
mathematics

Article

On Locally and Globally Optimal Solutions in Scalar
Variational Control Problems

Savin Treanţă
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Abstract: In this paper, optimality conditions are studied for a new class of PDE and PDI-constrained
scalar variational control problems governed by path-independent curvilinear integral functionals.
More precisely, we formulate and prove a minimal criterion for a local optimal solution of the
considered PDE and PDI-constrained variational control problem to be its global optimal solution.
The effectiveness of the main result is validated by a two-dimensional non-convex scalar variational
control problem.
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1. Introduction

As it is known, a minimizer for an optimization problem is unique if the associated objective
function is strictly convex. However, the definition of a unique minimizer has been extended
(see Polyak [1]) to the notion of a unique sharp minimizer. Moreover, weak sharp solutions associated with
variational-type inequalities have been introduced and studied (see Burke and Ferris [2], Patriksson [3],
Marcotte and Zhu [4], and Hiriart-Urruty and Lemaréchal [5]).

Over time, considerable interest has been given to achieving the necessary and sufficient
conditions so that a real-valued continuous function has the property that any local extreme is also
global. In this direction, we mention the works of Zang and Avriel [6], Zang et al. [7,8], Horst [9],
Martin [10], Arana-Jiménez and Antczak [11], Treanţă and Arana-Jiménez [12,13], and Treanţă [14–16].
For other different but connected ideas to this subject, the reader is directed to Shang [17,18].

In this paper, motivated by the above mentioned works, in accordance to Giannessi [19],
Clarke [20], and Mititelu and Treanţă [21], we build a new mathematical framework on the equivalence
between local and global optimal solutions in scalar variational control problems governed by
path-independent curvilinear integral functionals (mechanical work). More exactly, under only the
continuity hypotheses of the functionals involved in the considered scalar control problem, a minimal
criterion is established such that any local optimal solution associated with the considered first-order
PDE and PDI-constrained variational control problem is also its global optimal solution. To the
best of the author’s knowledge, there are no works in the literature dealing with this topic for
multidimesional scalar variational control problems with constraints involving first-order partial
differential equations/inequations (PDE/PDI). Thus, the ideas and techniques developed in this paper
may stimulate further research in this dynamic field.

The present paper is organized as follows. Section 2 includes notations, working hypotheses,
and problem description. The main results of this paper are contained in Section 3. Thus, under only
continuity assumptions of the involved functionals, a minimal criterion is formulated and proved
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so that any local optimal solution associated with the considered PDE and PDI-constrained scalar
variational control problem is also its global optimal solution. To validate the main result, an application
is provided in Section 4. Section 5 concludes the paper.

2. Problem Description

In order to introduce the scalar variational control problem for which the optimality is studied,
we start with the following notations and working hypotheses: Θ ⊂ Rm is a compact domain and
θ = (θν), ν = 1, m (i.e., ν = 1, · · · , m), denotes a point in Θ; for θ1 = (θ1

1 , . . . , θm
1 ), θ2 = (θ1

2 , . . . , θm
2 )

two different points in Θ, let Θ ⊃ Υ : θ = θ($), $ ∈ [a, b] (or θ ∈ θ1, θ2) be a piecewise smooth curve
joining the points θ1 and θ2 in Θ; let X̃ be the space of all functions x : Θ→ Rn and let X ⊂ X̃ be the
space of piecewise smooth state functions x : Θ→ Rn with the norm:

‖ x ‖=‖ x ‖∞ +
m

∑
ν=1
‖ xν ‖∞, ∀x ∈ X , (1)

where xν denotes
∂x
∂θν

; also, denote by Ũ the space of all functions u : Θ → Rk and by U ⊂ Ũ the

space of piecewise continuous control functions u : Θ → Rk with the uniform norm ‖ · ‖∞; for any
two subsets A1, A2 of X̃ × Ũ , denote by int (A1) the interior of A1 and by cl (A1) the closure of A1;
also, consider the set:

A1 \ A2 =
{
(x, u) ∈ X̃ × Ũ : (x, u) ∈ A1 ∧ (x, u) /∈ A2

}
. (2)

