Strong Convergence of a New Generalized Viscosity Implicit Rule and Some Applications in Hilbert Space
Abstract
:1. Introduction
2. Preliminaries
- (1)
- Nonexpansive if ∀.
- (2)
- Contraction if there exist a constant such that , ∀.
- (3)
- α-averaged if there exist a constant and a nonexpansive mapping S such that .
- (4)
- θ-inverse strongly monotone (for short, θ-ism) if there exists such that
- (5)
- Firmly nonexpansive if ∀.
3. Main Results
- (i)
- , ;
- (ii)
- ;
- (iii)
- , for all ; and
- (iv)
- for all sufficiently large n, for some .
4. Applications
4.1. New General System of Generalized Equilibrium Problems
- (1)
- (2)
- (3)
- (4)
- (5)
- (6)
- (7)
- (8)
- (P1) for all ;
- (P2) is monotone, i.e., for all ;
- (P3) for all ; and
- (P4) for each fixed , is a convex and lower semicontinuous function.
- (a)
- is a single valued map;
- (b)
- is firmly nonexpansive;
- (c)
- ; and
- (d)
- is closed and convex.
4.2. Constrained Multiple-Set Split Convex Feasibility Problem (CMSSCFP)
- (i)
- ;
- (ii)
- ; and
- (iii)
- , .
4.3. Monotone Inclusion and Fixed Point Problem
- (i)
- (ii)
- ; and
- (iii)
- for all .
4.4. Convex Minimization Problem
- (i)
- and
- (ii)
- .
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
References
- Blatt, D.; Hero, A.O., III. Energy based sensor network source localization via projection onto convex sets (POCS). IEEE Trans. Signal Process. 2006, 54, 3614–3619. [Google Scholar] [CrossRef]
- Censor, Y.; Altschuler, M.D.; Powlis, W.D. On the use of Cimmino’s simultaneous projections method for computing a solution of the inverse problem in radiation therapy treatment planning. Inverse Probl. 1988, 4, 607–623. [Google Scholar] [CrossRef]
- Herman, G.T. Fundamentals of Computerized Tomography: Image Reconstruction from Projections, 2nd ed.; Springer: London, UK, 2009. [Google Scholar]
- Combettes, P.L. The convex feasibility problem in image recovery. Adv. Imaging Electron. Phys. 1996, 95, 155–270. [Google Scholar]
- Censor, Y.; Elfving, T.; Kopf, N.; Bortfeld, T. The multiple-sets split feasibility problem and its applications for inverse problems. Inverse Probl. 2005, 21, 2071–2084. [Google Scholar] [CrossRef] [Green Version]
- Buong, N. Iterative algorithms for the multiple-sets split feasibility problem in Hilbert spaces. Numer. Algorithms 2017, 76, 783–798. [Google Scholar] [CrossRef]
- Masad, E.; Reich, S. A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 2007, 8, 367–371. [Google Scholar]
- Yao, Y.; Postolache, M.; Zhu, Z. Gradient methods with selection technique for the multiple-sets split feasibility problem. Optimization 2019, 1–3. [Google Scholar] [CrossRef]
- Yao, Y.; Liou, Y.C.; Postolache, M. Self-adaptive algorithms for the split problem of the demicontractive operators. Optimization 2018, 67, 1309–1319. [Google Scholar] [CrossRef]
- Yao, Y.; Yao, J.C.; Liou, Y.C.; Postolache, M. Iterative algorithms for split common fixed points of demicontractive operators without priori knowledge of operator norms. Carpathian J. Math. 2018, 34, 459–466. [Google Scholar]
- Yao, Y.; Postolache, M.; Qin, X.; Yao, J.C. Iterative algorithms for the proximal split feasibility problem. Univ. Politeh. Buch. Ser. A 2018, 80, 37–44. [Google Scholar]
- Yao, Y.; Leng, L.; Postolache, M.; Zheng, X. Mann-type iteration method for solving the split common fixed point problem. J. Nonlinear Convex Anal. 2017, 18, 875–882. [Google Scholar]
- Yao, Y.; Agarwal, R.P.; Postolache, M.; Liu, Y.C. Algorithms with strong convergence for the split common solution of the feasibility problem and fixed point problem. Fixed Point Theory Appl. 2014, 2014, 183. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Postolache, M.; Liou, Y.C. Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. 2013, 2013, 201. [Google Scholar] [CrossRef] [Green Version]
- Blum, E.; Oettli, W. From optimization and variational inequalities to equilibrium problems. Math. Student 1994, 63, 123–145. [Google Scholar]
- Daniele, P.; Giannessi, F.; Maugeri, A. Equilibrium Problems and Variational Models; Kluwer: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Facchinei, F.; Pang, J.S. Finite-Dimensional Variational Inequalities and Complementarity Problems; Springer: Berlin, Germany, 2002. [Google Scholar]
