described in Sections 4.2, 4.3 and 4.4 yield results for
the major cluster and outlier model shown in Figure 2. The purpose of our numerical experiment
is to confirm whether the estimators (mean, covariance, number of sample of the major cluster) in
the proposed method are unbiased and consistent without a proper pre-set of kernel bandwidth.
If these estimators are consistent unbiased estimators, then the proposed method can achieve accurate
estimation of the mean, covariance, and the number of samples of the major cluster. We chose the
two-dimensional numerical experiment to observe the dynamic changes of the kernel more intuitively
during the iteration. The iteration process is shown in Figure 3. In the numerical experiments described
herein, the major cluster follows the Gaussian distribution. If the proposed method performs well on
other distributions, then the scope of application of the proposed method can be expected to expand.
We discuss the scope of application of the proposed method in two aspects as presented below.

For a one-dimensional signal processing field, the assumption of normality is not regarded as being
such a severe strong assumption. Yokota and Ye [19] proposed the radical root, or r-th root, transform
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of the power spectrum series that follows the chi-square distribution, such that the transformed
series follows a quasi-Gaussian distribution. Lotter and Vary [20] proposed a spectral amplitude
estimator with a parametric super-Gaussian speech model for approximating the probability density
distribution of the real speech spectral amplitudes. In fact, the parametric super-Gaussian distribution
can approximate the Rayleigh–Laplace–Gamma distribution or other distributions exactly. Ye and
Yokota [21] applied the radical root transformation to the super-Gaussian distributions. Thereby,
they confirmed that the super-Gaussian distribution after r-th radical root transformation can be
quasi-Gaussian distributed. By radical root transformation [21], the proposed method is applicable
for major clusters that follow different distributions other than a Gaussian distribution. However,
for clustering in image processing or other multiple dimensional applications, the major cluster
following a Gaussian distribution is truly a strong assumption.

In addition to the problem addressed in this paper, many methods exist to solve this problem
other than the mean-shift method. They have been discussed as described below. Under the normality
assumption, Grubbs’ test [22–24] and Thompson Tau test [25] are known as methods for testing
whether the sample farthest from the sample mean is an outlier. These tests are applied sequentially
from the samples that are outermost from the sample mean, but the number of outliers is only valid at
most to several. Moreover, applying the tests to multi-dimensional data are not easy. If the outliers
follow a Gaussian distribution and if the number of clusters in which the outliers are distributed is
known, then, by applying a Gaussian mixture model [26–28], the mean and covariance matrix of major
cluster can be estimated easily using the Expectation-maximization(EM) algorithm [29,30]. However,
such an assumption cannot be applied generally to the outliers.

In fact, selection of the kernel bandwidth is an important issue that strongly affects the result
of the general mean-shift algorithm compared to setting of the kernel type. Therefore, we only used
the Gaussian kernel to make a presumption here. However, there are many commonly used kernel
functions in addition to the Gaussian kernel, such as the Epanechnikov Kernel, the Uniform Kernel,
the Quartic Kernel, and the Triweight Kernel. Application of it to other kernel functions according to
the derivation of this article will undoubtedly make this research more comprehensive and general.
Such application is expected to be an important part of our future research.

5. Application

Considering a stochastic process x(t), the short-time Fourier spectrum centering on time t with a
suitable window length is denoted as X(t, f ). Here, f represents the frequency. Let X f (t) ≡ X(t, f )
be denoted as the spectrum series if frequency f is fixed. By applying the non-steady-state analysis
of the stochastic process, the spectrogram P(t, f ) = ∣X(t, f )∣2 denotes the power of the short-time
Fourier spectrum X(t, f ). Because the frequency f is fixed, Pf (t) will be designated as the power
spectrum series.

Yokota and Ye [19] proposed a power spectrum estimation method robust for sudden noise.
The method uses the radical root transformation to quasi-Gaussian distribution. The following
concludes the process of the noise estimation algorithm proposed by Yokota and Ye [19]:

(1) Obtainpower spectrogram P(t, f ) from the noisy signal. We chose a pulse code
modulation(PCM) recording of a noisy signal that contains a certain amount of sudden noise for
analysis and computes the spectrogram with a Hamming window length of 10 ms achieving a 50%
overlap between adjacent frames by short-time Fourier transformation. Figure 10a presents an example
of a noisy signal for analysis and the corresponding spectrogram.

