On Fractional Operators and Their Classifications
Abstract
:1. Background
“It appears that one day useful consequences will be drawn from these paradoxes.”
“Both these systems, then, may very possibly be parts of a more general system.”
2. The Question of Classification
- It satisfies the desire for generalisation. Any class of fractional-calculus operators will be more general than any one particular model, and the specific models can be studied as before within this framework or as special cases of the general class. If real-world applications give rise to a new model of fractional calculus, it may be able to fit into such a class, and then many of its properties would be known directly from general theorems about the class.
- It also satisfies, to a certain degree, the desire for restrictions and criteria. Not all types of fractional calculus fall into one particular class, but each class can be studied in its own right; its defining attributes could be considered as “axioms” or criteria for that particular class. Thus, it is possible to study fractional calculus within the framework of certain prescribed conditions, without dismissing everything outside that framework as invalid.
3. The Class of Analytic Kernels
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Leibniz, G.W. Mathematische Schriften: aus den Handschriften der Königlichen Bibliothek zu Hannover. Briefwechsel zwischen Leibniz, Wallis, Varignon, Guido Grandi, Zendrini, Hermann und Freiherrn von Tschirnhaus; Druck und Verlag von H. W. Schmidt: Halle, Germany, 1859; Volume 1. [Google Scholar]
- Riemann, B. Versuch einer allgemeinen Auffassung der Integration und Differentiation. In Gessamelte Mathematische Werke; Dedekind, R., Weber, H., Eds.; Druck und Verlag: Leipzig, Germany, 1876. [Google Scholar]
- Liouville, J. Mémoire Sur quelques Questions de Géometrie et de Mécanique, et sur un nouveau genre de Calcul pour résoudre ces Questions. J. L’École Polytech. 1832, 13, 1–69. [Google Scholar]
- Abel, N.H. Solution de quelques problèmes á l’aide d’intégrales définies. In Oeuvres Complètes de Niels Henrik Abel; Sylow, L., Lie, S., Eds.; CUP: Cambridge, UK, 1881. [Google Scholar]
- Laurent, H. Sur le calcul des dérivées à indices quelconques. Nouv. Ann. MathÉmatiques J. Des Candidats Aux Écoles Polytech. Norm. 1884, 3, 240–252. [Google Scholar]
- Hardy, G.H.; Littlewood, J.E. Some properties of fractional integrals I. Math. Z. 1928, 27, 565–606. [Google Scholar] [CrossRef]
- Hardy, G.H.; Littlewood, J.E. Some properties of fractional integrals II. Math. Z. 1932, 34, 403–439. [Google Scholar] [CrossRef]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Dugowson, S. Les Différentielles Métaphysiques: Histoire et Philosophie de la Généralisation de l’ordre de Dérivation. Ph.D. Thesis, Université Paris Nord, Paris, France, 1994. [Google Scholar]
- Hilfer, R. Threefold Introduction to Fractional Derivatives. In Anomalous Transport: Foundations and Applications; Klages, R., Radons, G., Sokolov, I.M., Eds.; John Wiley & Sons: Berlin, Germany, 2008. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods, 2nd ed.; World Scientific: New York, NY, USA, 2017. [Google Scholar]
- De Morgan, A. The Differential and Integral Calculus Combining Differentiation, Integration, Development, Differential Equations, Differences, Summation, Calculus of Variations with Applications to Algebra, Plane and Solid Geometry; Baldwin and Craddock: London, UK, 1840. [Google Scholar]
- Ross, B. A Brief History and Exposition of the Fundamental Theory of Fractional Calculus. In Fractional Calculus and Its Applications; Ross, B., Ed.; Lecture Notes in Mathematics No. 457; Springer: Heidelberg, Germany, 1975. [Google Scholar]
