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Abstract

:

Let    P 2  ⊂  P 1    be a pair of weakly semiprime ideals of an ordered semigroup   ( S , · , ≤ )  . Then, the pair    P 2  ⊂  P 1    is called a weakly semiprime segment of S if    ⋂  n ∈ N    I n  ⊆  P 2    for all ideals I of S such that    P 2  ⊂ I ⊂  P 1   . In this paper, we classify weakly semiprime segments of an ordered semigroup into four types; those that are simple, exceptional, Archimedean, and decomposable.
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1. Introduction


The theory of ideals in rings has been widely studied. Although the ideal theories of semigroups and of rings are similar, the axioms for semigroups are simpler than rings, whence there it is possible to obtain generally only weaker structural results.



The above paragraph clarifies the relationship between the ideal theory of semigroups and that of rings. In fact, a semigroup is a specific case of ordered semigroups, then the ideal theory of rings is always investigated on semigroups, and this is investigated in ordered semigroups later. For instance, Brungs and Törner [1] studied prime segments on rings. Then, this concept was moved to semigroups by Ferrero, Mazurek, and Sant’Ana [2]. Finally, it was extended to ordered semigroups by Luangchaisri, Changphas, and Mazurek in [3].



On a ring   ( R , + , · )  , a semiprime segment is a pair    P 2  ⊂  P 1    of semiprime ideals of R such that    ⋂  n ∈ N    I n  ⊆  P 2    for all ideals I of R with    P 2  ⊂ I ⊂  P 1   . This concept was introduced by R.Mazurek and G. Törner in [4]. They showed that semiprime segments on a ring can be classified into four types consisting of simple, exceptional, Archimedean, or decomposable. Moreover, they classified a semiprime segment    P 2  ⊂  P 1    when   P 1   is a comparizer right ideal of R, and they obtained that this semiprime segment occurred only in three types consisting of simple, exceptional, or Archimedean. Hence, the purpose of this paper is to describe and classify weakly semiprime segments on an ordered semigroup as a result in [4].



An ordered semigroup   ( S , · , ≤ )   consists of a semigroup   ( S , · )   together with a partial order ≤ that is compatible with the semigroup operation, i.e., for any   x , y , z ∈ S  ,



  x ≤ y ⇒ z x ≤ z y  ,   x z ≤ y z  .



For   ∅ ≠ A , B ⊆ S  , the set product   A B   is defined as follows:


  A B = { a b ∣ a ∈ A , b ∈ B }  








and we define   ( A ]   by:


  ( A ] = { s ∈ S ∣ s ≤ a  for  some  a ∈ A } .  











For an ordered semigroup   ( S , · , ≤ )  , it is observed (see [5]) that the following assertions hold:




	
  A ⊆ ( A ]  ;



	
  A ⊆ B ⇒ ( A ] ⊆ ( B ]  ;



	
  ( A ] ( B ] ⊆ ( A B ]  ;



	
  ( ( A ] ] = ( A ]  .








Let   ( S , · , ≤ )   be an ordered semigroup, and let A be a nonempty subset of S. Then, A is called a right ideal of S if   A S ⊆ A  ; and   ( A ] = A  . We say that A is a left ideal of S if   S A ⊆ A  ; and   ( A ] = A  . Finally, A is an ideal of S if it is both a left and a right ideal of S. It is easy to observe that:




	
If A and B are ideals of S, so are   ( A B ]   and   A ∩ B  ;



	
  ( S a S ]   is an ideal of S for all   a ∈ S  .








Next, we recall the concepts of prime ideals, weakly prime ideals, semiprime ideals, and weakly semiprime ideals of an ordered semigroup   ( S , · , ≤ )  .



Definition 1.

[5] Let P be an ideal of an ordered semigroup   ( S , · , ≤ )  . Then:




	1.

	
P is  prime  if for all   A , B ⊆ S  ,   A B ⊆ P   implies   A ⊆ P   or   B ⊆ P  ;




	2.

