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Abstract: Recently, the valuation of variable annuity products has become a hot topic in actuarial
science. In this paper, we use the Fourier cosine series expansion (COS) method to value the
guaranteed minimum death benefit (GMDB) products. We first express the value of GMDB by the
discounted density function approach, then we use the COS method to approximate the valuation
Equations. When the distribution of the time-until-death random variable is approximated by a
combination of exponential distributions and the price of the fund is modeled by an exponential Lévy
process, explicit equations for the cosine coefficients are given. Some numerical experiments are also
made to illustrate the efficiency of our method.

Keywords: equity-linked death benefits; Fourier cosine series expansion; guaranteed minimum death
benefit; option; valuation; Lévy process
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1. Introduction

The guaranteed minimum death benefit (GMDB) is a common rider embedded in variable annuity
products that promises a minimum payout upon the death of the insured. In this product, policyholders
first pay premiums to the insurance company, and then, investment accounts are established for capital
investment. When the insured dies, a payment shall be given to the designated beneficiary, and the
payout amount depends on the performance of the policyholder’s account. This mechanism not
only provides insurance guarantee for policyholders, but also has the opportunity to benefit from the
financial market, which appeals to customers.

For t ≥ 0, let S(t) = S(0)eX(t) denote the price of a stock fund or mutual fund at time t. For a
person currently aged x, let Tx denote the remaining lifetime, called the time-until-death random
variable hereafter. Moreover, we assume Tx is independent with the asset price process S(t) throughout
this paper. Consider a GMDB rider that guarantees a payment of b(S(Tx)) to the beneficiary when
the insured dies, where b(·) is an equity-linked death benefit function. For a constant force of interest
δ ≥ 0, we are interested in valuing the following expectation:

Vx := E[e−δTx b(S(Tx))], (1)
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which represents a fair price for an equity-linked life-contingent payment at Tx. Since most contracts
have a finite expiry date, we can modify (1) by introducing an expiry date T and consider:

Vx,T := E[e−δTx b(S(Tx))I(Tx ≤ T)], (2)

where I(A) denotes the indicator function of event A.
We are also interested in the case when the death benefit amount depends on two stocks

(or stock funds). Let {S1(t), S2(t)}t≥0 denote the price process of two stocks, and let:

Xi(t) = ln(Si(t)/Si(0)), i = 1, 2, t ≥ 0.

In the sequel, it is also assumed that Tx is independent with both S1(t) and S2(t). Accordingly,
we are interested in evaluating the following expectations:

Vx := E[e−δTx b(S1(Tx), S2(Tx))], Vx,T := E[e−δTx b(S1(Tx), S2(Tx))I(Tx ≤ T)].

Recently, the valuation of the GMDB product has drawn many researchers’ attention.
Under an exponential mortality law, Milevsky and Posner [1] proposed a risk-neutral framework
to derive valuation equations for GMDB contracts. Besides, they conducted a numerical study under
the Gompertz-Makeham law. Later, in Bauer et al. [2], they supposed that the death should only
occur at the policy anniversary date, which facilitates a discrete numerical valuation approach for
fairly valuing varieties of guaranteed riders, including GMDB. Gerber et al. [3] proposed a discounted
density approach to value GMDB in a Brownian motion risk model, and their results were extended
by Gerber et al. [4] and Siu et al. [5] to the jump diffusion model and the regime-switching jump
diffusion model, respectively. Based on the fact that the combination of exponential distributions is
weakly dense on the set of probability functions defined on [0, ∞) (see Dufresne [6] and Ko and Ng [7]),
we notice that the density function of the time-until-death random variable was approximated by a
linear combination of exponential distributions in Gerber et al. [3,4] and Siu et al. [5]. More recently,
Zhang and Yong [8] and Zhang et al. [9] used two different methods to value GMDB products.
Recent related literature can be found in Dai et al. [10], Bélanger et al. [11], Kang and Ziveyi [12],
Asmussen et al. [13], and Zhou and Wu [14].

