Dynamic Properties of Foreign Exchange Complex Network
Abstract
:1. Introduction
- Taking fully into consideration of the temporal characteristics of the FX market, using the method of the moving window correlation coefficient, we establish dynamic networks instead of a static network to investigate the FX market.
- This paper originally revealed that the normalized tree length of the FX network is strongly correlated with the European debt crisis and the CNY’s participation in special drawing rights by employing the complex network method.
- Literature dealing with the FX market is largely restricted to the return and volatility; investigation combining the topology variation of FX networks and market’s return and volatility appears to be scarce. Our research fills this gap.
2. Methodology
2.1. Network Construction
- (1)
- Created a network edge matrix (which contains edges) and sorted increase progressively based on distances.
- (2)
- Chose the first element (that is, the smallest distance) and connected them to form one edge.
- (3)
- Selected the next element and connected to constitute an edge. If it can make the network graph tree-like (ie, it cannot form a ring), then the edge was kept, otherwise the edge was abandoned.
- (4)
- Repeated step (3) until all elements were exhausted.
2.2. Network Topological Properties
2.2.1. Normalized Tree Length
2.2.2. Node Degree and Node Strength
2.2.3. Node Degree Distribution
2.2.4. Betweenness Centrality
2.2.5. Closeness Centrality
2.2.6. Survival Ratio
2.3. Market Phenomena
3. Empirical Analysis
3.1. Data
3.2. Dynamic Network Topological Properties
3.2.1. Normalized Tree Length
3.2.2. Degree Distribution
3.2.3. Centrality Analysis
3.2.4. Survival Ratio Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mendez, R.P. Harnessing the global foreign currency market: Proposal for a foreign currency exchange (FXE). Rev. Int. Polit. Econ. 1996, 3, 498–512. [Google Scholar] [CrossRef]
- Andersen, T.G.; Bollerslev, T.; Diebold, F.X.; Labys, P. The distribution of realized exchange rate volatility. J. Am. Stat. Assoc. 2001, 96, 42–55. [Google Scholar] [CrossRef]
- Mák, I.; Páles, J. The role of the FX swap market in the hungarian financial system. Gen. Inf. 2009, 4, 24–34. [Google Scholar]
- Lane, P.R.; Milesi-Ferretti, G.M. External wealth, the trade balance, and the real exchange rate. Eur. Econ. Rev. 2002, 46, 1049–1071. [Google Scholar] [CrossRef] [Green Version]
- Debelle, G. The Australian foreign exchange market. Econ. Rec. 2006, 22, 4–11. [Google Scholar]
- Hau, H. The exchange rate effect of multi-currency risk arbitrage. Soc. Sci. Electron. Publ. 2009, 47, 304–331. [Google Scholar] [CrossRef]
- Francis, B.; Paolo, V. An empirical study of portfolio-balance and information effects of order flow on exchange rates. J. Int. Money Financ. 2010, 29, 504–524. [Google Scholar] [Green Version]
- Kotzé, A.; Oosthuizen, R.; Pindza, E. Implied and local volatility surfaces for south african index and foreign exchange options. J. R. Financ. Manag. 2015, 8, 43–82. [Google Scholar] [CrossRef]
- Malone, S.; Gramacy, R.; Ter Horst, E. Timing foreign exchange markets. Econometrics 2016, 4, 15. [Google Scholar] [CrossRef]
- Huang, C.; Cao, J.; Wen, F.; Yang, X. Stability analysis of sir model with distributed delay on complex networks. PLoS ONE 2016, 11, e0158813. [Google Scholar] [CrossRef]
- Huang, C.; Liu, B. New studies on dynamic analysis of inertial neural networks involving non-reduced order method. Neurocomputing 2019, 325, 283–287. [Google Scholar]