	
P is  weakly prime  if for all ideals   A , B   of S,   A B ⊆ P   implies   A ⊆ P   or   B ⊆ P  ;




	3.

	
P is  semiprime  if for each   A ⊆ S  ,    A 2  ⊆ P   implies   A ⊆ P  ;




	4.

	
P is  weakly semiprime  if for each ideal A of S,    A 2  ⊆ P   implies   A ⊆ P  .











Remark 1.

Let P be an ideal of an ordered semigroup   ( S , · , ≤ )  . Then:




	1.

	
P is prime if for all   a , b ∈ S  ,   a b ∈ P   implies   a ∈ P   or   b ∈ P  ;




	2.

	
P is weakly prime if for all   a , b ∈ S  ,   a S b ⊆ P   implies   a ∈ P   or   b ∈ P  ;




	3.

	
P is semiprime if for each   a ∈ S  ,    a 2  ∈ P   implies   a ∈ P  ;




	4.

	
P is weakly semiprime if for each   a ∈ S  ,   a S a ⊆ P   implies   a ∈ P  .











Lemma 1.

[3] An ideal P of an ordered semigroup   ( S , · , ≤ )   is prime if and only if P is both semiprime and weakly prime.





Lemma 2.

An ideal I of an ordered semigroup   ( S , · , ≤ )   is weakly semiprime if and only if it is the intersection of all weakly prime ideals of S containing I.





Proof. 

Assume that I is weakly semiprime. Let F be the intersection of all weakly prime ideals of S containing I. Suppose that there exists    x 0  ∈ F \ I  . Then:


   x 0   s 0   x 0  ∉ I  








for some    s 0  ∈ S  . Let:


   x 1  =  x 0   s 0   x 0  .  











Then, there exists    s 1  ∈ S   such that:


   x 1   s 1   x 1  ∉ I .  











Continuing in a similar manner for   n ≥ 2  , then we obtain the set:


  A = {  x 0  ,  x 1  ,  x 2  , … } .  











Let Q be the union of all ideals of S not containing any element of A. Then,   Q ≠ ∅   since   I ⊆ Q  . Let   J , K   be ideals of S such that   J K ⊆ Q  . If neither   J ⊆ Q   nor   K ⊆ Q  , then:


   x n  ∈ J   and    x m  ∈ K  








for some   n , m ∈ N .   In the case   n ≥ m  , we obtain that:


   x  n + 1   ∈  x n  S  x n  ⊆  x n  S  x m  ⊆ J K ⊆ Q .  











This is a contradiction. The case   m ≥ n   can be proven similarly. Thus, Q is a weakly prime ideal of S containing I and    x 0  ∉ Q  . This contradicts    x 0  ∈ F  . Hence,   F = I  . The opposite direction is clear.  □






2. Results


Let   ( S , · , ≤ )   be an ordered semigroup. An element e of S is called an identity if   e a = a = a e   for every   a ∈ S  . This section introduces a weakly semiprime segment on S, which is defined as a semiprime segment on rings. Then, we classify weakly semiprime segments on an ordered semigroup S according to a classification of semiprime segments on rings. Moreover, we give an example of each type of weakly semiprime segments on S to show that every type of this can occur. From now on, let   ( S , · , ≤ )   be an ordered semigroup with identity.



Definition 2.

A pair    P 2  ⊂  P 1    of weakly semiprime ideals is called a  weakly semiprime segment  if for every ideal I of S such that    P 2  ⊂ I ⊂  P 1   ,


   ⋂  n ∈ N    (  I n  ]  ⊆  P 2  .  













Example 1.

Consider a semigroup   Z 30   under the usual multiplication. It is clear that   0 ¯   and    6 ¯   Z 30    are semiprime ideals of   Z 30  . Since there are no ideals properly contained in the interval    0 ¯  ⊂  6 ¯   Z 30   , we have that    0 ¯  ⊂  6 ¯   Z 30    is a semiprime segment of a semigroup   Z 30  .