- Oldham, K.B.; Spanier, J. The Fractional Calculus; Academic Press: San Diego, CA, USA, 1974. [Google Scholar]
- Baleanu, D.; Lopes, A.M. (Eds.) Handbook of Fractional Calculus with Applications, Volume 7: Applications in Engineering, Life and Social Sciences, Part A; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Baleanu, D.; Lopes, A.M. (Eds.) Handbook of Fractional Calculus with Applications, Volume 8: Applications in Engineering, Life and Social Sciences, Part B; De Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2000. [Google Scholar]
- Sun, H.G.; Zhang, Y.; Baleanu, D.; Chen, W.; Chen, Y.Q. A new collection of real world applications of fractional calculus in science and engineering. Commun. Nonlinear Sci. Numer. Simul. 2018, 64, 213–231. [Google Scholar] [CrossRef]
- El-Sayed, A.M.A.; Gaafar, F.M. Fractional calculus and some intermediate physical processes. Appl. Math. Comput. 2003, 144, 117–126. [Google Scholar] [CrossRef]
- Bonfanti, A.; Fouchard, J.; Khalilgharibi, N.; Charras, G.; Kabla, A. A unified rheological model for cells and cellularised materials. preprint under review. [CrossRef]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Taylor & Francis: London, UK, 2002. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I. Fractional Differential Equations; Academic Press: San Diego, CA, USA, 1999. [Google Scholar]
- Caputo, M.; Fabrizio, M. A new Definition of Fractional Derivative without Singular Kernel. Prog. Fract. Differ. Appl. 2015, 1, 73–85. [Google Scholar]
- Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and application to heat transfer model. Therm. Sci. 2016, 20, 763–769. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Harjule, P.; Jain, R. A general fractional differential equation associated with an integral operator with the H-function in the kernel. Russ. J. Math. Phys. 2015, 22, 112–126. [Google Scholar] [CrossRef]
- Çetinkaya, A.; Kiymaz, I.O.; Agarwal, P.; Agarwal, R. A comparative study on generating function relations for generalized hypergeometric functions via generalized fractional operators. Adv. Differ. Equ. 2018, 156. [Google Scholar] [CrossRef]
- Ortigueira, M.D.; Machado, J.A.T. What is a fractional derivative? J. Comput. Phys. 2015, 293, 4–13. [Google Scholar] [CrossRef]
- Caputo, M.; Fabrizio, M. On the notion of fractional derivative and applications to the hysteresis phenomena. Meccanica 2017, 52, 3043–3052. [Google Scholar] [CrossRef]
- Zhao, D.; Luo, M. Representations of acting processes and memory effects: general fractional derivative and its application to theory of heat conduction with finite wave speeds. Appl. Math. Comput. 2018, 346, 531–544. [Google Scholar] [CrossRef]
- Hilfer, R.; Luchko, Y. Desiderata for Fractional Derivatives and Integrals. Mathematics 2019, 7, 149. [Google Scholar] [CrossRef]
- Hilfer, R. Mathematical and physical interpretations of fractional derivatives and integrals. In Handbook of Fractional Calculus with Applications, Volume 1; Kochubei, A., Luchko, Y., Eds.; de Gruyter: Berlin, Germany, 2019; pp. 47–85. [Google Scholar]
- Atanacković, T.M.; Pilipović, S.; Zorica, D. Properties of the Caputo–Fabrizio fractional derivative and its distributional settings. Fract. Calc. Appl. Anal. 2018, 21, 29–44. [Google Scholar] [CrossRef]
- Kochubei, A.N. General Fractional Calculus, Evolution Equations, and Renewal Processes. Integr. Equ. Oper. Theory 2011, 71, 83–600. [Google Scholar] [CrossRef]
- Fernandez, A.; Özarslan, M.A.; Baleanu, D. On fractional calculus with general analytic kernels. Appl. Math. Comput. 2019, 354, 248–265. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Fernandez, A. On some new properties of fractional derivatives with Mittag-Leffler kernel. Commun. Nonlinear Sci. Numer. Simul. 2018, 59, 444–462. [Google Scholar] [CrossRef] [Green Version]