When the density function of the time-until-death random variable is approximated by a linear
sum of exponential distributions, Gerber et al. [3,4,15] derived explicit valuation equations for GMDB
contracts under various payoffs. The simplicity of using a combination of exponential distributions is
excellent, but they are not representative of reality. A direct way to calibrate this is to use life table
data. In Ulm [16,17], he emphasized the valuation of GMDB products under mortality laws, such as
the De Moivre law of mortality and the Makeham law of mortality. A similar consideration could
be found in Liang et al. [18]. They novelly introduced the piecewise constant forces of the mortality
assumption to describe the time-until-death variable, then decomposed the valuation problem and
presented explicit valuation equations for GMDB.

Except the aforementioned assumptions on the time-until-death random variable, the modeling
of the asset process has attracted the attention of scholars. Brownian motion was widely used to
model the log-asset price process, which was adopted in Milevsky and Posner [1], Bauer et al. [2]
(Section 4), Gerber et al. [3], and Liang et al. [18]. In the field of financial markets, this case is basically
a Black-Scholes framework. However, more processes could be also implemented. In Gerber et al. [4],
Kou’s jump model was used as the log-asset process. A counterpart study of Gerber et al. [3] was
referred to by Gerber et al. [15], in which a random walk exponentially generates the price process.
To study the valuation issue in a different perspective, scholars turned to the regime-switching model,
which was used to investigate the performance of an object subject to the economic changes in financial
markets. In the literature, interest readers can refer to Fan et al. [19], Siu et al. [5], Ignatieva et al. [20],
and Hieber [21].
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In Fang and Oosterlee [22], a highly-efficient option pricing method was proposed to price European
options. The method was based on the Fourier cosine series expansions, and it is now called the cosine
series expansion (COS) method in the literature. The COS method is quite easy to implement to
approximate an integrable function as long as the objective function has a closed-form Fourier transform.
The one-dimensional COS (1D COS) method in [22] was extended to the two-dimensional COS method
(2D COS) by Ruijter and Oosterlee [23] to price financial options in two-dimensional asset price processes.
Leitao et al. [24] proposed a data-driven COS method. Except for option pricing, this method has been
adopted in insurance ruin theory. For example, Chau et al. [25,26] used the 1D COS method to compute
the ruin probability and the expected discounted penalty function; Zhang [27] approximated the density
function of the time to ruin by both 1D and 2D COS methods; Yang et al. [28] proposed a nonparametric
estimator for the deficit at ruin by the 2D COS method; Wang et al. [29] and Huang et al. [30] used the
1D COS method to estimate the expected discounted penalty function under some risk models with
stochastic premium income. The COS method has also been used by some authors to value variable
annuities. For example, Deng et al. [31] used the 1D COS method for equity-indexed annuity products
under general exponential Lévy models; Alonso-García et al. [32] extended the 1D COS method to the
pricing and hedging of variable annuities embedded with guaranteed minimum withdraw benefit riders.
The latest research on Fourier transform was given by Zhang et al. [33], Chan [34], Zhang and Liu [35],
Have and Oosterlee [36], Shimizu and Zhang [37], Tour [38], Zhang [39], and Wang et al. [40].

The discounted density method proposed by Gerber et al. [3,4] can be successfully used to
value GMDB products when the log-return process is the Brownian motion or Kou’s jump diffusion
model. Under these two models, the density functions have some closed-form expressions. However,
in practice, we cannot obtain the closed-from expression for the discounted density function. In this
paper, we use the COS method to approximate the discounted density function, which is applicable
since most of the widely-used Lévy processes have explicit characteristic functions. To the best of our
knowledge, this is the first paper exploring the COS method on numerical valuation of the GMDB
product under the general exponential Lévy models. In particular, there are few papers on GMDB
valuation dependent on two stock prices in the literature, and this is the first paper dealing with
this problem.

This paper aims to value the GMDB contracts in a risk-neutral framework, mainly by numerically
solving Equations (1) and (2). In subsequent sections, we first briefly recall the COS method in Fang and
Oosterlee [22], then adopt the method to approximate Vx and Vx,T in the one-dimensional framework.
We define auxiliary functions to simplify deductions and display equations under different payoffs in
Section 2. Motivated by Gerber et al. [3], we consider the situation where the density function of Tx is
approximated by a linear combination of exponential distributions, and calculate cosine coefficients
in Section 4.1. Under the multi-dimensional case, we shed light on a two-dimensional framework
in Section 3. Finally, numerical examples are presented in Section 4, in which we display tables and
figures to illustrate the performance of our proposed approach.