Definition 3.

Let    P 2  ⊂  P 1    be a weakly semiprime segment of an ordered semigroup   ( S , · , ≤ )  . Then,    P 2  ⊂  P 1    is  simple  if there is no further ideals of S between   P 2   and   P 1  , and   P 2   is comparable with each ideal of S contained in   P 1  .





Definition 4.

Let    P 2  ⊂  P 1    be a weakly semiprime segment of an ordered semigroup   ( S , · , ≤ )  . Then.    P 2  ⊂  P 1    is  exceptional  if there exists a weakly semiprime ideal Q of S such that    P 2  ⊂ Q ⊂  P 1    and Q is comparable with each ideal of S contained in   P 1  .





Definition 5.

Let    P 2  ⊂  P 1    be a weakly semiprime segment of an ordered semigroup   ( S , · , ≤ )  . Then,    P 2  ⊂  P 1    is Archimedean  if for each   a ∈  P 1  \  P 2   , there exists an ideal I of S with   a ∈ I ⊆  P 1    and     ⋂  n ∈ N    (  I n  ]  ⊆  P 2    .





Definition 6.

Let    P 2  ⊂  P 1    be a weakly semiprime segment of an ordered semigroup   ( S , · , ≤ )  . Then,    P 2  ⊂  P 1    is  decomposable  if    P 2  ⊂  P 1    is not Archimedean and    P 1  = A ∪ B   where   A , B   are ideals of S properly contained in   P 1  .





The following examples show various types of weakly semiprime segments on ordered semigroups.



Example 2.

Let   S =  {  1 n  ∣ n ∈ N , n ≥ 2 }  ∪  { 0 }    be a semigroup under the usual multiplication. Let    P 1  = S   and    P 2  =  { 0 }   . We can observe that    P 2  ⊂  P 1    is a semiprime segment of   S .   For each   a ∈  P 1  \  P 2   , we have that   P 1   is an ideal of S containing a, which satisfies the condition:


    ⋂  n = 1  ∞   P 1 n  ⊆  P 2  .   











Thus, a semiprime segment    P 2  ⊂  P 1    is Archimedean.





Example 3.

Let us consider the semigroup with identity   S =  {  1 n  ∣ n ∈ N }  ∪  { 0 }    under the usual multiplication. If we define    P 1  = S   and    P 2  =  { 0 }   , then a pair    P 2  ⊂  P 1    is a semiprime segment of   S .   Given   I =  {  1 n  ∣ n ∈ N , n ≥ 2 }  ∪  { 0 }   , then I is a semiprime ideal of S and    P 2  ⊂ I ⊂  P 1   . Thus, a semiprime segment    P 2  ⊂  P 1    is exceptional.





Example 4.

Let   S = { 0 , x , a , b ,  b 2  ,  b 3  , … }  , and define a binary operation on S as the following table:



	·
	0
	x
	a
	b
	   b 2   
	   b 3   
	⋯



	0
	0
	0
	0
	0
	0
	0
	⋯



	x
	0
	x
	0
	0
	0
	0
	⋯



	a
	0
	0
	a
	b
	   b 2   
	   b 3   
	⋯



	b
	0
	0
	b
	   b 2   
	   b 3   
	   b 4   
	⋯



	   b 2   
	0
	0
	   b 2   
	   b 3   
	   b 4   
	   b 5   
	⋯



	   b 3   
	0
	0
	   b 3   
	   b 4   
	   b 5   
	   b 6   
	⋯



	⋮
	⋮
	⋮
	⋮
	⋮
	⋮
	⋮
	⋱








Then, S is a semigroup. Let    P 1  = S   and    P 2  =  { 0 , x }   . It is clear that a pair    P 2  ⊂  P 1    is a semiprime segment of S. We can observe that   I = { 0 , a , b ,  b 2  , … }   and S are only ideals of S containing b. Since:


     ⋂  n = 1  ∞   I n  ⊈  P 2    and    ⋂  n = 1  ∞   S n  ⊈  P 2  ,    








it follows that     P 2  ⊂  P 1    is not Archimedean. Moreover,


    P 1  =  { 0 , x }  ∪  { 0 , a , b ,  b 2  ,  b 3  , … }    








implies that    P 2  ⊆  P 1    is decomposable.