In the following, consider X × U as a nonempty open subset of X̃ × Ũ endowed with the
inner product:

〈(x, u); (y, w)〉 =
∫

Υ
[x(θ) · y(θ) + u(θ) · w(θ)]dθν (3)

=
∫

Υ
[x(θ) · y(θ) + u(θ) · w(θ)]dθ1 + · · ·+ [x(θ) · y(θ) + u(θ) · w(θ)]dθm

and the induced norm. Also, for ν = 1, m and β = 1, q, consider the real-valued continuously
differentiable functions (closed Lagrange 1-form densities) fν : Θ× Rn × Rk → R, gβ : Θ× Rn ×
Rnm ×Rk → R and, for any (x, u) ∈ X × U , define the following continuous functionals (involving
path-independent curvilinear integral):

F(x, u) =
∫

Υ
fν (θ, x(θ), u(θ)) dθν (4)

=
∫

Υ
f1 (θ, x(θ), u(θ)) dθ1 + · · ·+ fm (θ, x(θ), u(θ)) dθm,

Gβ (x, u) = gβ (θ, x(θ), xν(θ), u(θ)) , θ ∈ Θ, β = 1, q. (5)

By using the previous mathematical objects, we formulate the PDE and PDI-constrained
variational control problem (P) considered in the paper as follows:

min
(x,u)

F(x, u) (6)

subject to Gβ(x, u) ≤ 0, β ∈ Q := {1, ..., q}, (7)

x(θ1) = x1 = given, x(θ2) = x2 = given. (8)
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Next, denote by:

F =
{
(x, u) ∈ X × U : Gβ (x, u) ≤ 0, β ∈ Q, x(θι) = xι = given, ι = 1, 2

}
(9)

the feasible set associated with the multidimensional scalar variational control problem (P) and define
the index subset of active constraint functionals at (x, u) as follows:

Q(x,u) = {β ∈ Q | Gβ(x, u) = 0}. (10)

Definition 1. A point (x0, u0) ∈ F is said to be a global optimal solution of (P) if the inequality F(x0, u0) ≤
F(x, u) holds for all (x, u) ∈ F .

Definition 2. A point (x0, u0) ∈ F is said to be a local optimal solution of (P) if there exists a
neighborhood V(x0,u0) of the point (x0, u0) such that the inequality F(x0, u0) ≤ F(x, u) is fulfilled for all
(x, u) ∈ F ∩ V(x0,u0).

Definition 3. For r ∈ R, r > 0, the set:

Br(x0, u0) =
{
(y, w) ∈ X × U : ‖ (y, w)− (x0, u0) ‖< r

}
(11)

is an open ball with center (x0, u0) ∈ X ×U and radius r, where ‖ · ‖ is the induced norm by the inner product
introduced in Equation (3).

Remark 1. (i) Obviously, any global optimal solution of (P) is its local optimal solution. The reverse is false,
in general.

(ii) Since (x0, u0) ∈ int
(

V(x0,u0)

)
, there exists r ∈ R, r > 0, such that Br(x0, u0) ⊆ V(x0,u0).

(iii) For any β ∈ Q(x,u), it results:

Gβ (x, u) = gβ (θ, x(θ), xν(θ), u(θ)) = 0, θ ∈ Θ. (12)

If, for any β ∈ Q(x,u), the PDEs formulated in Equation (12) can be rewritten in normal form (m-flow
type PDEs):

∂xi

∂θν
(θ) = Zi

ν (θ, x(θ), u(θ)) , i = 1, n, ν = 1, m, θ ∈ Θ, (13)

then we assume that the continuously differentiable functions:

Zν =
(

Zi
ν

)
: Θ×Rn ×Rk → Rn, i = 1, n, ν = 1, m (14)

fulfill the closeness (integrability) conditions:

Dζ Zi
ν = DνZi

ζ , ν, ζ = 1, m, ν 6= ζ, i = 1, n, (15)

where Dζ is the total derivative operator.

3. Main Results

In this section, a minimal criterion is formulated and proved such that any local optimal solution
associated with the considered PDE and PDI-constrained variational control problem (P) is also a
global optimal solution of (P).

