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Abstract: A graph G is uniquely k-colorable if the chromatic number of G is k and G has only one
k-coloring up to the permutation of the colors. For a plane graph G, two faces f1 and f2 of G are
adjacent (i, j)-faces if d( f1) = i, d( f2) = j, and f1 and f2 have a common edge, where d( f ) is the degree
of a face f . In this paper, we prove that every uniquely three-colorable plane graph has adjacent
(3, k)-faces, where k ≤ 5. The bound of five for k is the best possible. Furthermore, we prove that
there exists a class of uniquely three-colorable plane graphs having neither adjacent (3, i)-faces nor
adjacent (3, j)-faces, where i, j are fixed in {3, 4, 5} and i 6= j. One of our constructions implies that
there exists an infinite family of edge-critical uniquely three-colorable plane graphs with n vertices
and 7

3 n− 14
3 edges, where n(≥ 11) is odd and n ≡ 2 (mod 3).

Keywords: plane graph; unique coloring; uniquely three-colorable plane graph; construction;
adjacent (i, j)-faces

1. Introduction

Graph coloring is one of the most studied problems in graph theory, because it has many important
applications [1–3]. The main aim of the problem is to assign colors to the elements of a graph, such as
vertices, subject to certain constraints.

For a plane graph G, V(G), E(G), and F(G) are the sets of vertices, edges, and faces of G,
respectively. The degree of a vertex v ∈ V(G), denoted by dG(v), is the number of neighbors of v in G.
The degree of a face f ∈ F(G), denoted by dG( f ), is the number of edges in its boundary, cut edges
being counted twice. When no confusion can arise, dG(v) and dG( f ) are simplified as d(v) and d( f ),
respectively. A face f is a k-face if d( f ) = k and a k+-face if d( f ) ≥ k. Two faces f1 and f2 of G are
adjacent (i, j)-faces if d( f1) = i, d( f2) = j, and f1 and f2 have at least one common edge. Two distinct
paths of G are internally disjoint if they have no internal vertices in common. For other terminologies
and notations in graph theory, we refer to [4].

A k-coloring of a graph G is an assignment of k colors to the vertices of G such that no two adjacent
vertices are assigned the same color. A graph G is k-colorable if G admits a k-coloring. The chromatic
number of G, denoted by χ(G), is the minimum number k such that G is k-colorable. A graph G is
uniquely k-colorable if χ(G) = k and G has only one k-coloring up to the permutation of the colors,
where the coloring is called a unique k-coloring of G. In other words, all k-colorings of G induce the
same partition of V(G) into k independent sets, in which an independent set is called a color class of G.
In addition, uniquely colorable graphs may be defined in terms of their chromatic polynomials, which
was initiated by Birkhoff [5] for planar graphs in 1912 and for general graphs by Whitney [6] in 1932.
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A graph G is uniquely k-colorable if and only if its chromatic polynomial is k!. For a discussion of
chromatic polynomials, see Read [7].

Uniquely colorable graphs were first studied by Harary and Cartwright [8] in 1968. They proved
the following theorem.

Theorem 1 (Harary and Cartwright [8]). Let G be a uniquely k-colorable graph. Then, for any unique
k-coloring of G, the subgraph induced by the union of any two color classes is connected.

As a corollary of Theorem 1, it can be seen that a uniquely k-colorable graph G has at least
(k− 1)|V(G)| − (k

2) edges. There are many references on uniquely colorable graphs [9–13].
Dailey [14] proved that the problem of determining whether a graph G is uniquely colorable

is NP-complete. However, it is still open for the case of planar graphs. Therefore, it is important to
characterize the structure of uniquely colorable planar graphs.

