There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with n Complete Light-Like Geodesics
Abstract
:1. Introduction
2. Main Results
3. Proof of Theorem 1
4. Example of Non-Trivial Mappings with n-Complete Light-Like Geodesics Go through at the Point
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Brinkmann, H.W. Einstein spaces which mapped conformally on each other. Math. Ann. 1925, 94, 119–145. [Google Scholar] [CrossRef]
- Petrov, A.Z. New Methods in the General Theory of Relativity; Nauka: Moscow, Russia, 1966. [Google Scholar]
- Petrov, A.Z. Einstein Spaces; Pergamon Press: Oxford, UK; New York, NY, USA, 1969. [Google Scholar]
- Yano, K. Concircular geometry I: Concircular transformations. Proc. Imp. Acad. 1940, 16, 195–200. [Google Scholar]
- Yano, K. Concircular geometry II: Integrability conditions of . Proc. Imp. Acad. 1940, 16, 442–448. [Google Scholar]
- Yano, K. Concircular geometry III: Theory of curves. Proc. Imp. Acad. 1940, 16, 442–448. [Google Scholar]
- Yano, K. Concircular geometry IV: Theory of subspaces. Proc. Imp. Acad. 1940, 16, 505–511. [Google Scholar]
- Mikeš, J. Geodesic mappings of affine-connected and Riemannian spaces. J. Math. Sci. (N. Y.) 1996, 78, 311–333. [Google Scholar]
- Mikeš, J. On concircular vector fields “in large” on compact Riemannian spaces. Odessk. Univ. Kiev Arch 1988, 615-Uk88. (In Russian) [Google Scholar]
- Mikeš, J.; Chodorová, M. On concircular and torse-forming vector fields on compact manifolds. Acta Math. Acad. Paedagog. Nyházi. (N.S.) 2010, 26, 329–335. [Google Scholar]
- Mikeš, J.; Radulović, Ž. On concircular and torse-forming vector fields “in the large”. Math. Montisnigri 1995, 4, 43–54. [Google Scholar]
- Yano, K.; Bochner, S. Curvature and Betti Numbers; Princeton University Press: Princeton, NJ, USA, 1953. [Google Scholar]
- Yano, K.; Nagano, T. Einstein spaces admitting a one-parameter group of conformal transformations. Ann. Math. 1959, 69, 451–461. [Google Scholar] [CrossRef]
- Besse, A.L. Einstein Manifolds; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar]
- Eisenhart, L.P. Riemannian Geometry; Princeton Univ. Press: Princeton, NJ, USA, 1949. [Google Scholar]
- Fialkow, A. Conformals geodesics. Trans. Am. Math. Soc. 1939, 45, 443–473. [Google Scholar] [CrossRef]
- Formella, S.; Mikeš, J. Geodesic mappings of Einstein spaces. Szczec. Rocz. Nauk. Ann. Sci. Stetin. 1994, 9, 31–40. [Google Scholar]
- Hinterleitner, I.; Mikeš, J. Geodesic mappings and Einstein spaces. Geometric methods in physics. Birkhäuser/Springer. Trends Math. 2013, 19, 331–335. [Google Scholar]
- Kiosak, V.; Matveev, V.S. There are no conformal Einstein rescalings of complete pseudo-Riemannian Einstein metrics. C. R. Math. Acad. Sci. Paris 2009, 347, 1067–1069. [Google Scholar] [CrossRef] [Green Version]
- Kühnel, W. Conformal transformations between Einstein spaces. In Conformal Geometry (Bonn, 1985/1986); Aspects of Mathematics; Vieweg: Braunschweig, Germany, 1988; Volume 12, pp. 105–146. [Google Scholar]
- Kühnel, W.; Rademacher, H.-B. Einstein spaces with a conformal group. Results Math. 2009, 56, 421–444. [Google Scholar] [CrossRef]
- Mikeš, J. Geodesic mappings of Einstein spaces. Math. Notes 1980, 28, 428–431. [Google Scholar]
- Mikeš, J.; Bácsó, S.; Berezovski, V.; Chepurna, E.; Chodorová, M.; Chudá, H.; Formella, S.; Gavrilchenko, M.; Haddad, M.; Hinterleitner, I.; et al. Differential Geometry of Special Mappings; Palacky University Press: Olomouc, Czech Republic, 2019. [Google Scholar]
- Mikeš, J.; Kiosak, V.A. On geodesic mappings of four dimensional Einstein spaces. Odessk. Univ. Moscow Arch. VINITI 9.4.82 1982, 1678–1682. [Google Scholar] [CrossRef]
- Fučík, S.; Kufner, A. Nonlinear Differential Equations; TKI, SNTL: Praha, Slovakia, 1978. [Google Scholar]
- Dacorogna, B. Introduction to the Calculus of Variations; Imperial College Press: London, UK, 2004. [Google Scholar]
- Alekseevskii, D.V. Groups of conformal transformations of Riemannian spaces. Mat. Sbornik 1972, 89, 285–301. [Google Scholar] [CrossRef]
- Ferrand, J. The action of conformal transformations on a Riemannian manifold. Math. Ann. 1996, 304, 277–291. [Google Scholar] [CrossRef]
- Schoen, R. On the conformal and CR automorphism groups. Geom. Funct. Anal. 1995, 5, 464–481. [Google Scholar] [CrossRef]
- Leitner, F. Twistor spinors with zero on Lorentzian 5-space. Comm. Math. Phys. 2007, 275, 587–605. [Google Scholar] [CrossRef]
- Frances, C. Sur le groupe d’automorphismes des géométries paraboliques de rang 1. Ann. Sci. Ecole Norm. Supérieure 2007, 40, 741–764. Available online: http://www.math.u-psud.fr/?frances/cartan-english6.pdf (accessed on 1 August 2019). [CrossRef]
- Frances, C. Essential conformal structures in Riemannian and Lorentzian geometry. In Recent Develop-Ments in Pseudo-Riemannian Geometry; ESI Lectures in Mathematics and Physics; European Mathematical Society: Zürich, Switzerland, 2008; Volume 4, pp. 231–260. [Google Scholar]
- DeTurck, D.M.; Kazdan, J.L. Some regularity theorems in Riemannian geometry. Ann. Sci. Éc. Norm. Supér. 1981, 14, 249–260. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mikeš, J.; Hinterleitner, I.; Guseva, N. There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with n Complete Light-Like Geodesics. Mathematics 2019, 7, 801. https://doi.org/10.3390/math7090801
Mikeš J, Hinterleitner I, Guseva N. There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with n Complete Light-Like Geodesics. Mathematics. 2019; 7(9):801. https://doi.org/10.3390/math7090801
Chicago/Turabian StyleMikeš, Josef, Irena Hinterleitner, and Nadezda Guseva. 2019. "There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with n Complete Light-Like Geodesics" Mathematics 7, no. 9: 801. https://doi.org/10.3390/math7090801
APA StyleMikeš, J., Hinterleitner, I., & Guseva, N. (2019). There Are No Conformal Einstein Rescalings of Pseudo-Riemannian Einstein Spaces with n Complete Light-Like Geodesics. Mathematics, 7(9), 801. https://doi.org/10.3390/math7090801