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Abstract: A graph G is uniquely k-colorable if the chromatic number of G is k and G has only one
k-coloring up to the permutation of the colors. For a plane graph G, two faces f; and f, of G are
adjacent (i, j)-faces if d(f1) = 1,d(f2) = j, and f; and f, have a common edge, where d(f) is the degree
of a face f. In this paper, we prove that every uniquely three-colorable plane graph has adjacent
(3,k)-faces, where k < 5. The bound of five for k is the best possible. Furthermore, we prove that
there exists a class of uniquely three-colorable plane graphs having neither adjacent (3, i)-faces nor
adjacent (3, j)-faces, where i, j are fixed in {3,4,5} and i # j. One of our constructions implies that
there exists an infinite family of edge-critical uniquely three-colorable plane graphs with n vertices
and Zn — 4! edges, where n(> 11) is odd and n =2 (mod 3).

Keywords: plane graph; unique coloring; uniquely three-colorable plane graph; construction;
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1. Introduction

Graph coloring is one of the most studied problems in graph theory, because it has many important
applications [1-3]. The main aim of the problem is to assign colors to the elements of a graph, such as
vertices, subject to certain constraints.

For a plane graph G, V(G), E(G), and F(G) are the sets of vertices, edges, and faces of G,
respectively. The degree of a vertex v € V(G), denoted by d(v), is the number of neighbors of v in G.
The degree of a face f € F(G), denoted by dg(f), is the number of edges in its boundary, cut edges
being counted twice. When no confusion can arise, dg(v) and dg(f) are simplified as d(v) and d(f),
respectively. A face f is a k-face if d(f) = k and a k™ -face if d(f) > k. Two faces f; and f, of G are
adjacent (i, j)-faces if d(f1) =i, d(f2) = j, and f; and f, have at least one common edge. Two distinct
paths of G are internally disjoint if they have no internal vertices in common. For other terminologies
and notations in graph theory, we refer to [4].

A k-coloring of a graph G is an assignment of k colors to the vertices of G such that no two adjacent
vertices are assigned the same color. A graph G is k-colorable if G admits a k-coloring. The chromatic
number of G, denoted by x(G), is the minimum number k such that G is k-colorable. A graph G is
uniquely k-colorable if x(G) = k and G has only one k-coloring up to the permutation of the colors,
where the coloring is called a unique k-coloring of G. In other words, all k-colorings of G induce the
same partition of V(G) into k independent sets, in which an independent set is called a color class of G.
In addition, uniquely colorable graphs may be defined in terms of their chromatic polynomials, which
was initiated by Birkhoff [5] for planar graphs in 1912 and for general graphs by Whitney [6] in 1932.
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A graph G is uniquely k-colorable if and only if its chromatic polynomial is k!. For a discussion of
chromatic polynomials, see Read [7].

Uniquely colorable graphs were first studied by Harary and Cartwright [8] in 1968. They proved
the following theorem.

Theorem 1 (Harary and Cartwright [8]). Let G be a uniquely k-colorable graph. Then, for any unique
k-coloring of G, the subgraph induced by the union of any two color classes is connected.

As a corollary of Theorem 1, it can be seen that a uniquely k-colorable graph G has at least
(k—1)|V(G)| — (72() edges. There are many references on uniquely colorable graphs [9-13].

Dailey [14] proved that the problem of determining whether a graph G is uniquely colorable
is NP-complete. However, it is still open for the case of planar graphs. Therefore, it is important to
characterize the structure of uniquely colorable planar graphs.

Chartrand and Geller [10] in 1969 started to study uniquely colorable planar graphs. They proved
that uniquely three-colorable planar graphs with at least four vertices contain at least two triangles,
uniquely four-colorable planar graphs are maximal planar graphs, and uniquely five-colorable planar
graphs do not exist. Aksionov [15] in 1977 improved the lower bound for the number of triangles
in a uniquely three-colorable planar graph. He proved that a uniquely three-colorable planar graph
with at least five vertices contains at least three triangles and gave a complete description of uniquely
three-colorable planar graphs containing exactly three triangles. Li et al. [12] proved that if a uniquely
three-colorable planar graph G has at most four triangles, then G has two adjacent triangles. Moreover,
for any k > 5, they constructed a uniquely three-colorable planar graph with k triangles and without
adjacent triangles.

Let G be a uniquely k-colorable graph. G is edge-critical if G — e is not uniquely k-colorable for any
edge e € E(G). Obviously, if a uniquely k-colorable graph G has exactly (k —1)|V(G)| — (g) edges,
then G is edge-critical. Mel'nikov and Steinberg [16] in 1977 asked to find an exact upper bound for
the number of edges in an edge-critical uniquely three-colorable planar graph with n vertices. In 2013,
Matsumoto [17] proved that an edge-critical uniquely three-colorable planar graph has at most %n - %
edges and constructed an infinite family of edge-critical uniquely three-colorable planar graphs with n
vertices and %n — 6 edges, where n = 0 (mod 4). This upper bound was improved by Li et al. [13] to

%n—6whenn > 6.