Theorem 1.

Let    P 2  ⊂  P 1    be a weakly semiprime segment of an ordered semigroup   ( S , · , ≤ )  . Then, exactly one of the following possibilities occurs:




	1.

	
There are no further ideals of S between   P 2   and   P 1  , and   P 2   is comparable with each ideal of S contained in   P 1  ;




	2.

	
There exists a weakly semiprime ideal Q of S such that    P 2  ⊂ Q ⊂  P 1   , and Q is comparable with each ideal of S contained in   P 1  ;




	3.

	
   (  P 1  a S ∪ S a  P 1  ]  ⊂  ( S a S ]    for all   a ∈  P 1  \  P 2   ;




	4.

	
   P 1  = A ∪ B   for some ideals   A , B   properly contained in   P 1  .











Proof. 

Let   a ∈  P 1  \  P 2   . First of all, assume that    (  P 1 2  ∪  P 2  ]  ⊂  P 1   . If   a ∈ (  P 1  a S ∪ S a  P 1  ]  , then:


  a ∈  (  P 1 n  a  S n  ∪  S n  a  P 1 n  ]  ⊆  (  P 1 n  ]   








for all positive integers n. This implies that:


  a ∈  ⋂  n = 1  ∞   (  P 1 n  ]  =  ⋂  n = 1  ∞   (  P 1  2 n   ]  ⊆  ⋂  n = 1  ∞   (   (  P 1 2  ∪  P 2  )  n  ]  ⊆  P 2  .  











This contradicts   a ∉  P 2   . Thus,   a ∉ (  P 1  a S ∪ S a  P 1  ]  , and so,    (  P 1  a S ∪ S a  P 1  ]  ⊂  ( S a S ]  .   Next, assume that    (  P 1 2  ∪  P 2  ]  =  P 1   . Let M be the union of all ideals of S properly contained in   P 1  . Then:


   P 2  ⊆ M ⊆  P 1  .  











If    P 2  = M  , then (1) occurs. Otherwise, we have only two cases to consider:



Case 1.    P 2  ⊂ M ⊂  P 1   . Then, M is a weakly semiprime ideal of S, and (2) occurs. Indeed: Let A be an ideal of S such that    A 2  ⊆ M  . Then,    A 2  ⊆  P 1   , which implies   A ⊆  P 1    since   P 1   is weakly semiprime. If   A ⊂  P 1   , we have that   A ⊆ M  . Otherwise,


   P 1  =  (  P 1 2  ∪  P 2  ]  =  (  A 2  ∪  P 2  ]  ⊆ M .  











This implies that   A ⊆ M .  



Case 2.    P 2  ⊂ M =  P 1   . For each   b ∈  P 1   , we have that    ( S b S ]  ⊂  P 1    since   M =  P 1  .   Suppose that (3) does not occur. Then, there exists   c ∈  P 1  \  P 2    such that    (  P 1  c S ∪ S c  P 1  ]  =  ( S c S ]   . That is:


  c ∈ ( p c S ∪ S c q ]  








for some   p , q ∈  P 1   . Set   I = ( S p S ∪ S q S ]  . Then, I is an ideal of S and:


  c ∈ ( p c S ∪ S c q ] ⊆ ( S p S c S ∪ S c S q S ] ⊆ ( I c S ∪ S c I ] .  