A necessary and sufficient condition for a local optimal solution of the scalar variational control
problem (P) to be its global minimizer is established in the next result. The following notation:

S = {s : [0, 1]→ X ×U | (∃) lim
τ→0+

‖ s(τ) ‖=‖ s(0) ‖= 0} (16)
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is used throughout the paper.

Theorem 1. Any local optimal solution associated with the considered constrained variational control problem
(P) is also its global optimal solution if and only if, for any (x, u), (y, w) ∈ F , with F(x, u)− F(y, w) < 0,
there exists h :

(
X × U

)2 → S such that:

(y, w) + h ((x, u), (y, w)) (τ) ∈ X × U (17)

and, for all τ ∈ (0, 1), it is verified:

h ((x, u), (y, w)) (τ)|θ=θ1,θ2 = (0, u), u ∈ U , (18)

F ((y, w) + h ((x, u), (y, w)) (τ)) < F(y, w), (19)

Gβ ((y, w) + h ((x, u), (y, w)) (τ)) ≤ 0, β ∈ Q. (20)

Proof. "⇐=" Let (x0, u0) ∈ F be a local optimal solution of (P). We proceed by contradiction.
Suppose that there exists (x, u) ∈ F such that F(x, u)− F(x0, u0) < 0. By hypothesis, there exists
h :
(
X × U

)2 → S such that:

(x0, u0) + h
(
(x, u), (x0, u0)

)
(τ) ∈ X × U , (21)

h
(
(x, u), (x0, u0)

)
(τ)|θ=θ1,θ2 = (0, u), u ∈ U , (22)

F
(
(x0, u0) + h

(
(x, u), (x0, u0)

)
(τ)
)
< F(x0, u0), (23)

for any τ ∈ (0, 1).
Furthermore, since X × U is an open set and (x0, u0) ∈ X × U , there exists r0 ∈ R, r0 > 0,

such that Br0(x0, u0) ⊂ X × U . Let β ∈ Q \ Q(x0,u0). Consequently, it follows that Gβ(x0, u0) < 0
and, by using the continuity property of the functionals Gβ, there exist rβ ∈ R, rβ > 0, such that
Brβ

(x0, u0) ⊂ X × U and
Gβ(y, w) < 0, ∀(y, w) ∈ Brβ

(x0, u0). (24)

Since,
lim

τ→0+
‖ h
(
(x, u), (x0, u0)

)
(τ) ‖=‖ h

(
(x, u), (x0, u0)

)
(0) ‖= 0, (25)

therefore, for any r ∈ R, r > 0, there exists τ0 ∈ (0, 1) such that:

‖ h
(
(x, u), (x0, u0)

)
(τ) ‖< min{r, r0, rβ}, β ∈ Q \Q(x0,u0), τ ∈ [0, τ0]. (26)

For (z, µ) = (x0, u0) + h
(
(x, u), (x0, u0)

)
(

τ0

2
), we get (z, µ) ∈ Brβ

(x0, u0) ⊂ X × U , β ∈ Q \
Q(x0,u0), and, by using (24), it follows:

Gβ(z, µ) < 0, β ∈ Q \Q(x0,u0). (27)

By hypothesis (20), we obtain:

Gβ(z, µ) = Gβ

(
(x0, u0) + h

(
(x, u), (x0, u0)

)
(

τ0

2
)
)
= 0, β ∈ Q(x0,u0). (28)

Taking into account Equations (22), (24), and (28), it follows that (z, µ) ∈ F and F(z, µ) <

F(x0, u0), that is, (x0, u0) is not a local optimal solution of (P). Consequently, we obtain a contradiction.
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“=⇒” Assume that any local optimal solution of (P) is also global. In accordance with
Equation (19), consider (x, u), (y, w) ∈ F such that:

F(x, u)− F(y, w) < 0. (29)

Since X ×U is an open set, there exists r1 ∈ R, r1 > 0, such that: Br1(y, w) ⊂ X ×U . By using the

continuity property of F on X × U , for ε :=
F(y, w)− F(x, u)