2. 1D COS Approximation

In the section, we shall use the 1D COS method to compute Vx and Vx,T . The idea of the 1D COS
method is that every absolutely integrable function f can be approximated on a truncated domain
[a1, a2] by a truncated Fourier cosine series with N terms,

f (y) ≈
N−1

∑
k=0

′Ak( f , a1, a2) cos
(

kπ
y− a1

a2 − a1

)
, (3)

where ∑ ′ means that the first term in the summation has half weight, and the cosine coefficients are
given by:

Ak( f , a1, a2) =
2

a2 − a1
Re
{
F f

(
kπ

a2 − a1

)
exp

(
−i

ka1π

a2 − a1

)}
. (4)
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Here, F f (s) =
∫

eisy f (y)dy, s ∈ R, is the Fourier transform of f , and Re(·) means taking the real
part.

Let fTx (·) denote the probability density function of Tx, and for t > 0, let fX(t)(·) be the probability
density function of X(t). By changing the order of integrals, we can obtain:

Vx =
∫ ∞

0
E[e−δtb(S(t))] fTx (t)dt

=
∫ ∞

0
e−δt

∫ ∞

−∞
b(S(0)ey) fX(t)(y)dy fTx (t)dt

=
∫ ∞

−∞
b(S(0)ey) f δ

X(Tx)
(y)dy, (5)

where:
f δ
X(Tx)

(y) =
∫ ∞

0
e−δt fX(t)(y) fTx (t)dt (6)

is the discounted density function of the random variable X(Tx). Similarly, for the T-year
life-contingent option, we have:

Vx,T =
∫ ∞

−∞
b(S(0)ey) f δ

X(Tx),T(y)dy, (7)

where:

f δ
X(Tx),T(y) =

∫ T

0
e−δt fX(t)(y) fTx (t)dt. (8)

We shall implement the 1D COS method to compute the integrals in (5) and (7). Instead of
expanding the discounted densities f δ

X(Tx)
and f δ

X(Tx),T
via Fourier cosine series, we shall consider the

following auxiliary functions:

gδ
n(y) = eny f δ

X(Tx)
(y), gδ

n,T(y) = eny f δ
X(Tx),T(y), n ≥ 0.

Suppose that both gδ
n and gδ

n,T belong to L1(R), then by Equations (3) and (4), we have:

gδ
n(y) ≈

N−1

∑
k=0

′Ak(gδ
n, a1, a2) cos

(
kπ

y− a1

a2 − a1

)
(9)

and:

gδ
n,T(y) ≈

N−1

∑
k=0

′Ak(gδ
n,T , a1, a2) cos

(
kπ

y− a1

a2 − a1

)
. (10)

Remark 1. The cosine coefficients Ak(gδ
n, a1, a2) and Ak(gδ

n,T , a1, a2) can be explicitly computed when
{X(t)}t≥0 is a Lévy process and fTx is a combination of exponential density function. To this end, it suffices
to specify the Fourier transforms Fgδ

n and Fgδ
n,T . Suppose that {X(t)}t≥0 (with X(0) = 0) is a Lévy process

with characteristic function:
φX(t)(s) = E[eisX(t)] = etΨX(s), s ∈ R, (11)

where ΨX(s) = ln(E[eisX(1)]) is called the characteristic exponent. Furthermore, suppose that:

fTx (t) =
m

∑
j=1

Ajαje
−αjt, t > 0, (12)

where αj > 0 and ∑m
j=1 Aj = 1. Under these assumptions, one easily obtains:

Fgδ
n(s) =

m

∑
j=1

Ajαj

δ + αj −ΨX(s− in)
(13)
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and:

Fgδ
n,T(s) =

m

∑
j=1

Ajαj
1− e−(δ+αj−ΨX(s−in))T

δ + αj −ΨX(s− in)
. (14)

In the sequel, we shall consider three payoff functions.

Case 1. b(s) = s.

