Three-Stage Estimation of the Mean and Variance of the Normal Distribution with Application to an Inverse Coefficient of Variation with Computer Simulation
Abstract
:1. Introduction
1.1. Minimum Risk Estimation
1.2. A Unified One Decision Framework
2. Three-Stage Estimation of the Mean and Variance
2.1. Three-Stage Sampling Procedure
2.2. The Asymptotic Characteristics of the Main Study Phase
2.3. The Asymptotic Characteristics of the Fine-Tuning Phase
3. Three-Stage Coverage Probability of the Mean
4. The Asymptotic Regret Incurred in Estimating
5. Simulation Results
5.1. The Mean and the Variance of the Normal Distribution
5.2. The Inverse Coefficient of Variation
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mukhopadhyay, N.; de Silva, B. Sequential Methods and Their Applications; CRC: New York, NY, USA, 2009. [Google Scholar]
- Degroot, M.H. Optimal Statistical Decisions; McGraw-Hill: New York, NY, USA, 1970. [Google Scholar]
- Dantzig, G.B. On the nonexistence of tests of ‘students’ hypothesis having power functions independent of σ. Ann. Math. Stat. 1940, 11, 186–192. [Google Scholar] [CrossRef]
- Hall, P. Asymptotic theory and triple sampling of sequential estimation of a mean. Ann. Stat. 1981, 9, 1229–1238. [Google Scholar] [CrossRef]
- Anscombe, F.J. Sequential estimation. J. Roy. Stat. Soc. 1953, 15, 1–21. [Google Scholar] [CrossRef]
- Robbins, H. Sequential Estimation of the Mean of a Normal Population. Probability and Statistics (Harald Cramer Volume); Almquist and Wiksell: Uppsala, Sweden, 1959; pp. 235–245. [Google Scholar]
- Chow, Y.S.; Robbins, H. On the asymptotic theory of fixed width sequential confidence intervals for the mean. Ann. Math. Stat. 1965, 36, 1203–1212. [Google Scholar] [CrossRef]
- Stein, C. A two-sample test for a linear hypothesis whose power is independent of the variance. Ann. Math. Stat. 1945, 16, 243–258. [Google Scholar] [CrossRef]
- Cox, D.R. Estimation by double sampling. Biometrika 1952, 39, 217–227. [Google Scholar] [CrossRef]
- Mukhopadhyay, N. Sequential estimation of a location parameter in exponential distributions. Calcutta Stat. Assoc. Bull. 1974, 23, 85–95. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Hilton, G.F. Two-stage and sequential procedures for estimating the location parameter of a negative exponential distribution. S. Afr. Stat. J. 1986, 20, 117–136. [Google Scholar]
- Mukhopadhyay, N.; Darmanto, S. Sequential estimation of the difference of means of two negative exponential populations. Seq. Anal. 1988, 7, 165–190. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Hamdy, H.I. On estimating the difference of location parameters of two negative exponential distributions. Can. J. Stat. 1984, 12, 67–76. [Google Scholar] [CrossRef]
- Ghosh, M.; Mukhopadhyay, N. Sequential point estimation of the parameter of a rectangular distribution. Calcutta Stat. Assoc. Bull. 1975, 24, 117–122. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Ekwo, M.E. Sequential estimation problems for the scale parameter of a Pareto distribution. Scand. Actuar. J. 1987, 83–103. [Google Scholar] [CrossRef]
- Sinha, B.K.; Mukhopadhyay, N. Sequential estimation of a bivariate normal mean vector. Sankhya Ser. B 1976, 38, 219–230. [Google Scholar]
- Zacks, S. Sequential estimation of the mean of a lognormal distribution having a prescribed proportional closeness. Ann. Math. Stat. 1966, 37, 1688–1696. [Google Scholar] [CrossRef]
- Khan, R.A. Sequential estimation of the mean vector of a multivariate normal distribution. Indian Stat. Inst. 1968, 30, 331–334. [Google Scholar]
- Ghosh, M.; Mukhopadhyay, N.; Sen, P.K. Sequential Estimation; Wiley: New York, NY, USA, 1997. [Google Scholar]
- Hall, P. Sequential estimation saving sampling operations. J. Roy. Stat. Soc. B 1983, 45, 1229–1238. [Google Scholar] [CrossRef]
- Mukhopadhyay, N. A note on three-stage and sequential point estimation procedures for a normal mean. Seq. Anal. 1985, 4, 311–319. [Google Scholar] [CrossRef]