- Baleanu, D.; Asad, J.H.; Jajarmi, A. The fractional model of spring pendulum: new features within different kernels. Proc. Rom. Acad. Ser. 2018, 19, 447–454. [Google Scholar]
- Uçar, S.; Uçar, E.; Özdemir, N.; Hammouch, Z. Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative. Chaos Solitons Fractals 2019, 118, 300–306. [Google Scholar] [CrossRef]
- Yusuf, A.; Qureshi, S.; Inc, M.; Aliyu, A.I.; Baleanu, D.; Shaikh, A.A. Two-strain epidemic model involving fractional derivative with Mittag-Leffler kernel. Chaos 2018, 28, 123121. [Google Scholar] [CrossRef]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag Leffler function in the kernel. Yokohama Math. J. 1971, 19, 7–15. [Google Scholar]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integr. Transform. Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
- Özarslan, M.A.; Kürt, C. Nonhomogeneous initial and boundary value problem for the Caputo-type fractional wave equation. Adv. Differ. Equ. 2019, 199. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Fernandez, A.; Baleanu, D. Some new fractional calculus connections between Mittag–Leffler functions. Mathematics 2019, 7, 485. [Google Scholar] [CrossRef]
- Li, C.; Deng, W.; Zhao, L. Well-posedness and numerical algorithm for the tempered fractional ordinary differential equations. Discret. Contin. Dyn. Syst. 2019, 24, 1989–2015. [Google Scholar]
- Meerschaert, M.M.; Sabzikar, F.; Chen, J. Tempered fractional calculus. J. Comput. Phys. 2015, 293, 14–28. [Google Scholar]
- Osler, T.J. Leibniz rule for fractional derivatives generalized and an application to infinite series. Siam J. Appl. Math. 1970, 18, 658–674. [Google Scholar] [CrossRef]
- Osler, T.J. The fractional derivative of a composite function. Siam J. Math. Anal. 1970, 1, 288–293. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxena, R.K.; Parmar, R.K. Some Families of the Incomplete H-Functions and the Incomplete H¯-Functions and Associated Integral Transforms and Operators of Fractional Calculus with Applications. Russ. J. Math. Phys. 2018, 25, 116–138. [Google Scholar] [CrossRef]
- Mittag-Leffler, G. Sur la représentation analytique d’une branche uniforme “une fonction monogène”: cinquième note. Acta Math. 1905, 29, 101–181. [Google Scholar] [CrossRef]
- Atangana, A.; Gomez-Aguilar, J.F. Fractional derivatives with no-index law property: Application to chaos and statistics. Chaos Solitons Fractals 2018, 114, 516–535. [Google Scholar] [CrossRef]
- Hristov, J. (Ed.) The Craft of Fractional Modelling in Science and Engineering; MDPI: Basel, Switzerland, 2018. [Google Scholar]
- Jarad, F.; Uğurlu, E.; Abdeljawad, T.; Baleanu, D. On a new class of fractional operators. Adv. Differ. Equ. 2017, 247. [Google Scholar] [CrossRef]
- Fernandez, A.; Baleanu, D. On a new definition of fractional differintegrals with Mittag-Leffler kernel. Filomat 2019, 33, 245–254. [Google Scholar]
- Fernandez, A.; Baleanu, D.; Srivastava, H.M. Series representations for models of fractional calculus involving generalized Mittag-Leffler functions. Commun. Nonlinear Sci. Numer. Simul. 2019, 67, 517–527. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baleanu, D.; Fernandez, A. On Fractional Operators and Their Classifications. Mathematics 2019, 7, 830. https://doi.org/10.3390/math7090830
Baleanu D, Fernandez A. On Fractional Operators and Their Classifications. Mathematics. 2019; 7(9):830. https://doi.org/10.3390/math7090830
Chicago/Turabian StyleBaleanu, Dumitru, and Arran Fernandez. 2019. "On Fractional Operators and Their Classifications" Mathematics 7, no. 9: 830. https://doi.org/10.3390/math7090830
APA StyleBaleanu, D., & Fernandez, A. (2019). On Fractional Operators and Their Classifications. Mathematics, 7(9), 830. https://doi.org/10.3390/math7090830