In this case, Equations (5) and (7) become:

Vx = S(0)
∫ ∞

−∞
gδ

1(y)dy, Vx,T = S(0)
∫ ∞

−∞
gδ

1,T(y)dy.

For small number c1 and large number c2, using Equation (9), we can approximate Vx as follows,

Vx ≈ S(0)
∫ c2

c1

gδ
1(y)dy

≈ S(0)
∫ c2

c1

N−1

∑
k=0

′Ak(gδ
1, a1, a2)cos

(
kπ

y− a1

a2 − a1

)
dy

= S(0)
N−1

∑
k=0

′Ak(gδ
1, a1, a2) · χk(a1, a2, c1, c2), (15)

where:

χk(a1, a2, c1, c2) =


a2 − a1

kπ

[
sin
(

kπ
c2 − a1

a2 − a1

)
− sin

(
kπ

c1 − a1

a2 − a1

)]
, k 6= 0,

c2 − c1, k = 0.

Similarly, Vx,T can be approximated as follows,

Vx,T ≈ S(0)
N−1

∑
k=0

′Ak(gδ
1,T , a1, a2) · χk(a1, a2, c1, c2). (16)

Case 2. b(s) = snI(s>K) with n ≥ 0 and K > 0.

Here, the positive constant K denotes the strike price. Put κ = ln(K/S(0)). It follows from
Equation (5) that:

Vx =
∫ ∞

κ
[S(0)]neny f δ

X(Tx)
(y)dy =

∫ ∞

κ
[S(0)]ngδ

n(y)dy.

Then, using the 1D COS method, we obtain for large number c2,

Vx ≈ [S(0)]n
N−1

∑
k=0

′Ak(gδ
n, a1, a2) · χk(a1, a2, κ, c2). (17)

Similarly, for Vx,T , we have:

Vx,T ≈ [S(0)]n
N−1

∑
k=0

′Ak(gδ
n,T , a1, a2) · χk(a1, a2, κ, c2). (18)

Remark 2. For the call option, the payoff is given by:

b(s) = (s− K)+ = sI(s>K) − KI(s>K).
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By applying Equations (5) and (17), we obtain:

Vx =
∫ ∞

κ
S(0)ey f δ

X(Tx)
(y)dy−

∫ ∞

κ
K f δ

X(Tx)
(y)dy

= S(0)
∫ ∞

κ
gδ

1(y)dy− K
∫ ∞

κ
gδ

0(y)dy

≈ S(0)
N−1

∑
k=0

′Ak(gδ
1, a1, a2) · χk(a1, a2, κ, c2)− K

N−1

∑
k=0

′Ak(gδ
0, a1, a2) · χk(a1, a2, κ, c2). (19)

For the T-year life-contingent option, we have:

Vx,T ≈ S(0)
N−1

∑
k=0

′Ak(gδ
1,T , a1, a2) · χk(a1, a2, κ, c2)− K

N−1

∑
k=0

′Ak(gδ
0,T , a1, a2) · χk(a1, a2, κ, c2). (20)

Case 3. b(s) = snI(s<K) with n ≥ 0 and K > 0.

By Equation (5) and the 1D COS method, we have for small number c1,

Vx =
∫ κ

∞
[S(0)]ngδ

n(y)dy ≈ [S(0)]n
∫ κ

c1

gδ
n(y)dy

≈ [S(0)]n
N−1

∑
k=0

′Ak(gδ
n, a1, a2) · χk(a1, a2, c1, κ). (21)

Similarly, for Vx,T , we have:

Vx,T ≈ [S(0)]n
N−1

∑
k=0

′Ak(gδ
n,T , a1, a2) · χk(a1, a2, c1, κ). (22)

Remark 3. For the put option, the payoff function is given by:

b(s) = (K− s)+ = KI(s<K) − sI(s<K),

which together with Equations (21) and (22) gives:

Vx ≈ K
N−1

∑
k=0

′Ak(gδ
0, a1, a2) · χk(a1, a2, c1, κ)− S(0)

N−1

∑
k=0

′Ak(gδ
1, a1, a2) · χk(a1, a2, c1, κ) (23)

and:

Vx,T ≈ K
N−1

∑
k=0

′A(gδ
0,T , a1, a2) · χk(a1, a2, c1, κ)− S(0)