2
> 0, there exists r2 ∈ (0, r1) such that

‖ F(z, µ)− F(y, w) ‖< ε, ∀(z, µ) ∈ Br2(y, w). (30)

Furthermore, for any r ∈ (0, r2), define the following variational control problem (P
′
r) associated

to (P):
min
(z,µ)

F(z, µ) (31)

subject to (z, µ) ∈ cl (Br(y, w)) ∩ F . (32)

Denote by F ′r the set of optimal solutions associated to (P
′
r). Since,

(cl (Br(y, w)) ∩ F ) ⊂ X × U (33)

is a compact subset of X̃ × Ũ , it follows that F ′r 6= ∅. Now, let us consider the following two cases.
(i) There exists r∗ ∈ (0, r2) such that (z∗, µ∗) ∈ int (cl (Br∗(y, w)) ∩ F ) and (z∗, µ∗) ∈ F ′r∗ .

This case involves (z∗, µ∗) is a local optimal solution of (P) and, by hypothesis, it is a global optimal
solution for (P). But, in accordance with Equation (30) and using the inequality (29), we get:

F(x, u) < F(y, w)− ε = F(y, w)− F(z∗, µ∗) + F(z∗, µ∗)− ε (34)

< ε + F(z∗, µ∗)− ε = F(z∗, µ∗),

which means that (z∗, µ∗) is not a global optimal solution of (P) and, therefore, we obtain a
contradiction. In consequence, we shall consider the next case.

(ii) For any r∗ ∈ (0, r2), if (z∗, µ∗) ∈ F ′r∗ , then,

(z∗, µ∗) ∈ (cl (Br∗(y, w)) ∩ F ) \ int (cl (Br∗(y, w)) ∩ F ) , (35)

involving,
0 <‖ (y, w)− (z∗, µ∗) ‖≤ r∗. (36)

Furthermore, we shall construct the function h. Consider the function a : [0, 1]→ R, a(τ) = τ · r∗.
Also, for each τ ∈ (0, 1), introduce the following optimization problem (P

′
a(τ)):

min
(z,µ)

F(z, µ) (37)

subject to (z, µ) ∈ cl
(

Ba(τ)(y, w)
)
∩ F . (38)

As in the previous case (see (i)), we get:

∅ 6= F ′a(τ) ⊂
(

cl
(

Ba(τ)(y, w)
)
∩ F

)
\ int

(
cl
(

Ba(τ)(y, w)
)
∩ F

)
, (39)

where F ′a(τ) denotes the set of optimal solutions for (P
′
a(τ)). Define:

h ((x, u), (y, w)) : [0, 1]→ X ×U , h ((x, u), (y, w)) (τ) = (z, µ)τ − (y, w), (40)
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where (z, µ)τ is an optimal solution in (P
′
a(τ)). We get:

‖ h ((x, u), (y, w)) (τ) ‖=‖ (z, µ)τ − (y, w) ‖≤ a(τ) = τ · r∗, (41)

which implies:
lim

τ→0+
‖ h ((x, u), (y, w)) (τ) ‖=‖ h ((x, u), (y, w)) (0) ‖= 0. (42)

As well, for any τ ∈ (0, 1), the relation (39) is fulfilled and, moreover, (y, w) /∈ F ′a(τ)
(see Equation (36)). Thus,

F ((y, w) + h ((x, u), (y, w)) (τ)) = F ((y, w) + (z, µ)τ − (y, w)) (43)

= F ((z, µ)τ) < F(y, w).

By Equation (40), it follows (y, w) + h ((x, u), (y, w)) (τ) ∈ F and, in consequence, the condition
(20) is satisfied for all τ ∈ (0, 1). Also, Equation (40) involves:

h ((x, u), (y, w)) (τ)|θ=θ1,θ2 = (0, u), u ∈ U , (44)

for all τ ∈ (0, 1). 2

4. Illustrative Application

In order to illustrate the effectiveness of the aforementioned result, for m = 2, n = k = 1, q = 3
(see Section 2) and Θ a square fixed by the diagonally opposite points θ1 = (0, 0) and θ2 = (2, 2) in R2,
consider the following two-dimensional variational control problem (BP):

min
(x,u)

{
F(x, u) =

∫
Υ
[u(θ)− 5]2 dθ1 + [u(θ)− 5]2 dθ2

}
(45)

subject to
∂x
∂θ1 (θ) =

∂x
∂θ2 (θ) = 2− u(θ), (46)

16− x2(θ) < 0, (47)

x(0, 0) = 4, x(2, 2) = 10, (48)

where θ =
(

θ1, θ2
)
∈ Θ.