If    ( I ∪  P 2  ]  ⊂  P 1   , then:


  c ∈  ⋂  n = 1  ∞   (  I n  ]  ⊆  ⋂  n = 1  ∞   (   ( I ∪  P 2  )  n  ]  ⊆  P 2  ,  








a contradiction. Thus,    P 1  = I ∪  P 2   .  □





By using Theorem 1, a weakly semiprime segment    P 2  ⊂  P 1    of an ordered semigroup   ( S , · , ≤ )   can be classified into four types.



Theorem 2.

If    P 2  ⊂  P 1    is a weakly semiprime segment of an ordered semigroup   ( S , · , ≤ )  , then exactly one of the following possibilities occurs:




	1.

	
   P 2  ⊂  P 1    is simple;




	2.

	
   P 2  ⊂  P 1    is exceptional;




	3.

	
   P 2  ⊂  P 1    is Archimedean;




	4.

	
   P 2  ⊂  P 1    is decomposable.











Proof. 

Assume that a pair    P 2  ⊂  P 1    of semiprime ideals of S is a semiprime segment of S. By Theorem 1, there are four cases to consider. It is clear that if (1), (2), or (4) occurs, then a semiprime segment    P 2  ⊂  P 1    is simple, exceptional, or decomposable, respectively. Assume that:


   (  P 1  a S ∪ S a  P 1  ]  ⊂  ( S a S ]   








for all   a ∈  P 1  \  P 2   . If    P 2  ⊂  P 1    is not Archimedean, then there is   b ∈  P 1  \  P 2    such that for all ideals I of S with   b ∈ I ⊆  P 1   ,


   ⋂  n = 1  ∞   (  I n  ]  ⊈  P 2  .  











Suppose that    (   ( S b S )  2  ]  ∪  P 2  ⊂  P 1   . Then, we have that:


   ⋂  n = 1  ∞   (   ( S b S )  n  ]  =  ⋂  n = 1  ∞   (   ( S b S )   2 n   ]  ⊆  ⋂  n = 1  ∞   (   (   ( S b S )  2  ∪  P 2  )  n  ]  ⊆  P 2  .  











This contradicts    P 2  ⊂  P 1    being not Archimedean. Thus,    (   ( S b S )  2  ]  ∪  P 2  =  P 1   . By assumption, we obtain that:


   (   ( S b S )  2  ]  ⊆  (  P 1  b S ]  ⊂  ( S b S ]  ⊆  P 1  .  











Hence, a semiprime segment    P 2  ⊂  P 1    is decomposable. It is obvious that every type of a semiprime segment is mutually exclusive. □





Definition 7.

Let R be a right ideal of an ordered semigroup   ( S , · , ≤ )  . Then, R is said to be a  waist  of S if for all right ideal A of S, either   R ⊆ A   or   A ⊂ R  .





Definition 8.

Let R be a proper right ideal of an ordered semigroup   ( S , · , ≤ )  . Then, R is said to be a  comparizer right ideal  if for any   a , b ∈ S  , either   ( a S ] ⊆ ( b S ]   or   ( b R ] ⊆ ( a S ]  .





Lemma 3.

Let R be a right ideal of an ordered semigroup   ( S , · , ≤ )  . Then, R is a comparizer of S if and only if for each right ideal   A , B   of S,



  A ⊈ B   implies   ( B R ] ⊂ A  .





Proof. 

Assume that R is a comparizer right ideal of S. Let   A , B   be right ideals of S such that   A ⊈ B  . Then, there exists   a ∈ A   such that:


  ( a S ] ⊈ ( b S ]  








for all   b ∈ B  . By assumption, we obtain that:


  ( b R ] ⊆ ( a S ] ⊆ A .  











Thus,


  ( B R ] ⊆ A .  











Conversely, let   a , b ∈ S   be such that   ( a S ] ⊈ ( b S ]  . Then:


  ( b R ] ⊆ ( b S R ] = ( ( b S ] R ] ⊆ ( a S ] .  