In this paper, we mainly prove Theorem 2.

Theorem 2. If G is a uniquely three-colorable plane graph, then G has adjacent (3, k)-faces, where k < 5.
The bound five for k is the best possible.

Furthermore, by using constructions, we prove that there exist uniquely three-colorable plane
graphs having neither adjacent (3, i)-faces nor adjacent (3, j)-faces, where i, j are fixed in {3,4,5} and
i # j. One of our constructions implies that there exists an infinite family of edge-critical uniquely
three-colorable plane graphs with n vertices and %n - 13—4 edges, where n(> 11) is odd and n = 2
(mod 3). Our results further characterize the structure of the uniquely three-colorable plane graphs.
The results can be used in optimal territorial distribution of mobile operators’ transmitters.

2. Proof of Theorem 2

Now, we prove Theorem 2. First we give a useful Lemma 1.

Lemma 1. Let G be a plane graph with three faces. If G has no adjacent (3,k)-faces, where k < 5, then
[E(G)| = 2[F(G)|-

Proof. We prove this by using a simple charging scheme. Since G has no adjacent (3, k)-faces when
k < 5, for any edge e incident to a three-face f, e is incident to a face of degree at least six. Let
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ch(f) = d(f) for any face f € F(G), and we call ch(f) the initial charge of the face f. Let initial charges
in G be redistributed according to the following rule.

Rule: For each three-face f of G and each edge e incident with f, the 6 -face incident with e sends
% charge to f through e.

Denote by cl’(f) the charge of a face f € F(G) after applying the redistributed rule. Then:

Y a(f)= ¥ ch(f)= ¥ d(f)=2[E©) 1)
fEF(G) fEF(G ) fEF G)

On the other hand, for any three-face f of G, since the degree of each face adjacent to f is at least
six, then by the redistributed rule, ch’(f) = ch(f) +3- 3 = d(f) + 1 = 4. For any four-face or five-face
fof G, ch'(f) = ch(f) = d(f) > 4. For any 6" -face f of G, since f is incident to at most d(f) edges,
each of which is incident to a three-face, then ch’(f) > ch(f) — 3d(f) = %d(f) > 4. Therefore, we

have:
Y. ¢ > ) 4=4FG (2)
feF(G ) fGF G)

By Formulae (1) and (2), we have |E(G)| > 2|F(G)|. O

Proof of Theorem 2. Suppose that the theorem is not true, and let G be a counterexample to the
theorem. Then, G has at least one three-face and no adjacent (3, k)-faces, where k < 5. By Lemma 1,
|E(G)| > 2|F(G)|. Using Euler’s Formula |V (G)| — |E(G)| + |F(G)| = 2, we can obtain:

[E(G)] <2[V(G)] - 4.

Since G is uniquely three-colorable, then by Theorem 1, we have |E(G)| > 2|V(G)| — 3. This is
a contradiction.

Note that the graph shown in Figure 1 is a uniquely three-colorable plane graph having neither
adjacent (3, 3)-faces nor adjacent (3, 4)-faces. Therefore, the bound of five for k is the best possible. [

Figure 1. A uniquely three-colorable plane graph having neither adjacent (3,3)-faces nor
adjacent (3,4)-faces.

Remark 1. By piecing together more copies of the plane graph in Figure 1, one can construct an infinite class of
uniquely three-colorable plane graphs having neither adjacent (3, 3)-faces nor adjacent (3, 4)-faces.

3. Construction of Uniquely Three-Colorable Plane Graphs without Adjacent (3,3)-Faces or
Adjacent (3,5)-Faces

There are many classes of uniquely three-colorable plane graphs having neither adjacent
(3,4)-faces nor adjacent (3,5)-faces, such as even maximal plane graphs (maximal plane graphs
in which each vertex has even degree) and maximal outerplanar graphs with at least six vertices. Now,
we construct a class of uniquely three-colorable plane graphs having neither adjacent (3, 3)-faces nor
adjacent (3, 5)-faces and prove that these graphs are edge-critical.

We construct a graph Gy, as follows:
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(1) V(Gy) ={u,w,v9,v1,...,03c1};
(2) E(Gy) = {vov1,0102,...,03k_203x_1,03c_100} U{uv; : i = 1or2 (mod 3)} U{wv; : i = 0orl
(mod 3)}, where k is odd and k > 3 (see an example G3 shown in Figure 2).

Figure 2. An example G3.

Theorem 3. For any odd k with k > 3, Gy is uniquely three-colorable.