Chartrand and Geller [10] in 1969 started to study uniquely colorable planar graphs. They proved
that uniquely three-colorable planar graphs with at least four vertices contain at least two triangles,
uniquely four-colorable planar graphs are maximal planar graphs, and uniquely five-colorable planar
graphs do not exist. Aksionov [15] in 1977 improved the lower bound for the number of triangles
in a uniquely three-colorable planar graph. He proved that a uniquely three-colorable planar graph
with at least five vertices contains at least three triangles and gave a complete description of uniquely
three-colorable planar graphs containing exactly three triangles. Li et al. [12] proved that if a uniquely
three-colorable planar graph G has at most four triangles, then G has two adjacent triangles. Moreover,
for any k ≥ 5, they constructed a uniquely three-colorable planar graph with k triangles and without
adjacent triangles.

Let G be a uniquely k-colorable graph. G is edge-critical if G− e is not uniquely k-colorable for any
edge e ∈ E(G). Obviously, if a uniquely k-colorable graph G has exactly (k− 1)|V(G)| − (k

2) edges,
then G is edge-critical. Mel’nikov and Steinberg [16] in 1977 asked to find an exact upper bound for
the number of edges in an edge-critical uniquely three-colorable planar graph with n vertices. In 2013,
Matsumoto [17] proved that an edge-critical uniquely three-colorable planar graph has at most 8

3 n− 17
3

edges and constructed an infinite family of edge-critical uniquely three-colorable planar graphs with n
vertices and 9

4 n− 6 edges, where n ≡ 0 (mod 4). This upper bound was improved by Li et al. [13] to
5
2 n− 6 when n ≥ 6.

In this paper, we mainly prove Theorem 2.

Theorem 2. If G is a uniquely three-colorable plane graph, then G has adjacent (3, k)-faces, where k ≤ 5.
The bound five for k is the best possible.

Furthermore, by using constructions, we prove that there exist uniquely three-colorable plane
graphs having neither adjacent (3, i)-faces nor adjacent (3, j)-faces, where i, j are fixed in {3, 4, 5} and
i 6= j. One of our constructions implies that there exists an infinite family of edge-critical uniquely
three-colorable plane graphs with n vertices and 7

3 n− 14
3 edges, where n(≥ 11) is odd and n ≡ 2

(mod 3). Our results further characterize the structure of the uniquely three-colorable plane graphs.
The results can be used in optimal territorial distribution of mobile operators’ transmitters.

2. Proof of Theorem 2

Now, we prove Theorem 2. First we give a useful Lemma 1.

Lemma 1. Let G be a plane graph with three faces. If G has no adjacent (3, k)-faces, where k ≤ 5, then
|E(G)| ≥ 2|F(G)|.

Proof. We prove this by using a simple charging scheme. Since G has no adjacent (3, k)-faces when
k ≤ 5, for any edge e incident to a three-face f , e is incident to a face of degree at least six. Let
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ch( f ) = d( f ) for any face f ∈ F(G), and we call ch( f ) the initial charge of the face f . Let initial charges
in G be redistributed according to the following rule.

Rule: For each three-face f of G and each edge e incident with f , the 6+-face incident with e sends
1
3 charge to f through e.

Denote by ch′( f ) the charge of a face f ∈ F(G) after applying the redistributed rule. Then:

∑
f∈F(G)

ch′( f ) = ∑
f∈F(G)

ch( f ) = ∑
f∈F(G)

d( f ) = 2|E(G)| (1)

On the other hand, for any three-face f of G, since the degree of each face adjacent to f is at least
six, then by the redistributed rule, ch′( f ) = ch( f ) + 3 · 1

3 = d( f ) + 1 = 4. For any four-face or five-face
f of G, ch′( f ) = ch( f ) = d( f ) ≥ 4. For any 6+-face f of G, since f is incident to at most d( f ) edges,
each of which is incident to a three-face, then ch′( f ) ≥ ch( f )− 1

3 d( f ) = 2
3 d( f ) ≥ 4. Therefore, we

have:

∑
f∈F(G)

ch′( f ) ≥ ∑
f∈F(G)

4 = 4|F(G)| (2)

By Formulae (1) and (2), we have |E(G)| ≥ 2|F(G)|.