N−1

∑
k=0

′A(gδ
1,T , a1, a2) · χk(a1, a2, c1, κ). (24)

3. 2D COS Approximation

In this section, we use the 2D COS method to compute Vx and Vx,T . For a bivariate integrable
function f , we denote its Fourier transform by:

F f (s1, s2) =
∫ ∫

eis1y+is2z f (y, z)dydz, s1, s2 ∈ R.
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It follows from Ruijter and Oosterlee [23] that f can be approximated on a truncated domain
[a1, a2]× [b1, b2] by truncated Fourier cosine series expansions with N1 × N2 terms,

f (y, z) ≈
N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2( f ) cos
(

k1π
y− a1

a2 − a1

)
cos

(
k2π

z− b1

b2 − b1

)
, (25)

where the cosine coefficients are given by:

Bk1,k2( f ) =
1
2

(
B+k1,k2

( f ) + B−k1,k2
( f )
)

with:
B±k1,k2

( f ) = 2
a2−a1

2
b2−b1

Re
{
F f

(
k1π

a2−a1
,± k2π

b2−b1

)
exp

(
−ik1π a1

a2−a1
∓ ik2π b1

b2−b1

)}
. (26)

For t > 0, we denote the joint probability density function of (X1(t), X2(t)) by fX1(t),X2(t)(y, z),
and for δ ≥ 0, define the following discounted density functions:

f δ
X1(Tx),X2(Tx)

(y, z) =
∫ ∞

0
e−δt fX1(t),X2(t)(y, z) fTx (t)dt,

f δ
X1(Tx),X2(Tx),T(y, z) =

∫ T

0
e−δt fX1(t),X2(t)(y, z) fTx (t)dt.

For Vx, by changing the order of integrals, we have:

Vx =
∫ ∞

0 E[e−δtb(S1(t), S2(t))] fTx(t)dt
=
∫ ∞

0 e−δt ∫ ∞
−∞

∫ ∞
−∞ b(S1(0)ey, S2(0)ez) fX1(t),X2(t)(y, z)dydz fTx(t)dt

=
∫ ∞
−∞

∫ ∞
−∞ b(S1(0)ey, S2(0)ez) f δ

X1(Tx),X2(Tx)
(y, z)dydz.

(27)

For Vx,T , we have:

Vx,T =
∫ ∞

−∞

∫ ∞

−∞
b(S1(0)ey, S2(0)ez) f δ

X1(Tx),X2(Tx),T(y, z)dydz. (28)

As in Section 2, we shall pay attention to the following auxiliary functions,

gδ
m,n(y, z) = emy+nz f δ

X1(Tx),X2(Tx)
(y, z), gδ

m,n,T(y, z) = emy+nz f δ
X1(Tx),X2(Tx),T(y, z).

Suppose that both gδ
m,n and gδ

m,n,T are absolutely integrable. Then, by Equation (25), we obtain:

gδ
m,n(y, z) ≈

N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
m,n) cos

(
k1π

y− a1

a2 − a1

)
cos

(
k2π

z− b1

b2 − b1

)
(29)

and:

gδ
m,n,T(y, z) ≈

N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
m,n,T) cos

(
k1π

y− a1

a2 − a1

)
cos

(
k2π

z− b1

b2 − b1

)
. (30)

To calculate cosine coefficients in Equations (29) and (30), we suppose (X1(t), X2(t)) is a
two-dimensional Lévy process with X1(0) = X2(0) = 0. The characteristic exponent is defined by:

ΨX1,X2(s1, s2) = ln(E[eis1X1(1)+is2X2(1)]).
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Furthermore, suppose that fTx is a combination of the exponential density function given by
Equation (12). By Fubini theorem, we have:

Fgδ
m,n(s1, s2) =

∫ ∫
eis1y+is2zemy+nz f δ

X1(Tx),X2(Tx)
(y, z)dydz

=
∫ ∫

e(is1+m)y+(is2+n)z ∫ ∞
0 e−δt fX1(t),X2(t)(y, z) fTx (t)dtdydz

=
∫ ∞

0 e−(δ−ΨX1,X2 (s1−mi,s2−ni))t fTx (t)dt

= ∑m
j=1

Ajαj
δ+αj−ΨX1,X2 (s1−mi,s2−ni)