(2) Perform the following process for each frequency f :
(2-1) Use the radical root transformation in the power spectrum series Pf (t) with the

transformation parameter r∗ = 3.314. Thereby, obtain the new quasi-Gaussian distributed power

spectrum series P1/r∗
f (t). Figure 10b portrays a histogram of the power spectrum series at f = 512 Hz

before the transformation.
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(2-2) Compute the mode value of transformed power spectrum series P1/r∗
f (t) by kernel density

estimation [5]. Then, put the mode value as the corresponding time average value Pnoise( f ) of the
noise power spectrum series. Figure 10c depicts a histogram of the transformed power spectrum series
at f = 512 Hz, the kernel density estimation [5] with proper kernel bandwidth and the major cluster
estimation using our proposed method.

(2-3) Compute the time average value P( f ) of the noise power spectrum series from the time
average value Pnoise( f ) as

P( f ) =
⎛
⎜⎜⎜⎜
⎝

Pnoise( f )

Γ( r∗ + 1
r∗

)

⎞
⎟⎟⎟⎟
⎠

r∗

. (33)

(3) Obtain P( f ) as an estimation of the noise power spectral density.
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Figure 10. (a) example of a noisy signal for analysis and the corresponding spectrogram; (b) histogram
of the power spectrum series of the noisy signal at f = 512 Hz; (c) histogram of the transformed power
spectrum series of the noisy signal at f = 512 Hz.

In the noise estimation algorithm [19], the mode estimation accuracy directly affects the noise
estimation result. As Figure 10c shows, kernel density estimation [5] can be replaced by our proposed
method for comparison. The proper pre-setting of kernel bandwidth is also important in kernel
density estimation [5]. It exhibits a strong influence on the resulting estimate similarly to the general
mean-shift method. To illustrate its effects, we obtained the noise power spectrum series from the
PCM recording, which is shown in Figure 10a, for analysis. Figure 11 portrays the relation between the
kernel bandwidth and kernel density estimation. The histogram shows the true density. The broken
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curve is under-smoothed because it includes too many spurious data artifacts arising from use of
0.000001 bandwidth, which is too small. The dotted curve is over-smoothed because using 0.0001
bandwidth obscures much of the underlying structure. The solid curve with 0.00003 bandwidth is
regarded as optimally smoothed because its density estimate is close to the true density.
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Figure 11. Relation between kernel bandwidth and kernel density estimation.

To assess the performance of the proposed method, general mean-shift method, and kernel density
estimation for a noise estimation algorithm [19], this study uses PCM recordings of air-conditioning
noise with some sudden noise, as shown in Figure 10a and without sudden noise, respectively, as test
data and the true value. Noisy signal data in PCM recordings are not compressed. They have no
power consumption. Figure 12 presents comparison results for noise estimation using the proposed
method and kernel estimation. Here, we preset the kernel bandwidth as 0.0001. As Figure 12 shows,
in the case in which an inappropriate kernel bandwidth is set in advance, noise estimation using our
proposed method closely approximates the true noise, but the estimation accuracy using the kernel
estimation is not high.
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Figure 12. Comparison of the proposed method to kernel estimation for noise estimation.

6. Conclusions

The study described in this paper has addressed the problem of proper pre-setting for the fixed
search kernel in a general mean-shift method. To improve the estimation accuracy, a new mean-shift
method was proposed in which the mean vector and covariance matrix of the major cluster are
estimated at each iteration. Then, the kernel bandwidth and shape are adjusted corresponding to
the estimates. In numerical experiments, we compared the estimation accuracy and precision of
the proposed method and of the general mean-shift method. The experimentally obtained results
demonstrate that the estimation accuracy and precision of the proposed mean-shift are higher than
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those of a general mean-shift method. Moreover, the proposed mean-shift can estimate the covariance
matrix and the number of samples of major clusters effectively and correctly. Neither can be estimated
using the general mean-shift method. These results were confirmed through formal experimentation,
the results of which indicated the superior performance of our method compared to that of the general
mean-shift method.
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Appendix A. General Mean-Shift for a Multi-Dimensional Situation