Proof of Theorem 2. Suppose that the theorem is not true, and let G be a counterexample to the
theorem. Then, G has at least one three-face and no adjacent (3, k)-faces, where k ≤ 5. By Lemma 1,
|E(G)| ≥ 2|F(G)|. Using Euler’s Formula |V(G)| − |E(G)|+ |F(G)| = 2, we can obtain:

|E(G)| ≤ 2|V(G)| − 4.

Since G is uniquely three-colorable, then by Theorem 1, we have |E(G)| ≥ 2|V(G)| − 3. This is
a contradiction.

Note that the graph shown in Figure 1 is a uniquely three-colorable plane graph having neither
adjacent (3, 3)-faces nor adjacent (3, 4)-faces. Therefore, the bound of five for k is the best possible.
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Figure 1. A uniquely three-colorable plane graph having neither adjacent (3, 3)-faces nor
adjacent (3, 4)-faces.

Remark 1. By piecing together more copies of the plane graph in Figure 1, one can construct an infinite class of
uniquely three-colorable plane graphs having neither adjacent (3, 3)-faces nor adjacent (3, 4)-faces.

3. Construction of Uniquely Three-Colorable Plane Graphs without Adjacent (3,3)-Faces or
Adjacent (3,5)-Faces

There are many classes of uniquely three-colorable plane graphs having neither adjacent
(3, 4)-faces nor adjacent (3, 5)-faces, such as even maximal plane graphs (maximal plane graphs
in which each vertex has even degree) and maximal outerplanar graphs with at least six vertices. Now,
we construct a class of uniquely three-colorable plane graphs having neither adjacent (3, 3)-faces nor
adjacent (3, 5)-faces and prove that these graphs are edge-critical.

We construct a graph Gk as follows:
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(1) V(Gk) = {u, w, v0, v1, . . . , v3k−1};
(2) E(Gk) = {v0v1, v1v2, . . . , v3k−2v3k−1, v3k−1v0} ∪ {uvi : i ≡ 1 or 2 (mod 3)} ∪ {wvi : i ≡ 0 or 1

(mod 3)}, where k is odd and k ≥ 3 (see an example G3 shown in Figure 2).

u

w

0v 1v 2v 4v
5v 6v

7v 8v3v

1

1 1 12

2

2 23 3 3

Figure 2. An example G3.

Theorem 3. For any odd k with k ≥ 3, Gk is uniquely three-colorable.

Proof. Let f be any three-coloring of Gk. Since v0v1 . . . v3k−1v0 is a cycle of odd length and each vi is
adjacent to u or w, we have f (u) 6= f (w). Without loss of generality, let f (u) = 1 and f (w) = 2. By the
construction of Gk, we know that v3j+1 is adjacent to both u and w, where j = 0, 1, . . . , k− 1. Therefore,
v3j+1 can only receive the color three, namely f (v3j+1) = 3, j = 0, 1, . . . , k− 1. Since v3j is adjacent to
both w and v3j in Gk, we have f (v3j) = 1, j = 0, 1, . . . , k− 1. Similarly, we can obtain f (v3j+2) = 2,
j = 0, 1, . . . , k− 1. Therefore, the three-coloring f is uniquely decided as shown in Figure 2, and then,
Gk is uniquely three-colorable.

Theorem 4. For any odd k with k ≥ 3, Gk is edge-critical.

Proof. To complete the proof, it suffices to show that Gk − e is not uniquely three-colorable for any
edge e ∈ E(Gk). Let f be a uniquely three-coloring of Gk shown in Figure 2. Denote by Eij the set of
edges in Gk whose ends are colored by i and j, respectively, where 1 ≤ i < j ≤ 3. Namely:

Eij = {xy : xy ∈ E(Gk), f (x) = i, f (y) = j}, 1 ≤ i < j ≤ 3.