(31)

and:

Fgδ
m,n,T(s1, s2) =

∫ T

0
e−(δ−ΨX1,X2 (s1−mi,s2−ni))t fTx (t)dt

=
m

∑
j=1

Ajαj
1− e−(δ+αj−ΨX1,X2 (s1−mi,s2−ni))T

δ + αj −ΨX1,X2(s1 −mi, s2 − ni)
. (32)

In the sequel, we study the numerical approximation of the value of life-contingent two-asset
options. We shall consider the Margrabe option, maximum/minimum option, and geometric option.
First, the contingent Margrabe option, also called the exchange option, is considered. Note that its
payoff function is:

[S1(Tx)− S2(Tx)]+ .

Then, we have:

E[e−δTx [S1(Tx)− S2(Tx)]+ |S1(0) < S2(0)]
=
∫ ∞

0

∫ ∞
−∞

∫ ∞
−∞ e−δt[S1(0)ey − S2(0)ez]+ · fX1(t),X2(t)(y, z) fTx (t)dydzdt

=
∫ ∞
−∞

∫ ∞
−∞[S1(0)ey − S2(0)ez]+ · f δ

X1(Tx),X2(Tx)
(y, z)dydz

=
∫ ∫

(y,z)∈D1
(S1(0)ey − S2(0)ez) f δ

X1(Tx),X2(Tx)
(y, z)dydz

= S1(0)
∫ ∫

(y,z)∈D1
ey f δ

X1(Tx),X2(Tx)
(y, z)dydz− S2(0)

∫ ∫
(y,z)∈D1

ez f δ
X1(Tx),X2(Tx)

(y, z)dydz
= S1(0)

∫ ∫
(y,z)∈D1

gδ
1,0(y, z)dydz− S2(0)

∫ ∫
(y,z)∈D1

gδ
0,1(y, z)dydz,

(33)

where D1 denotes the region {(y, z) : y− z > ln S2(0)
S1(0)
}. Set D′1 = D1 ∩ ([a1, a2]× [b1, b2]). Utilizing

Equation (29), we obtain the following approximation formula:

E[e−δTx [S1(Tx)− S2(Tx)]+ |S1(0) < S2(0)]

≈ S1(0)
N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
1,0)

∫ ∫
(y,z)∈D′1

cos
(

k1π
y− a1

a2 − a1

)
cos

(
k2π

z− b1

b2 − b1

)
dydz

− S2(0)
N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
0,1)

∫ ∫
(y,z)∈D′1

cos
(

k1π
y− a1

a2 − a1

)
cos

(
k2π

z− b1

b2 − b1

)
dydz,

where the double integrals in both summations can be analytically computed.
What follows next are the approximation procedures for maximum/minimum options. The payoff

functions for maximum and minimum options are given by:

max{S1(Tx), S2(Tx)}, min{S1(Tx), S2(Tx)}.

With a trivial mathematical change, we can turn them into the following forms:

max{S1(Tx), S2(Tx)} = S2(Tx) + [S1(Tx)− S2(Tx)]+,

min{S1(Tx), S2(Tx)} = S1(Tx)− [S1(Tx)− S2(Tx)]+.
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Hence, the valuation equations can be obtained by taking discounted expectations on both sides
of the above equations,

E[e−δTx max{S1(Tx), S2(Tx)}] = E[e−δTx S2(Tx)] + E[e−δTx [S1(Tx)− S2(Tx)]+],

E[e−δTx min{S1(Tx), S2(Tx)}] = E[e−δTx S1(Tx)]− E[e−δTx [S1(Tx)− S2(Tx)]+],

which imply that we can take advantage of the deductions of exchange option and basic option taking
the form b(s) = s to compute the above expectations.

Finally, we pay attention to the geometric option. The payoff function with strike price K is
given by: [√

S1(Tx)S2(Tx)− K
]
+

.

When condition
√

S1(0)S2(0) < K holds, we can develop the following approximation.