- Yang, C.; Huang, L.; Li, F. Exponential synchronization control of discontinuous nonautonomous networks and autonomous coupled networks. Complexity 2018, 2018, 6164786. [Google Scholar] [CrossRef]
- Huang, C.; Liu, B.; Tian, X.; Yang, L.; Zhang, X. Global convergence on asymptotically almost periodic sicnns with nonlinear decay functions. Neural Process. Lett. 2019, 49, 625–641. [Google Scholar]
- Long, X.; Gong, S. New results on stability of Nicholson’s blowflies equation with multiple pairs of time-varying delays. Appl. Math. Lett. 2019. [Google Scholar] [CrossRef]
- Zhu, Q.; Huang, C.; Yang, X. Exponential stability for stochastic jumping bam neural networks with time-varying and distributed delays. Nonlinear Anal. Hybrid Syst. 2011, 5, 52–77. [Google Scholar] [CrossRef]
- Huang, C.; Su, R.; Cao, J.; Xiao, S. Asymptotically stable high-order neutral cellular neural networks with proportional delays and d operators. Math. Comput. Simul. 2019. [Google Scholar] [CrossRef]
- Song, C.; Fei, S.; Cao, J.; Huang, C. Robust synchronization of fractional-order uncertain chaotic systems based on output feedback sliding mode control. Mathematics 2019, 7, 599. [Google Scholar] [CrossRef]
- Hu, H.; Yuan, X.; Huang, L.; Huang, C. Global dynamics of an SIRS model with demographics and transfer from infectious to susceptible on heterogeneous networks. Math. Biosci. Eng. 2019, 16, 5729–5749. [Google Scholar] [CrossRef]
- Tan, Y.; Huang, C.; Sun, B.; Wang, T. Dynamics of a class of delayed reaction-diffusion systems with Neumann boundary condition. J. Math. Anal. Appl. 2018, 458, 1115–1130. [Google Scholar]
- Huang, C.; Zhang, H.; Cao, J.; Hu, H. Stability and Hopf bifurcation of a delayed prey-predator model with disease in the predator. Int. J. Bifurcat. Chaos 2019, 29, 1950091. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, H.; Huang, L. Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent mortality term. Commun. Pur. Appl. Anal. 2019, 18, 3337–3349. [Google Scholar] [CrossRef]
- Huang, C.; Qiao, Y.; Huang, L.; Agarwal, R. Dynamical behaviors of a food-chain model with stage structure and time delays. Adv. Differ. Equ. 2018, 2018. [Google Scholar] [CrossRef]
- Emma, M.I. An analysis of extreme movements of exchange rates of the main currencies traded in the foreign exchange market. Appl. Econ. 2012, 44, 4631–4637. [Google Scholar]
- Hussein, M.S. Event-Based Microscopic Analysis of the FX Market. Ph.D. Thesis, University of Essex, Colchester, UK, 2013; pp. 1–202. [Google Scholar]
- Holtgrave, M.; Onay, M. Success through trust, control, and learning? Contrasting the drivers of SME performance between different modes of foreign market entry. Adm. Sci. 2017, 7, 9. [Google Scholar] [CrossRef]
- Nie, C.X.; Song, F.T. Relationship between entropy and dimension of financial correlation-based network. Entropy 2018, 20, 177. [Google Scholar] [CrossRef]
- Hayward, R. Foreign exchange speculation: An event study. Int. J. Financ. Stud. 2018, 6, 22. [Google Scholar] [CrossRef]
- Niu, H.L.; Zhang, L. Nonlinear Multiscale Entropy and Recurrence Quantification Analysis of Foreign Exchange Markets Efficiency. Entropy 2018, 20, 17. [Google Scholar] [CrossRef]
- Zhou, G.Y.; Yan, X.X.; Luo, S.M. Financial Security and Optimal Scale of Foreign Exchange Reserve in China. Sustainability 2018, 10, 1724. [Google Scholar] [CrossRef]
- Mcdonald, M.; Suleman, O.; Williams, S.; Howison, S.; Johnson, N.F. Detecting a currency’s dominance or dependence using foreign exchange network trees. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2005, 72, 046106. [Google Scholar] [CrossRef] [PubMed]