Observation 1. Both the subgraphs Gk[E13] and Gk[E23] of Gk induced by E13 and E23 are trees.
Observation 2. The subgraph Gk[E12] of Gk induced by E12 consists of k internally disjoint paths
uv3i−1v3iw, where i = 1, 2, . . . , k.

If e ∈ E13 ∪ E23, then Gk − e is not uniquely three-colorable by Observation 1. Suppose that
e ∈ E12. By Observation 2, there exists a number t ∈ {1, 2, . . . , k} such that e ∈ {uv3t−1, v3t−1v3t, v3tw}.
Moreover, Gk − e contains at least one vertex of degree two. By repeatedly deleting vertices of degree
two in Gk − e, we can obtain a subgraph Gk − {v3t−1, v3t} of Gk. Now, we prove that Gk − {v3t−1, v3t}
is not uniquely three-colorable.

It can be seen that the restriction f0 of f to the vertices of Gk − {v3t−1, v3t} is a three-coloring
of Gk − {v3t−1, v3t}. On the other hand, Gk − {v3t−1, v3t, u, w} is a path, denoted by P.
Let f ′(u) = f ′(w) = 1, and alternately, color the vertices of P by the other two colors. We can
obtain a three-coloring f ′ of Gk − {v3t−1, v3t}, which is distinct from f0. Since each three-coloring of
Gk − {v3t−1, v3t} can be extended to a three-coloring of Gk − e, we know that Gk − e is not uniquely
three-colorable when e ∈ E12.

Since E(Gk) = E12 ∪ E13 ∪ E23, Gk − e is not uniquely three-colorable for any edge e ∈ E(Gk).
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Note that Gk has 3k + 2 vertices and 7k edges by the construction. From Theorem 4, we can obtain
the following result.

Corollary 1. There exists an infinite family of edge-critical uniquely three-colorable plane graphs with n vertices
and 7

3 n− 14
3 edges, where n(≥ 11) is odd and n ≡ 2 (mod 3).

Denote by size(n) the upper bound of the number of edges of edge-critical uniquely
three-colorable planar graphs with n vertices. Then, by Corollary 1 and the result due to Li et al. [13],
we can obtain the following result.

Corollary 2. For any odd integer n such that n ≡ 2 (mod 3) and n ≥ 11, we have 7
3 n− 14

3 ≤ size(n) ≤ 5
2 n− 6.

Proof. First, in [13], Li et al. proved that size(n) ≤ 5
2 n− 6 for any edge-critical uniquely three-colorable

planar graph G with n(n ≥ 6) vertices. Then, by Corollary 1, we can conclude that Corollary 2
is true.

Corollary 2 improves the lower bound 9
4 n − 6 of size(n) given by Matsumoto [17] and gives

a negative answer to a problem proposed by Mel’nikov and Steinberg [16], who asked that
size(n) = 9

4 n− 6 for any n ≥ 12.

4. Conclusions and Conjectures

In this paper, we obtained a structural property of uniquely three-colorable plane graphs. We
proved that every uniquely three-colorable plane graph has adjacent (3, k)-faces, where k ≤ 5, and the
bound of five for k is the best possible. The graph in Figure 1 shows a uniquely three-colorable
plane graph having neither adjacent (3, 3)-faces nor adjacent (3, 4)-faces. However this plane graph is
two-connected. This prompts us to propose the following conjecture.

Conjecture 1. Let G be a three-connected uniquely three-colorable plane graph. Then, G has adjacent
(3, k)-faces, where k ≤ 4.

It can be seen that the uniquely three-colorable plane graph Gk constructed in Section 3 is
three-connected. So Therefore, Conjecture 1 is true, then the bound of four for k is the best possible.
Moreover, because the family of graphs Gk is the edge-critical uniquely three-colorable planar graphs
with the largest number of edges found at present, we recall the follow conjecture proposed by
Li et al [13].

Conjecture 2 ([13]). Let G be an edge-critical uniquely three-colorable planar graph with n vertices.
Then, size(n) ≤ 7

3 n− 14
3 .
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