E[e−δTx [
√

S1(Tx)S2(Tx)− K]+ |
√

S1(0)S2(0) < K]
=
∫ +∞
−∞

∫ +∞
−∞ [

√
S1(Tx)S2(Tx)− K]+ · f δ

X1(Tx),X2(Tx)
(y, z)dydz

=
√

S1(0)S2(0)
∫ ∫

(y,z)∈D2
e

1
2 (y+z) f δ

X1(Tx),X2(Tx)
(y, z)dydz− K

∫ ∫
(y,z)∈D2

f δ
X1(Tx),X2(Tx)

(y, z)dydz

=
√

S1(0)S2(0)
∫ ∫

(y,z)∈D2
gδ

1
2 , 1

2
(y, z)dydz− K

∫ ∫
(y,z)∈D2

gδ
0,0(y, z)dydz,

(34)

where D2 denotes the region {(y, z) : y + z > ln K2

S1(0)S2(0)
}. Set D′2 = D2 ∩ ([a1, a2] × [b1, b2]).

Then, Equation (34) can be approximated by:

E[e−δTx [
√

S1(Tx)S2(Tx)− K]+ |
√

S1(0)S2(0) < K]

≈
√

S1(0)S2(0)
N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
1
2 , 1

2
)
∫ ∫

(y,z)∈D′2
cos

(
k1π

y− a1

a2 − a1

)
cos

(
k2π

z− b1

b2 − b1

)
dydz

− K
N1−1

∑
k1=0

′
N2−1

∑
k2=0

′Bk1,k2(gδ
0,0)

∫ ∫
(y,z)∈D′2

cos
(

k1π
y− a1

a2 − a1

)
cos

(
k2π

z− b1

b2 − b1

)
dydz,

where analytical expressions of the double integrals in both summations exist.

Remark 4. When we study Vx,T , the approximation Equations are similar to those of Vx, and the only
modification is replacing Fgδ

m,n by Fgδ
m,n,T .

4. Numerical Illustrations

In this section, we present some numerical examples to show the performance of the proposed
approach. For the linear combination of exponential distributions, which is used to approximate the
density function of Tx, we use the case considered in Gerber et al. [3], which is given by:

fTx (t) = 3× 0.08e−0.08t − 2× 0.12e−0.12t, t > 0. (35)

In the following subsections, we shall show that the COS method is very efficient for
valuing GMDB.

4.1. The 1D COS Results

In this subsection, we use some Lévy processes to model the log asset process X(t) (see Remark 1).
Note that the probability law of the Lévy process X(t) is determined by its characteristic exponent
ΨX(s). In this section, all computations were performed in MATLAB 2016b with Intel Core i7 at
3.4 GHz and RAM of 8 GB. We shall consider the following five models.
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• Black-Scholes model (BS): ΨX(s) = iµs− σ2

2
s2;

• Kou’s jump diffusion model (Kou): ΨX(s) = iµs− σ2

2
s2 + λK

(
(1− p)η2

η2 + is
+

pη1

η1 − is
− 1
)

;

• Merton’s jump diffusion model (MJD): ΨX(s) = iµs− σ2

2
s2 + λJ

(
eisµJ−

σ2
J
2 s2 − 1

)
;

• Variance Gammamodel (VG): ΨX(s) = iµs− σ2

2
s2 − 1

ν
ln
(

1− iνµνs + ν
σ2

ν

2
s2
)

;

• Normal inverse Gaussian model (NIG): ΨX(s) = iµs− δNIG

(√
α2 − (β + is)2 −

√
α2 − β2

)
.

In the sequel, let δ = 0.05 and µ be chosen to satisfy the risk-neutral requirement. Here, we need
to assume that Tx is still independent with the stock price process even under the risk-neutral measure.
Thus, µ is set such that ΨX(−i) = δ. The values of other parameters are listed in Table 1. Furthermore,
set a1 = −100, a2 = 100. For the death benefit function b, we consider the following two cases:

call option : b(s) = (s− K)+; put option : b(s) = (K− s)+.

Table 1. Parameter setting for the log-asset process X.