Even when the target for data are multi-dimensional, it is fundamentally the same as the
one-dimensional data. Sample xn, n = 1, . . . , N of the M-dimensional column vector includes the
major cluster of NN points and a few outliers. The major cluster follows an M-dimensional Gaussian
distribution with mean vector µN and covariance matrix CN . Here, the mode of the major cluster is
not biased from the mean vector µN under the influence of NO point outliers. The iteration process in
the multi-dimensional mean-shift method is the following:

1. Let the mean vector µx of sample xn, n = 1, . . . , N be the initial value of the mean estimator µ̂N of
the major cluster

µ̂N ← µx. (A1)

2. Consider a M-dimensional Gaussian distribution p(x; µW , CW) with mean vector µW and
covariance matrix CN as the kernel function in value direction. Here, the mean mean vector µW
of kernel function is ascertained by the mean estimator of major cluster

µW ← µ̂N . (A2)

In addition, covariance matrix CN is assigned to be an appropriate size as discussed in Section 2.2.
3. The weight an, n = 1, . . . , N for each sample xn, n = 1, . . . , N weighted by such a Gaussian kernel is

an = 1
A

p(xn; µW , CW). (A3)

However,

A =
N
∑
k=1

p(xk; µW , CW). (A4)

We use this weight an to calculate the sample mean vector µx with xn, n = 1, . . . , N as

µx =
N
∑
n=1

anxn. (A5)

4. The value of mean vector estimator µ̂N for the major cluster is updated using the
following equation:

µ̂N ← µx. (A6)

5. If the value variation of mean vector estimator µ̂N is equal to or less than the predetermined fixed
value, the update process is terminated. Otherwise, return to 2 and repeat the iteration.
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Appendix B. Proof of Equation (17)

Equation (16) can be rewritten as

E[Cx] = E

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
NN

NN

∑
n=1

p(xn; CW)x2
n

1
NN

NN

∑
k=1

p(xk; CW)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (A7)

The denominator
1

NN

NN

∑
k=1

p(xk; CW) and numerator
1

NN

NN

∑
n=1

p(xn; CW)x2
n are both random variables.

Obviously, if the standard deviation of the denominator is sufficiently small compared to the expected
value of the denominator, Equation (16) can be approximated as shown below because the denominator
can be regarded as a simple variable rather than a random variable

E[Cx] ≃
E
⎡⎢⎢⎢⎢⎣

1
NN

NN

∑
n=1

p(xn; CW)x2
n

⎤⎥⎥⎥⎥⎦

E
⎡⎢⎢⎢⎢⎣

1
NN

NN

∑
k=1

p(xk; CW)
⎤⎥⎥⎥⎥⎦

, (A8)

as shown in Equation (17). Hereafter, it is proved that the standard deviation can be as small as possible
with respect to the expected value of the denominator when the number of samples NN →∞.

Proof. The denominator on the right side of Equation (A7) has the form of

y = 1
NN

NN

∑
n=1

xn. (A9)

◻
The expected value E(y) and the standard deviation σ(y) are

E(y) = E(xn) > 0, (A10)

σ(y) = 1√
NN

σ(xn). (A11)

If the number NN of samples is sufficiently large, which means NN →∞, σ(y) for E(y) converges
to 0. p(xn; CW) is non-negative because it is a probability density distribution. That is, since the
random variable xn follows the probability density distribution f (x) defined by x ≥ 0, the expected
value E[xn] of xn is always positive. Regardless of the number of samples NN , it becomes E[y] = E[xn],
so that, with the number of samples NN →∞, the denominator can reduce the standard deviation as
much as possible relative to the expected value.