- Ceng, L.C.; Yao, J.C. A relaxed extragradient-likemethod for a generalized mixed equilibrium problem, a general system of generalized equilibria and a fixed point problem. Nonlinear Anal. 2010, 72, 1922–1937. [Google Scholar] [CrossRef]
- Bnouhachem, A. An iterative algorithm for system of generalized equilbrium problems and fixed point problem. Fixed Point Theory Appl. 2014, 2014, 235. [Google Scholar] [CrossRef]
- Ceng, L.C.; Ansari, Q.H.; Schaible, S.; Yao, J.C. Iterative methods for generalized equilibrium problems, systems of general generalized equilibrium problems and fixed point problems for nonexpansive mappings in Hilbert spaces. Fixed Point Theory 2011, 12, 293–308. [Google Scholar]
- Ceng, L.C.; Pang, C.T.; Wen, C.F. Implicit and explicit iterative methods for mixed equilibria with constraints of system of generalized equilibria and hierarchical fixed point problem. J. Inequal. Appl. 2015, 2015, 280. [Google Scholar] [CrossRef] [Green Version]
- Ceng, L.C.; Ansari, Q.H.; Schaible, S. Hybrid extragradient-like methods for generalized mixed equilibrium problems, system of generalized equilibrium problems and optimization problems. J. Glob. Optim. 2012, 53, 69–96. [Google Scholar] [CrossRef]
- Ceng, L.C.; Latif, A.; Al-Mazrooei, A.E. Iterative algorithms for systems of generalized equilibrium problems with the constraints of variational inclusion and fixed point problems. Abstr. Appl. Anal. 2014, 2014, 1–24. [Google Scholar] [CrossRef]
- Dadashi, V.; Postolache, M. Forward-backward splitting algorithm for fixed point problems and zeros of the sum of monotone operators. Arab. J. Math. 2019. [Google Scholar] [CrossRef]
- Cholamjiak, W.; Cholamjiak, P.; Suantai, S. An inertial forward-backward splitting method for solving inclusion problems in Hilbert spaces. J. Fixed Point Theory Appl. 2018, 20, 42. [Google Scholar] [CrossRef]
- Yuying, T.; Plubbtieng, S. Strong convergence theorem by hybrid and shrinking projection methods for sum of two monotone operators. J. Inequal. Appl. 2017, 2017, 72. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.S.; Wen, C.F.; Yao, J.C. Generalized viscosity implicit rules for solving quasi-inclusion problems of accretive operators in Banach spaces. Optimization 2017, 66, 1105–1117. [Google Scholar] [CrossRef]
- Nandal, A.; Chugh, R.; Postolache, M. Iteration process for fixed point problems and zeros of maximal monotone operators. Symmetry 2019, 11, 655. [Google Scholar] [CrossRef]
- He, J.H. Variational iteration method: A kind of non-linear analytical technique: Some examples. Int. J. Non-Linear Mech. 1999, 34, 699–708. [Google Scholar] [CrossRef]
- He, J.H.; Wu, X.H. Variational iteration method: new development and applications. Comput. Math. Appl. 2007, 54, 881–894. [Google Scholar] [CrossRef]
- He, J.H. A variational iteration approach to nonlinear problems and its applications. Mech. Appl. 1998, 20, 30–31. [Google Scholar]
- Khuri, S.A.; Sayfy, A. Variational iteration method: Green’s functions and fixed point iterations perspective. Appl. Math. Lett. 2014, 32, 28–34. [Google Scholar] [CrossRef]
- He, J.H.; Ji, F.Y. Taylor series solution for Lane-Emden equation. J. Math. Chem. 2019, 57, 1932–1934. [Google Scholar] [CrossRef]
- Auzinger, W.; Frank, R. Asymptotic error expansions for stiff equations: An analysis for the implicit midpoint and trapezoidal rules in the strongly stiff case. Numer. Math. 1989, 56, 469–499. [Google Scholar] [CrossRef]
- Deuflhard, P. Recent progress in extrapolation methods for ordinary differential equations. SIAM Rev. 1985, 27, 505–535. [Google Scholar] [CrossRef]
- Bader, G.; Deuflhard, P. A semi-implicit mid-point rule for stiff systems of ordinary differential equations. Numer. Math. 1983, 41, 373–398. [Google Scholar] [CrossRef]
- Veldhuxzen, M.V. Asymptotic expansions of the global error for the implicit midpoint rule (stiff case). Computing 1984, 33, 185–192. [Google Scholar] [CrossRef]