- Guillermo, J.O.; David, M. Cross-country hierarchical strcture and currency crisis. Int. J. Mod. Phys. C 2006, 17, 333–341. [Google Scholar]
- Keskin, M.; Deviren, B.; Kocakaplan, Y. Topology of the correlation networks among major currencies using hierarchical structure methods. Phys. A Stat. Mech. Appl. 2011, 390, 719–730. [Google Scholar] [CrossRef]
- Wu, X.Y.; Zheng, Z.G. Hierarchical cluster-tendency analysis of the group structure in the foreign exchange market. Front. Phys. 2013, 8, 451–460. [Google Scholar] [CrossRef]
- Jiang, J.; Ma, K.; Cai, X. Scaling and correlations in foreign exchange market. Phys. A Stat. Mech. Appl. 2007, 375, 274–280. [Google Scholar] [CrossRef]
- Mizuno, T.; Takayasu, H.; Takayasu, M. Correlation networks among currencies. Phys. A Stat. Mech. Appl. 2006, 364, 336–342. [Google Scholar] [CrossRef] [Green Version]
- Kwapien, J.; Gworek, S.; Drozdz, S. Structure and evolution of the foreign exchange networks. Acta Phys. Pol. 2009, 40, 1–23. [Google Scholar]
- Mai, Y.; Chen, H.; Zou, J.Z.; Li, S.P. Currency co-movement and network correlation structure of foreign exchange market. Phys. A Stat. Mech. Appl. 2018, 492, 65–74. [Google Scholar] [CrossRef]
- Wang, G.J.; Xie, C. Tail dependence structure of the foreign exchange market: A network view. Expert Syst. Appl. 2015, 46, 164–179. [Google Scholar] [CrossRef]
- Cao, G.X.; Zhang, Q.; Li, Q.C. Causal relationship between the global foreign exchange market based on complex networks and entropy theory. Chaos Solitons Fract. 2017, 99, 36–44. [Google Scholar] [CrossRef]
- Fenn, D.J.; Porter, M.A.; Mcdonald, M.; Williams, S.; Johnson, N.F.; Jones, N.S. Dynamic communities in multichannel data: An application to the foreign exchange market during the 2007–2008 credit crisis. Chaos 2009, 19, 033119. [Google Scholar] [CrossRef]
- Wang, G.J.; Xie, C.; Han, F.; Sun, B. Similarity measure and topology evolution of foreign exchange markets using dynamic time warping method: Evidence from minimal spanning tree. Phys. A Stat. Mech. Appl. 2012, 391, 4136–4146. [Google Scholar] [CrossRef]
- Fenn, D.J.; Porter, M.A.; Mucha, P.J.; Mcdonald, M.; Williams, S.; Johnson, N.F.; Jones, N.S. Dynamical clustering of exchange rates. Quant. Financ. 2012, 12, 1493–1520. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T. The Renminbi exchange rate reform and its implications for Asian markets. China Q. Int. Strateg. Stud. 2016, 2, 485–506. [Google Scholar] [CrossRef]
- Takatoshi, I. A new financial order in Asia: Will a RMB bloc emerge? J. Int. Money Financ. 2017, 74, 1–57. [Google Scholar]
- Flaschel, P.; Hartmann, F.; Malikane, C.; Proaño, C.R. A behavioral macroeconomic model of exchange rate fluctuations with complex market expectations formation. Comput. Econ. 2015, 45, 669–691. [Google Scholar] [CrossRef]
- Bekaert, G.; Hodrick, R.J. Characterizing predictable components in excess returns on equity and foreign exchange markets. J. Financ. 1992, 47, 467–509. [Google Scholar] [CrossRef]
- Christiansen, C. Intertemporal risk-return trade-off in foreign exchange rates. J. Int. Financ. Mark. Inst. Money 2011, 21, 535–549. [Google Scholar] [CrossRef]
- Humala, A.; Rodriguez, G. Some stylized facts of return in the foreign exchange and stock markets in Peru. Stud. Econ. Financ. 2011, 30, 139–158. [Google Scholar] [CrossRef]
- Juselius, K.; Assenmacher, K. Real exchange rate persistence and the excess return puzzle: The case of Switzerland versus the US. J. Appl. Econometr. 2017, 32, 1145–1155. [Google Scholar] [CrossRef]