Proof. Let f be any three-coloring of G;. Since vgv; ... vs;_17g is a cycle of odd length and each v; is
adjacent to u or w, we have f(u) # f(w). Without loss of generality, let f(u) = 1and f(w) = 2. By the
construction of G, we know that U341 is adjacent to both # and w, where j = 0,1, ...,k — 1. Therefore,
v3j4+1 can only receive the color three, namely f(v3j1) =3,j =0,1,...,k — 1. Since v3; is adjacent to
both w and v3; in Gy, we have f(?)g]’) =1,7=0,1,...,k— 1. Similarly, we can obtain f(vgj+2) =2,
j=0,1,...,k — 1. Therefore, the three-coloring f is uniquely decided as shown in Figure 2, and then,
Gy is uniquely three-colorable. [

Theorem 4. For any odd k with k > 3, Gy is edge-critical.

Proof. To complete the proof, it suffices to show that Gy — e is not uniquely three-colorable for any
edge e € E(Gy). Let f be a uniquely three-coloring of Gy shown in Figure 2. Denote by E;; the set of
edges in Gx whose ends are colored by i and j, respectively, where 1 <i < j < 3. Namely:

Eij={xy:xy € E(Gy), f(x) =i, f(y) =j1,1<i<j<3

Observation 1. Both the subgraphs Gi[Ej3] and Gi[Ey3] of Gy induced by Ej3 and Ejj are trees.
Observation 2. The subgraph Gi[E1z] of G induced by Ej, consists of k internally disjoint paths
uvz;_1v3;w, wherei =1,2,... k.

If e € Ej3 U Ep3, then Gy — e is not uniquely three-colorable by Observation 1. Suppose that
e € Epp. By Observation 2, there exists a number ¢t € {1,2,...,k} such thate € {uvs;_1,v3_103;, v3rW}.
Moreover, Gy — e contains at least one vertex of degree two. By repeatedly deleting vertices of degree
two in Gy — e, we can obtain a subgraph Gy — {v3;_1,v3: } of Gx. Now, we prove that Gy — {v3;—1,v3:}
is not uniquely three-colorable.

It can be seen that the restriction f of f to the vertices of Gy — {v3;_1,v3} is a three-coloring
of Gy —{v3—1,v3}. On the other hand, Gy — {v3_1,v3,u,w} is a path, denoted by P.
Let f'(u) = f'(w) =1, and alternately, color the vertices of P by the other two colors. We can
obtain a three-coloring f’ of Gy — {v3;_1,v3t}, which is distinct from fj. Since each three-coloring of
Gk — {v3t—1,v3t } can be extended to a three-coloring of Gy — e, we know that G — e is not uniquely
three-colorable when e € Eq,.

Since E(Gy) = E1p U E13 U Epz, Gy — e is not uniquely three-colorable for any edge e € E(Gy). O



Mathematics 2019, 7, 793 50f6

Note that Gy has 3k + 2 vertices and 7k edges by the construction. From Theorem 4, we can obtain
the following result.

Corollary 1. There exists an infinite family of edge-critical uniquely three-colorable plane graphs with n vertices
and §n — 1 edges, where n(> 11) is odd and n = 2 (mod 3).

Denote by size(n) the upper bound of the number of edges of edge-critical uniquely
three-colorable planar graphs with n vertices. Then, by Corollary 1 and the result due to Li et al. [13],
we can obtain the following result.

Corollary 2. For any odd integer n such that n =2 (mod 3) and n > 11, we have §n — 1} < size(n) < 3n — 6.

Proof. First,in[13], Lietal. proved that size(n) < %n — 6 for any edge-critical uniquely three-colorable
planar graph G with n(n > 6) vertices. Then, by Corollary 1, we can conclude that Corollary 2
is true. O

Corollary 2 improves the lower bound %n — 6 of size(n) given by Matsumoto [17] and gives
a negative answer to a problem proposed by Mel'nikov and Steinberg [16], who asked that
size(n) = n — 6 for any n > 12.

4. Conclusions and Conjectures

In this paper, we obtained a structural property of uniquely three-colorable plane graphs. We
proved that every uniquely three-colorable plane graph has adjacent (3, k)-faces, where k < 5, and the
bound of five for k is the best possible. The graph in Figure 1 shows a uniquely three-colorable
plane graph having neither adjacent (3, 3)-faces nor adjacent (3, 4)-faces. However this plane graph is
two-connected. This prompts us to propose the following conjecture.

Conjecture 1. Let G be a three-connected uniquely three-colorable plane graph. Then, G has adjacent
(3, k)-faces, where k < 4.

It can be seen that the uniquely three-colorable plane graph Gj constructed in Section 3 is
three-connected. So Therefore, Conjecture 1 is true, then the bound of four for k is the best possible.
Moreover, because the family of graphs Gy is the edge-critical uniquely three-colorable planar graphs
with the largest number of edges found at present, we recall the follow conjecture proposed by
Lietal [13].

Conjecture 2 ([13]). Let G be an edge-critical uniquely three-colorable planar graph with n vertices.

Then, size(n) < %n -4
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