- Somalia, S. Implicit midpoint rule to the nonlinear degenerate boundary value problems. Int. J. Comput. Math. 2002, 79, 327–332. [Google Scholar] [CrossRef]
- Schneider, C. Analysis of the linearly implicit mid-point rule for differential-algebra equations. Electron. Trans. Numer. Anal. 1993, 1, 1–10. [Google Scholar]
- Alghamdi, M.A.; Alghamdi, M.A.; Shahzad, N.; Xu, H.K. The implicit midpoint rule for nonexpansive mappings. Fixed Point Theory Appl. 2014, 96, 1–9. [Google Scholar] [CrossRef]
- Xu, H.K.; Alghamdi, M.A.; Shahzad, N. The viscosity technique for the implicit midpoint rule of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl. 2015, 2015, 41. [Google Scholar] [CrossRef] [Green Version]
- Ke, Y.; Ma, C. The generalized viscosity implicit rules of nonexpansive mappings in Hilbert spaces. Fixed Point Theory Appl. 2015, 2015, 190. [Google Scholar] [CrossRef]
- Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer: New York, NY, USA, 2011. [Google Scholar]
- Aoyama, K.; Kimura, Y.; Takahashi, W.; Toyoda, M. On a strongly nonexpansive sequence in Hilbert spaces. J. Nonlinear Convex Anal. 2007, 8, 471–489. [Google Scholar]
- Bruck, R.E.; Reich, S. Nonexpansive projections and resolvents of accretive operators in Banach spaces. Houston J. Math. 1977, 3, 459–470. [Google Scholar]
- Xu, H.K. Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 2002, 66, 240–256. [Google Scholar] [CrossRef]
- Byrne, C. A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 2004, 20, 103–120. [Google Scholar] [CrossRef]
- Geobel, K.; Kirk, W.A. Topics on Metric Fixed-Point Theory; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Denkowski, Z.; Migorski, S.; Papageorgiou, N.S. An Introduction to Nonlinear Analysis: Applications; Springer: New York, NY, USA, 2003. [Google Scholar]
- He, J.H. Homotopy perturbation technique. Comput. Meth. Appl. Mech. Eng. 1999, 178, 257–262. [Google Scholar] [CrossRef]
- He, J.H. A coupling method of homotopy technique and a perturbation technique for non linear problems. Int. J. Nonlinear Mech. 2000, 35, 37–43. [Google Scholar] [CrossRef]
- Mainge, P.E. Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization. Set-Valued Anal. 2008, 16, 899–912. [Google Scholar] [CrossRef]
- Takahashi, S.; Takahashi, W. Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal. 2008, 69, 1025–1033. [Google Scholar] [CrossRef]
- Combettes, P.L.; Hirstoaga, S.A. Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal. 2005, 6, 117–136. [Google Scholar]
- Ceng, L.C.; Wang, C.Y.; Yao, J.C. Strong convergence theorems by a relaxed extragradient method for a general system of variational inequalities. Math. Meth. Oper. Res. 2008, 67, 375–390. [Google Scholar] [CrossRef]
- Verma, R.U. On a new system of nonlinear variational inequalities and associated iterative algorithms. Math. Sci. Res. Hot-line 1999, 3, 65–68. [Google Scholar]
- Baillon, J.B.; Haddad, G. Quelques proprietes des operateurs angle-bornes et cycliquement monotones. Isr. J. Math. 1977, 26, 137–150. [Google Scholar] [CrossRef]
- Rockafellar, R.T. On the maximal monotonicity of subdifferential mappings. Pac. J. Math. 1970, 33, 209–216. [Google Scholar] [CrossRef] [Green Version]
- He, J.H. Fractal calculus and its geometrical explanation. Results Phys. 2018, 10, 272–276. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Postolache, M.; Nandal, A.; Chugh, R. Strong Convergence of a New Generalized Viscosity Implicit Rule and Some Applications in Hilbert Space. Mathematics 2019, 7, 773. https://doi.org/10.3390/math7090773
Postolache M, Nandal A, Chugh R. Strong Convergence of a New Generalized Viscosity Implicit Rule and Some Applications in Hilbert Space. Mathematics. 2019; 7(9):773. https://doi.org/10.3390/math7090773
Chicago/Turabian StylePostolache, Mihai, Ashish Nandal, and Renu Chugh. 2019. "Strong Convergence of a New Generalized Viscosity Implicit Rule and Some Applications in Hilbert Space" Mathematics 7, no. 9: 773. https://doi.org/10.3390/math7090773
APA StylePostolache, M., Nandal, A., & Chugh, R. (2019). Strong Convergence of a New Generalized Viscosity Implicit Rule and Some Applications in Hilbert Space. Mathematics, 7(9), 773. https://doi.org/10.3390/math7090773