- Abuelfadl, M. Individual foreign exchange investors, return predictability and market timing. Ann. Financ. Econ. 2017, 12, 238–256. [Google Scholar] [CrossRef]
- Zhou, B. High-frequency data and volatility in foreign-exchange rates. J. Bus. Econ. Stat. 1996, 14, 45–52. [Google Scholar]
- Mcgroarty, F.; Gwilym, O.A.; Thomas, S. The role of private information in return volatility, bid-ask spreads and price levels in the foreign exchange market. J. Int. Financ. Mark. Inst. Money 2009, 19, 387–401. [Google Scholar] [CrossRef]
- Dumas, B.; Solnik, B. The world price of foreign exchange risk. J. Financ. 2012, 50, 445–479. [Google Scholar] [CrossRef]
- Daigler, R.T.; Hibbert, A.M.; Pavlova, I. Examining the return-volatility relation for foreign exchange: Evidence from the Euro VIX. J. Futures Mark. 2014, 34, 74–92. [Google Scholar] [CrossRef]
- Menkhoff, L.; Sarno, L.; Schmeling, M.; Schrimpf, A. Information flows in foreign exchange markets: Dissecting customer currency trades. J. Financ. 2016, 71, 601–634. [Google Scholar] [CrossRef]
- Bolboaca, S.D.; Jäntschi, L. Pearson versus Spearman, Kendall’s tau correlation analysis on structure-activity relationships of biologic active compounds. Leonardo. J. Sci. 2006, 5, 179–200. [Google Scholar]
- Mantegna, R.N. Hierarchical structure in financial markets. Eur. Phys. J. B Condens. Matter Complex Syst. 1999, 11, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7, 48–50. [Google Scholar] [CrossRef]
- Onnela, J.P.; Chakraborti, A.; Kaski, K.; Kertész, J. Dynamic asset trees and black monday. Phys. A Stat. Mech. Appl. 2003, 324, 247–252. [Google Scholar] [CrossRef]
- Adamic, L.A.; Lukose, R.M.; Puniyani, A.R.; Huberman, B.A. Search in power-law networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2001, 64, 046135. [Google Scholar] [CrossRef] [Green Version]
- Yook, S.H.; Jeong, H.; Barabási, A.L. Modeling the internet’s large-scale topology. Proc. Natl. Acad. Sci. USA 2002, 99, 13382–13386. [Google Scholar] [CrossRef]
- Huang, W.Q.; Yao, S.; Zhuang, X.T.; Yuan, Y. Dynamic asset trees in the US stock market: Structure variation and market phenomena. Chaos Solitons Fract. 2017, 94, 44–53. [Google Scholar] [CrossRef]
- Hai, X.D.; Ren, G.J.; Yu, Y.G.; Xu, C.H. Adaptive Pinning Synchronization of Fractional Complex Networks with Impulses and Reaction–Diffusion Terms. Mathematics 2019, 7, 405. [Google Scholar] [CrossRef]
- Rodríguez, L.C.; Alarcón, R.L. Use of Enumerative Combinatorics for proving the applicability of an asymptotic stability result on discrete-time SIS epidemics in complex networks. Mathematics 2019, 30, 30. [Google Scholar] [CrossRef]
- Jäntschi, L. A Test Detecting the Outliers for Continuous Distributions Based on the Cumulative Distribution Function of the Data Being Tested. Symmetry 2019, 11, 835. [Google Scholar] [CrossRef]
- Clauset, A.; Shalizi, C.R.; Newman, M.E.J. Power-law distributions in empirical data. Siam Rev. 2009, 51, 661–703. [Google Scholar] [CrossRef]
- Wang, G.J.; Xie, C.; Chen, Y.J.; Chen, S. Statistical properties of the foreign exchange network at different time scales: Evidence from detrended cross-correlation coefficient and minimum spanning tree. Entropy 2013, 15, 1643–1662. [Google Scholar] [CrossRef]
- Wang, G.J.; Xie, C.; Zhang, P.; Han, F.; Chen, S. Dynamics of foreign exchange networks: a time-varying copula approach. Discret. Dyn. Nat. Soc. 2014, 2014, 170921. [Google Scholar] [CrossRef]