- Mukhopadhyay, N. Sequential estimation problems for negative exponential populations. Commun. Stat. Theory Methods A 1988, 17, 2471–2506. [Google Scholar] [CrossRef]
- Mukhopadhyay, N. Some properties of a three-stage procedure with applications in sequential analysis. Indian J. Stat Ser. A 1990, 52, 218–231. [Google Scholar]
- Mukhopadhyay, N.; Hamdy, H.I.; Al Mahmeed, M.; Costanza, M.C. Three-stage point estimation procedures for a normal mean. Seq. Anal. 1987, 6, 21–36. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Mauromoustakos, A. Three-stage estimation procedures of the negative exponential distribution. Metrika 1987, 34, 83–93. [Google Scholar] [CrossRef]
- Hamdy, H.I.; Pallotta, W.J. Triple sampling procedure for estimating the scale parameter of Pareto distribution. Commun. Stat. Theory Methods 1987, 16, 2155–2164. [Google Scholar] [CrossRef]
- Hamdy, H.I.; Mukhopadhyay, N.; Costanza, M.C.; Son, M.S. Triple stage point estimation for the exponential location parameter. Ann. Inst. Stat. Math. 1988, 40, 785–797. [Google Scholar] [CrossRef]
- Hamdy, H.I. Remarks on the asymptotic theory of triple stage estimation of the normal mean. Scand. J. Stat. 1988, 15, 303–310. [Google Scholar]
- Hamdy, H.I.; AlMahmeed, M.; Nigm, A.; Son, M.S. Three-stage estimation for the exponential location parameters. Metron 1989, 47, 279–294. [Google Scholar]
- Lohr, S.L. Accurate multivariate estimation using triple sampling. Ann. Stat. 1990, 18, 1615–1633. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Padmanabhan, A.R. A note on three-stage confidence intervals for the difference of locations: The exponential case. Metrika 1993, 40, 121–128. [Google Scholar] [CrossRef]
- Takada, Y. Three-stage estimation procedure of the multivariate normal mean. Indian J. Stat. Ser. B 1993, 55, 124–129. [Google Scholar]
- Hamdy, H.I.; Costanza, M.C.; Ashikaga, T. On the Behrens-Fisher problem: An integrated triple sampling approach. 1995; in press. [Google Scholar]
- Hamdy, H.I. Performance of fixed width confidence intervals under Type II errors: The exponential case. South. African Stat. J. 1997, 31, 259–269. [Google Scholar]
- AlMahmeed, M.; Hamdy, H.I. Sequential estimation of linear models in three stages. Metrika 1990, 37, 19–36. [Google Scholar] [CrossRef]
- AlMahmeed, M.; AlHessainan, A.; Son, M.S.; Hamdy, H.I. Three-stage estimation for the mean of a one-parameter exponential family. Korean Commun. Stat. 1998, 5, 539–557. [Google Scholar]
- Costanza, M.C.; Hamdy, H.I.; Haugh, L.D.; Son, M.S. Type II error performance of triple sampling fixed precision confidence intervals for the normal mean. Metron 1995, 53, 69–82. [Google Scholar]
- Yousef, A.; Kimber, A.; Hamdy, H.I. Sensitivity of Normal-Based Triple Sampling Sequential Point Estimation to the Normality Assumption. J. Stat. Plan. Inference 2013, 143, 1606–1618. [Google Scholar] [CrossRef]
- Yousef, A. Construction a Three-Stage Asymptotic Coverage Probability for the Mean Using Edgeworth Second-Order Approximation. Selected Papers on the International Conference on Mathematical Sciences and Statistics 2013; Springer: Singapore, 2014; pp. 53–67. [Google Scholar]
- Hamdy, H.I.; Son, S.M.; Yousef, S.A. Sensitivity Analysis of Multi-Stage Sampling to Departure of an underlying Distribution from Normality with Computer Simulations. J. Seq. Anal. 2015, 34, 532–558. [Google Scholar] [CrossRef]
- Yousef, A. A Note on a Three-Stage Sequential Confidence Interval for the Mean When the Underlying Distribution Departs away from Normality. Int. J. Appl. Math. Stat. 2018, 57, 57–69. [Google Scholar]
- Liu, W. A k-stage sequential sampling procedure for estimation of a normal mean. J. Stat. Plan. Inf. 1995, 65, 109–127. [Google Scholar] [CrossRef]
- Son, M.S.; Haugh, H.I.; Hamdy, H.I.; Costanza, M.C. Controlling type II error while constructing triple sampling fixed precision confidence intervals for the normal mean. Ann. Inst. Stat. Math. 1997, 49, 681–692. [Google Scholar] [CrossRef]