The expected values and standard deviations for various probability density distributions f (x)
defined by x ≥ 0 are presented in Table A1. The table shows that, for all probability density distributions
shown in this table, the standard deviation σ(xn) does not become larger than the expected value
E(xn) beyond the order. The same is probably true for other probability density distributions not listed
in this table. Therefore, corresponding to the number of samples NN = 100, the standard deviation
σ(y) can be about one-tenth of the expected value E(y). Practically speaking, Equation (A8), i.e., the
approximation of Equation (A7), holds.
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Table A1. Expected value and standard deviation of probability density distribution f (x) defined
by x ≥ 0.

f(x) Expectation S.D.
gamma kθ

√

kθ

χ2 k
√

2k
exponential 1/λ 1/λ

Erlang kµ
√

kµ

Rayleigh σ
√

π/2 σ
√

2−π/2

log-normal eµ+σ2/2 eµ+σ2/2√eσ2
− 1

Pareto
ab

a − 1

√

ab
(a − 1)

√

a − 2

Appendix C. Multi-Dimensional Mean-Shift with Updating Kernel

Appendix C.1. Derivation of Standard Deviation of a Major Cluster from the Sample

Here, we extend derivation of the estimated value for standard deviation σN in the
one-dimensional derived in Section 3.1 to multi-dimensional. The major cluster is assumed to follow a
multi-dimensional (M-dimensional) normal distribution. Although the covariance matrix generally
does not become a diagonal matrix, it is possible to re-coordinate the coordinate axes so that the
covariance matrix becomes a diagonal matrix by appropriate orthogonal transformation. Furthermore,
the coordinate axes are shifted such that the mean vector becomes a zero vector. In this section,
we consider the variable (x1, . . . , xM) in such a transformed coordinate system. We let the variables be
x = (x1, . . . , xM)T and denote the standard deviation of each variable by σN = (σN,1, . . . , σN,M)T . On the
newly revised coordinate axes, because the covariance is zero, a M-dimensional normal distribution is
represented as a direct product of the one-dimensional normal distribution of each variable as

p(x; σN) =
M
∏
m=1

p(xm; σN,m). (A12)

The kernel function in the value direction is also assumed to be a Gaussian distribution with a
mean zero vector and a diagonal covariance matrix. Because the standard deviation of each variable is
σW = (σW,1, . . . , σW,M)T , the Gaussian distribution of kernel function is

p(x; σW) =
M
∏
m=1

p(xm; σW,m). (A13)

Using this Gaussian kernel, the weight an, n = 1, . . . , NN for the sample xn = (x1,n, . . . , xM,n)T ,
n = 1, . . . , NN can be denoted as

an = 1
A

p(xn; σW). (A14)

However, A in the above equation is

A =
NN

∑
k=1

p(xk; σW). (A15)

The sample variance σ2
x,m weighted by an is

σ2
x,m =

NN

∑
n=1

anx2
m,n, m = 1, . . . , M. (A16)
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For the same reason, under the one-dimensional case, by substituting Equation (A14) into
Equation (A16), the expected value of the sample variance σ2

x,m can be approximated as

E[σ2
x,m] ≃ 1

E[A]E
⎡⎢⎢⎢⎢⎣

NN

∑
n=1

p(xn; σW)x2
m,n

⎤⎥⎥⎥⎥⎦
. (A17)

Applying Equation (A12) to Equation (A15) and using Equation (13), the expected value of A is
found as

E[A] = E
⎡⎢⎢⎢⎢⎣

NN

∑
k=1

p(xk; σW)
⎤⎥⎥⎥⎥⎦

=
NN

∑
k=1

E[p(xk; σW)]

= NN

M
∏
j=1
∫

∞
−∞

p(xj; σW,j)p(xj; σN,j)dxj

= NN

(2π)M/2
M
∏
j=1

(σ2
W,j + σ2

N,j)−1/2, (A18)

while using Equation (14), the remainder of Equation (A17) is

E
⎡⎢⎢⎢⎢⎣

NN

∑
n=1

p(xn; σW)x2
m,n

⎤⎥⎥⎥⎥⎦

=
NN

∑
n=1

E[p(xn; σW)x2
m,n]

= NN

M
∏
j=1
∫

∞
−∞

x2
m p(xj; σW,j)p(xj; σN,j)dxj

=
σ2

W,mσ2
N,m

σ2
W,m + σ2

N,m

NN

(2π)M/2
M
∏
j=1

(σ2
W,j + σ2

N,j)−1/2.