Thus, R is a comparizer right ideal of S. □





Theorem 3.

For any ordered semigroup   ( S , · , ≤ )  , the following right ideals are comparizer right ideals.




	1.

	
The union of a family of comparizer right ideals of S;




	2.

	
The ideal   I ( R )   of S generated by a comparizer right ideal R of S;




	3.

	
A right ideal of S contained in a comparizer right ideal of S.











Proof. 

(1) Let   C = ∪ {  A α  ∣ α ∈ Λ }  , where   A α   is a comparizer right ideal of S. Let   a , b ∈ S   such that   ( a S ] ⊈ ( b S ]  . Then:


   ( b  A α  ]  ⊆  ( a S ]   








for all   α ∈ Λ  . That is:


   ( b C ]  =  ( b  (  ⋃  α ∈ Λ    A α  )  ]  =  (  ⋃  α ∈ Λ   b  A α  ]  ⊆  ( a S ]  .  











Thus, C is a comparizer right ideal of S.



(2) Let R be a comparizer right ideal of S, and let   A , B   be right ideals of S such that   A ⊈ B  . Then:


     ( B I ( R ) ]     = ( B ( S R S ] ]          = ( B S R S ]          = ( B R ]          ⊆ ( A ]          = A .     











Therefore,   I ( R )   is a comparizer right ideal of S.



(3) Let   R ′   be a right ideal of S contained in a comparizer right ideal R of S. Let   a , b ∈ S   be such that:


  ( a S ] ⊈ ( b S ] .  











Then:


   ( b  R ′  ]  ⊆  ( b R ]  ⊆  ( a S ]  .  











Thus,   R ′   is a comparizer right ideal of S. □





Theorem 4.

Let R be a comparizer right ideal of an ordered semigroup   ( S , · , ≤ )  . Then, the following statements hold:




	1.

	
If   R = (  R 2  ]  , then R is a waist of S;




	2.

	
If P is a weakly prime ideal of S such that   R ⊈ P  , then P is a waist of S and   P ⊂ R  .











Proof. 

(1) Assume that   R = (  R 2  ]  . Let A be a right ideal of S such that   A ⊈ R  . Then:


  R = (  R 2  ] ⊆ A  








implies that R is a waist of S.



(2) Assume that P is a weakly prime ideal of S such that   R ⊈ P  . Let A be an ideal of S such that   A ⊈ P  . Then,   ( A R ] ⊈ P   since P is weakly prime. It follows that   P ⊂ A   since R is a comparizer right ideal of   S .   Thus, P is a waist of S. □





Note that the set of weakly prime ideals of S contained in a comparizer ideal is linearly ordered by inclusion.



Theorem 5.

Let R be a comparizer right ideal of an ordered semigroup   ( S , · , ≤ )  . If R is an ideal of S, then for each ideal Q of S such that   Q ⊂ R  , Q is weakly semiprime if and only if Q is weakly prime.





Proof. 

Assume that Q is weakly semiprime. Then,   Q =  ⋂  α ∈ Λ    P α   , where   P α   is a weakly prime ideal of S containing Q. By Theorem 4, there exists   α ∈ Λ   such that    P α  ⊂ R  . Let   A , B   be ideals of S such that   A B ⊆ Q  . If neither   A ⊆ Q   nor   B ⊆ Q  , then   A ⊈  P β    and   B ⊈  P γ    for some   β , γ ∈ Λ  . Now, we have four cases to consider:



Case 1: If   R ⊆  P β    and   R ⊆  P γ   , then:


  A ⊈  P β  ⊇ R ⊃  P α   








and:


  B ⊈  P γ  ⊇ R ⊃  P α  .  











These contradict   P α   being weakly prime.



Case 2: If    P β  ⊂ R ⊆  P γ   , then:


  A ⊈  P β   








and:


  B ⊈  P γ  ⊃  P β  .  











These contradict   P β   being weakly prime.