- Yoon, J.; Blumer, A.; Lee, K. An algorithm for modularity analysis of directed and weighted biological networks based on edge-betweenness centrality. Bioinformatics 2006, 22, 3106–3108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costenbader, E.; Valente, T.W. The stability of centrality measures when networks are sampled. Soc. Netw. 2003, 25, 283–307. [Google Scholar] [CrossRef]
- Jang, W.; Lee, J.; Chang, W. Currency crises and the evolution of foreign exchange market: Evidence from minimum spanning tree. Phys. A Stat. Mech. Appl. 2011, 390, 707–718. [Google Scholar] [CrossRef]
Continent | Country | Symbol | Continent | Country | Symbol |
---|---|---|---|---|---|
Africa | Egyptian Pound | EGP | Europe | Romania | RON |
South Africa | ZAR | Russia | RUB | ||
Asia | China | CNY | Sweden | SEK | |
India | INR | Switzerland | CHF | ||
Indonesia | IDR | Turkey | TRY | ||
Japan | JPY | Middle East | Bahrain | BHD | |
Malaysia | MYR | Israeli | ILS | ||
Pakistan | PKR | Kuwait | KWD | ||
Philippine | PHP | Saudi Arab | SAR | ||
Singapore | SGD | United Arab Emirates | AED | ||
South Korea | KRW | North America | Canada | CAD | |
Taiwan, China | TWD | Mexico | MXN | ||
Thailand | THB | USA | USD | ||
Vietnam | VND | South America | Argentina | ARS | |
Europe | the UK | GBP | Brazilia | BRL | |
Czech | CZK | Chile | CLP | ||
Europe | EUR | Colombia | COP | ||
Hungary | HUF | Peru | PEN | ||
Iceland | ISK | Oceania | Australia | AUD | |
Norway | NOK | New Zealand | NZD | ||
Poland | PLN |
Highest Node Degree | Highest Node Strength | Highest Betweenness Centrality | Highest Closeness Centrality | ||||
---|---|---|---|---|---|---|---|
Currency | Frequency | Currency | Frequency | Currency | Frequency | Currency | Frequency |
USD | 2519 | USD | 1393 | USD | 1921 | USD | 1346 |
EUR | 337 | MXN | 337 | EUR | 553 | EUR | 786 |
MXN | 212 | CNY | 193 | PLN | 132 | PLN | 242 |
AUD | 164 | SAR | 164 | HUF | 113 | CNY | 107 |
MYR | 148 | AUD | 154 | ZAR | 65 | HUF | 94 |
CNY | 102 | AED | 147 | PHP | 65 | PHP | 92 |
PLN | 68 | MYR | 135 | TRY | 60 | TWD | 78 |
TRT | 50 | CZK | 108 | CNY | 36 | NOK | 55 |
HUF | 36 | PLN | 105 | MXN | 31 | INR | 50 |
KRW | 27 | HUF | 100 | TWD | 28 | CZK | 33 |
The Quantity of | The Quantity of | The Quantity of | The Quantity of | |
---|---|---|---|---|
0.40∼0.59 | 1 | 2 | 1 | 0 |
0.20∼0.39 | 1 | 8 | 3 | 3 |
0.00∼0.19 | 19 | 14 | 15 | 28 |
−0.19∼0.00 | 16 | 13 | 18 | 10 |
−0.39∼ | 3 | 2 | 4 | 0 |
∼ | 1 | 2 | 0 | 0 |
Significant positive | 17 | 21 | 18 | 29 |
Significant negative | 14 | 14 | 16 | 9 |
The Quantity of | The Quantity of | The Quantity of | The Quantity of | |
---|---|---|---|---|
0.40∼0.59 | 1 | 1 | 2 | 0 |
0.20∼0.39 | 8 | 8 | 6 | 0 |
0.00∼0.19 | 5 | 8 | 9 | 28 |
−0.19∼0.00 | 22 | 11 | 19 | 13 |
−0.39∼−0.20 | 5 | 5 | 5 | 0 |
−0.59∼−0.40 | 0 | 6 | 0 | 0 |
−0.79∼−0.60 | 0 | 2 | 0 | 0 |
Significant positive | 14 | 16 | 16 | 18 |
Significant negative | 26 | 23 | 21 | 6 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Wen, S.; Liu, Z.; Li, C.; Huang, C. Dynamic Properties of Foreign Exchange Complex Network. Mathematics 2019, 7, 832. https://doi.org/10.3390/math7090832
Yang X, Wen S, Liu Z, Li C, Huang C. Dynamic Properties of Foreign Exchange Complex Network. Mathematics. 2019; 7(9):832. https://doi.org/10.3390/math7090832
Chicago/Turabian StyleYang, Xin, Shigang Wen, Zhifeng Liu, Cai Li, and Chuangxia Huang. 2019. "Dynamic Properties of Foreign Exchange Complex Network" Mathematics 7, no. 9: 832. https://doi.org/10.3390/math7090832
APA StyleYang, X., Wen, S., Liu, Z., Li, C., & Huang, C. (2019). Dynamic Properties of Foreign Exchange Complex Network. Mathematics, 7(9), 832. https://doi.org/10.3390/math7090832