- Wald, A. Sequential Analysis; Wiley: New York, NY, USA, 1947. [Google Scholar]
- Simon, G. On the cost of not knowing the variance when making a fixed-width confidence interval for the mean. Ann. Math. Stat. 1968, 39, 1946–1952. [Google Scholar] [CrossRef]
- Martinsek, A.T. Negative regret, optimal stopping, and the elimination of outliers. J. Amer. Stat. Assoc. 1988, 83, 160–163. [Google Scholar] [CrossRef]
- McGibney, G.; Smith, M.R. An unbiased signal to noise ratio measure for magnetic resonance images. Med. Phys. 1993, 20, 1077–1079. [Google Scholar] [CrossRef]
- Mukhopadhyay, N.; Datta, S.; Chattopadhyay, S. Applied Sequential Methodologies: Real-World Examples with Data Analysis; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar] [CrossRef]
24 | 20.4 | 0.045 | 9.989 | 0.006 | 0.892 | 4.660 | 0.035 | −27.58 |
43 | 38.4 | 0.068 | 9.997 | 0.004 | 0.905 | 4.767 | 0.031 | −47.55 |
61 | 56.2 | 0.084 | 10.002 | 0.003 | 0.918 | 4.848 | 0.026 | −65.80 |
76 | 71.4 | 0.095 | 9.997 | 0.003 | 0.925 | 4.892 | 0.022 | −80.64 |
96 | 91.5 | 0.107 | 10.000 | 0.002 | 0.933 | 4.925 | 0.019 | −100.50 |
125 | 120.4 | 0.121 | 10.000 | 0.002 | 0.936 | 4.943 | 0.016 | −129.56 |
171 | 166.8 | 0.142 | 9.999 | 0.002 | 0.940 | 4.964 | 0.013 | −175.21 |
246 | 242.6 | 0.170 | 10.000 | 0.001 | 0.945 | 4.978 | 0.010 | −249.37 |
500 | 498.0 | 0.245 | 10.001 | 0.001 | 0.947 | 4.989 | 0.007 | −501.99 |
24 | 20.4 | 0.044 | 5.002 | 0.011 | 0.890 | 86.798 | 0.141 | −27.65 |
43 | 38.5 | 0.068 | 5.007 | 0.008 | 0.905 | 90.952 | 0.125 | −47.52 |
61 | 56.2 | 0.084 | 5.011 | 0.007 | 0.916 | 93.866 | 0.104 | −65.84 |
76 | 71.1 | 0.095 | 5.006 | 0.006 | 0.924 | 95.392 | 0.090 | −80.86 |
96 | 91.3 | 0.107 | 5.007 | 0.005 | 0.931 | 96.975 | 0.077 | −100.68 |
125 | 120.4 | 0.121 | 5.002 | 0.004 | 0.935 | 97.756 | 0.064 | −129.57 |
171 | 167.1 | 0.141 | 4.998 | 0.004 | 0.941 | 98.603 | 0.052 | −174.91 |
246 | 242.4 | 0.169 | 4.999 | 0.003 | 0.946 | 99.088 | 0.042 | −249.62 |
500 | 497.7 | 0.249 | 4.997 | 0.002 | 0.947 | 99.597 | 0.029 | −502.29 |
24 | 2.280 | 0.003 | −27.47 | 0.979 | 24 | 0.571 | 0.002 | −27.64 | 1.000 |
43 | 2.213 | 0.003 | −47.49 | 0.956 | 43 | 0.554 | 0.001 | −47.51 | 1.000 |
61 | 2.143 | 0.002 | −65.76 | 0.967 | 61 | 0.537 | 0.001 | −65.84 | 1.000 |
76 | 2.098 | 0.002 | −80.61 | 0.981 | 76 | 0.526 | 0.001 | −80.86 | 1.000 |
96 | 2.067 | 0.001 | −100.47 | 0.990 | 96 | 0.518 | 0.001 | −100.68 | 1.000 |
125 | 2.047 | 0.001 | −129.54 | 0.995 | 125 | 0.512 | 0.001 | −129.57 | 0.999 |
171 | 2.027 | 0.001 | −175.20 | 0.998 | 171 | 0.506 | 0.000 | −174.91 | 1.000 |
246 | 2.016 | 0.001 | −249.36 | 0.999 | 246 | 0.504 | 0.000 | −249.62 | 1.000 |
500 | 2.008 | 0.000 | −501.99 | 1.000 | 500 | 0.501 | 0.000 | −502.29 | 1.000 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousef, A.; Hamdy, H. Three-Stage Estimation of the Mean and Variance of the Normal Distribution with Application to an Inverse Coefficient of Variation with Computer Simulation. Mathematics 2019, 7, 831. https://doi.org/10.3390/math7090831
Yousef A, Hamdy H. Three-Stage Estimation of the Mean and Variance of the Normal Distribution with Application to an Inverse Coefficient of Variation with Computer Simulation. Mathematics. 2019; 7(9):831. https://doi.org/10.3390/math7090831
Chicago/Turabian StyleYousef, Ali, and Hosny Hamdy. 2019. "Three-Stage Estimation of the Mean and Variance of the Normal Distribution with Application to an Inverse Coefficient of Variation with Computer Simulation" Mathematics 7, no. 9: 831. https://doi.org/10.3390/math7090831
APA StyleYousef, A., & Hamdy, H. (2019). Three-Stage Estimation of the Mean and Variance of the Normal Distribution with Application to an Inverse Coefficient of Variation with Computer Simulation. Mathematics, 7(9), 831. https://doi.org/10.3390/math7090831