Furthermore, we assume that we have interest only for affine state functions. In the previous
application, we have:

fν : Θ×R×R→ R, gβ : J1(Θ,R)×R→ R, ν = 1, 2, β = 1, 3, (49)

with:
f1(θ, x(θ), u(θ)) = f2(θ, x(θ), u(θ)) = [u(θ)− 5]2 , (50)

g1(θ, x(θ), xν(θ), u(θ)) = 2− u(θ)− ∂x
∂θ1 (θ), (51)

g2(θ, x(θ), xν(θ), u(θ)) = 2− u(θ)− ∂x
∂θ2 (θ), (52)

g3(θ, x(θ), xν(θ), u(θ)) = 16− x2(θ), (53)

accompanied by the boundary conditions x(0, 0) = 4, x(2, 2) = 10.
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With the above mathematical objects and X × U , F having the same meaning as in Section 2,
for (x, u), (y, w) ∈ F with F(x, u)− F(y, w) < 0, define:

h ((x, u), (y, w)) : [0, 1]→ X ×U , h ((x, u), (y, w)) (τ) = (z, µ)τ − (y, w), (54)

where (z, µ)τ =

(
3
2

(
θ1 + θ2

)
+ 4,

1
2

)
is an optimal solution in (BPτ):

min
(z,µ)

F(z, µ) (55)

subject to (z, µ) ∈ cl (Bτ(y, w)) ∩ F , (56)

with τ ∈ (0, 1). We get:

0 <‖ h ((x, u), (y, w)) (τ) ‖=‖ (z, µ)τ − (y, w) ‖≤ τ, (57)

which implies:
lim

τ→0+
‖ h ((x, u), (y, w)) (τ) ‖=‖ h ((x, u), (y, w)) (0) ‖= 0. (58)

Also, for any τ ∈ (0, 1), it results (see Theorem 1) that the following relation:

∅ 6= F ′τ ⊂ (cl (Bτ(y, w)) ∩ F ) \ int (cl (Bτ(y, w)) ∩ F ) (59)

is fulfilled, where F ′τ denotes the set of optimal solutions for (BPτ). Moreover, by usingt Equation (57),
we have (y, w) /∈ F ′τ . In consequence,

F ((y, w) + h ((x, u), (y, w)) (τ)) = F ((y, w) + (z, µ)τ − (y, w)) (60)

= F ((z, µ)τ) < F(y, w).

By direct computation, it follows (y, w) + h ((x, u), (y, w)) (τ) ∈ F and, in consequence,
the condition:

Gβ ((y, w) + h ((x, u), (y, w)) (τ)) ≤ 0, β ∈ Q = {1, 2, 3} , (61)

is satisfied for all τ ∈ (0, 1). Also, Equation (54) involves:

h ((x, u), (y, w)) (τ)|θ=θ1,θ2 = (0, u), τ ∈ (0, 1), (62)

where u =
1
2
− w|θ=θ1,θ2 .

In the case when (x, u), (y, w) ∈ F and F(x, u) − F(y, w) < 0 is not verified, then we set
h ((x, u), (y, w)) : [0, 1]→ X ×U , h ((x, u), (y, w)) (τ) = 0.

5. Conclusions

In this paper, we have investigated the optimality conditions associated with PDE and
PDI-constrained control problems involving path-independent curvilinear integral functionals. More
concretely, we have established a minimal criterion such that any local optimal solution of the
considered PDE and PDI-constrained scalar variational control problem is also its global optimal
solution. The effectiveness of the main result is validated by a two-dimensional nonconvex scalar
variational control problem. As future directions and open problems, the main result presented in this
paper can be extended for new classes of optimization problems governed by vector cost functionals.
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