Case 3: If    P γ  ⊂ R ⊆  P β   , we can prove this similarly to Case 2.



Case 4: If    P γ  ⊂ R   and    P β  ⊂ R  , then we have:



   P γ  ⊆  P β    or    P β  ⊆  P γ  .  



This case does not occur as Cases 2 and 3.



Thus,   A ⊆ Q   or   B ⊆ Q  . Therefore, Q is weakly prime. The opposite direction is clear. □





Theorem 6.

Let    P 2  ⊂  P 1    be a weakly semiprime segment of an ordered semigroup   ( S , · , ≤ )  . If   P 1   is a comparizer right ideal of S, then one of the following possibilities occurs:




	1.

	
The weakly semiprime segment    P 2  ⊂  P 1    is simple. In this case,   P 2   is a weakly prime waist ideal of S;




	2.

	
The weakly semiprime segment    P 2  ⊂  P 1    is exceptional. In this case, there exists a weakly prime waist ideal Q of S with    P 2  ⊂ Q ⊂  P 1    such that there are no further ideals between Q and   P 1  . Moreover,   P 2   is a weakly prime waist ideal of S;




	3.

	
The weakly semiprime segment    P 2  ⊂  P 1    is Archimedean. In this case,   P 2   is a weakly prime waist ideal of S.











Proof. 

Assume that a weakly semiprime segment   P 1   is a comparizer right ideal of S. By Theorem 5, we have that   P 2   is a weakly prime ideal of S. Moreover,   P 2   is also a waist of S by Theorem 4. By using Theorem 1, there are four cases that have to be proven. It is clear that Theorem 1(1) implies (1). Assume that Theorem 1(2) holds. Then there is a weakly semiprime ideal Q with    P 2  ⊂ Q ⊂  P 1   . According to the proof of Theorem 2, we obtain immediately that there are no further ideals between Q and   P 1  . Thus, this case implies that (2) holds.



Next, assume that Theorem 1(3) or Theorem 1(4) occurs. If a weakly semiprime segment    P 2  ⊂  P 1    is not Archimedean, by the proof of Theorem 2, then    P 2  ⊂  P 1    is decomposable. That is    P 1  = A ∪ B   for some ideals   A , B   of S properly contained in   P 1  . Since   P 2   is a waist of S, then there are four cases to consider:




	  ( α )  

	
   P 2  ⊂ A   and    P 2  ⊂ B  . Then, we obtain immediately that    P 2  ⊂  P 1    is Archimedean. This contradicts the hypothesis. Therefore, this case does not occur.




	  ( β )  

	
   P 2  ⊂ A   and   B ⊆  P 2   . For each   a ∈  P 1  \  P 2   , we have that   a ∈ A ⊆  P 1    and     ⋂  n = 1  ∞   A n  ⊆  P 2  .    This implies that a weakly semiprime segment    P 2  ⊂  P 1    is Archimedean. This is a contradiction.




	  ( γ )  

	
  A ⊂  P 2    and    P 2  ⊆ B  . It can be proven similarly to the case   ( β )   that this case does not occur.




	  ( δ )  

	
  A ⊆  P 2    and   B ⊆  P 2   . Then,    P 1  = A ∪ B =  P 2   . This case does not occur.









Hence, if Theorem 1(3) or Theorem 1(4) occurs, we can infer that a weakly semiprime segment    P 2  ⊆  P 1    is Archimedean. □






3. Conclusions


Weakly semiprime segments defined on an ordered semigroup   ( S , · , ≤ )   can be classified into four types according to a classification of semiprime segments on rings. In particular, if a weakly semiprime segment    P 2  ⊂  P 1    has the property that   P 1   is a comparizer right ideal of S, then a weakly semiprime segment    P 2  ⊂  P 1    is not decomposable. This implies that a weakly prime segment    P 2  ⊂  P 1    can be only simple, exceptional, or Archimedean.
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