(A19)

That is, according to Equation (A18) and Equation (A19), Equation (A17) becomes

E[σ2
x,m] =

σ2
W,mσ2

N,m

σ2
W,m + σ2

N,m
. (A20)

The equation above can be transformed to

σ2
N,m =

σ2
W,mE[σ2

x,m]
σ2

W,m − E[σ2
x,m]

. (A21)

The standard deviation σN,m of a major cluster can be estimated as

σ̂N,m =

¿
ÁÁÁÀ

σ2
W,mσ2

x,m

σ2
W,m − σ2

x,m
, (A22)
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when using the standard deviation σx,m of the sample weighted with a Gaussian kernel with standard
deviation σW . Furthermore, using Equation (A18), we can estimate the number NN of samples
belonging to a major cluster as

N̂N = A(2π)M/2 M
∏
j=1

(σ2
W,j + σ̂2

N,j)1/2. (A23)

The standard deviation σW of the Gaussian kernel is assigned adaptively as r times the estimated
value σ̂N of the standard deviation at each iteration. The appropriate value of the scale factor r is
discussed later in relation to a numerical experiment.

Appendix C.2. Mean-Shift Method with Updating Kernel

1. The mean vector µx and the covariance matrix Cx of the whole samples are determined using the
following equations:

µx = 1
N

N
∑
n=1

xn, (A24)

Cx = 1
N

N
∑
n=1

(xn − µx)(xn − µx)T . (A25)

The initial values of the mean vector µ̂N and the covariance matrix ĈN of the major cluster are
assigned as

µ̂N ← µx, (A26)

ĈN ← Cx. (A27)

2. One can consider a multi-dimensional Gaussian distribution p(x; µW , CW) with mean vector µW
and covariance matrix CW as the kernel function in the value direction. Here, the mean vector µW
and covariance matrix CW of the kernel function are determined as

µW ← µ̂N , (A28)

CW ← r2ĈN . (A29)

Actually, r2 in the above equation is derived from the fact that the covariance matrix has the
squared order of the standard deviation.

3. Weight an for each sample xn weighted by such a Gaussian kernel is calculated using
Equations (A3) and (A4). The mean vector µx and the covariance matrix Cx are determined
using the following equations:

µx =
N
∑
n=1

anxn, (A30)

Cx =
N
∑
n=1

an(xn − µx)(xn − µx)T . (A31)

4. The value of mean vector estimator µ̂N is updated using the following equation:

µ̂N ← µx. (A32)

Let
CW = VWΛWV T

W (A33)
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be an eigenvalue decomposition of the covariance matrix CW , which can be represented as
a symmetric matrix of the kernel. The diagonal elements of the diagonalized matrix ΛW are
eigenvalues of CW ; they represent the variances σ2

W,1, . . . , σ2
W,M along the directions represented

by each of the column vectors of orthogonal matrix VW . In addition, the diagonal element of

Λx = V T
WCxVW (A34)

is the variance σ2
x,1, . . . , σ2

x,M of VW in the column vector direction in the sample covariance matrix
Cx. According to Equation (A20), we can estimate the number NN of samples belonging to
the major cluster by the standard deviation σN,1, . . . , σN,M, which is obtained by σ2

W,1, . . . , σ2
W,M

and σ2
x,1, . . . , σ2

x,M in Equation (A19). Let Λ̂N be the diagonal matrix that has the estimated
σ̂N,1, . . . , σ̂N,M as the diagonal elements. Using Λ̂N , the covariance matrix ĈN is updated with the
following equation:

ĈN ← VWΛ̂NV T
W . (A35)

The estimated value N̂N of the number of samples belonging to a major cluster is updated using
the following equation:

N̂N ← A(2π)M/2 M
∏
j=1

(σ2
W,j + σ̂2

N,j)1/2. (A36)

5. If the value variations of µ̂N , ĈN , N̂N are equal to or less than the predetermined fixed value,
then the update process is terminated. Otherwise, return to 2 and repeat the iteration.
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