Model Abbreviation Parameter Sets

Black-Scholes model BS σ = 0.25, S(0) = 100;
Kou’s jump diffusion model Kou σ = 0.25, S(0) = 100, λK = 0.6, η1 = 4, η2 = 1, p = 0.5;

Merton’s jump diffusion model Merton σ = 0.25, S(0) = 100, λJ = 0.6, µJ = 0.01, σJ = 0.13;
Variance Gamma model VG σ = 0.25, S(0) = 100, ν = 2, µν = 0.01, σν = 0.05;

Normal inverse Gaussian model NIG S(0) = 100, α = 2, β = 0.5, δNIG = 0.05.

First, in Tables 2 and 3, we display some results when X is the Black-Scholes model and Kou’s jump
diffusion model where the strike price K = 80, 90, 110, 120, respectively. Note that if X is Black-Scholes
or Kou’s jump diffusion, reference values can be obtained from Gerber et al. [3,4]. In Tables 2 and 3,
we calculate the relative errors and average running time to show the performance of our method,
where the average running time (in seconds) is reported based on 1000 operations. From a horizontal
perspective of Tables 2 and 3, our approximation results performed better as the expansion term N
increased. When N = 212, relative errors were around 10−8. Furthermore, we present Monte Carlo
simulation results with sample size 107. We found that the COS method can result in smaller relative
errors for each case, and this method requires less time than MC. When X is Merton’s jump diffusion,
VG, and NIG, true reference values are not available. In these cases, we present MC simulation results
with sample size 107. From the simulation results given in Table 4, we see that the differences between
approximation results and simulation results were small and our method required less time than MC.

Next, we consider valuation with a finite expiry date. In Tables 5 and 6, we assume T = 20 and
display some GMDB valuation results. In finite-time cases, reference values are available only when
X is BS. For Kou’s jump diffusion, we display MC results with sample size 107. With the call payoff
function, it is observed that as K increases, the results decrease, which is opposite those with put
payoff. Compared with MC, again, we found that the COS method required less time. Now, we further
display the valuation results in Table 7 under different expiry dates in the BS model. As T grew from
five to infinity, which denotes a whole life insurance type, valuation results increased as expected.
If the expiry date is too far from the present, the probability that the insured dies becomes larger; hence,
the insurance company is likely to make a payment. Besides, the dynamics of the asset is driven by a
Brownian motion, with a positive drift; hence, the account accumulates from present to future. From a
vertical perspective, it is also observed that relative errors decrease obviously as N increases.

Finally, to illustrate the accuracy of the proposed method, denary logarithms of relative errors are
displayed in Figures 1 and 2 with different expansion terms and strike prices. For a fixed K, the curve
tended to descend as expansion term N increased.
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Table 2. Approximation results for guaranteed minimum death benefit (GMDB), where X is BS,
b(s) = (K− s)+.

K Reference
Value

BS MC

N = 24 N = 28 N = 212
Relative
Errors Time StdRelative

Errors Time Relative
Errors Time Relative

Errors Time

80 3.6161 6.37 0.1009 3.10 × 10−3 0.1010 1.41 × 10−8 0.0977 1.02 × 10−3 1215.7831 7.5637
90 4.9871 4.59 0.0986 1.24 × 10−2 0.1002 4.54 × 10−8 0.1021 8.96 × 10−4 1215.2156 9.4440
110 8.4402 2.72 0.0970 1.54 × 10−2 0.1041 3.13 × 10−8 0.0987 7.48 × 10−4 1215.4682 13.5673
120 10.4920 2.21 0.0973 1.37 × 10−2 0.0999 1.66 × 10−8 0.1018 7.31 × 10−4 1215.6826 15.7678

Table 3. Approximation results for GMDB, where X is Kou, b(s) = (K− s)+.

K Reference
Value

Kou MC

N = 24 N = 28 N = 212
Relative
Errors Time StdRelative

Errors Time Relative
Errors Time Relative

Errors Time

80 18.0238 1.06 0.1106 3.34 × 10−4 0.1217 3.45 × 10−9 0.1184 4.81 × 10−4 1043.5026 16.7433
90 20.9370 9.43 × 10−1 0.1208 4.60 × 10−4 0.1173 1.04 × 10−8 0.1166 5.18 × 10−4 1043.4856 18.9326

110 27.0526 7.74 × 10−1 0.1157 1.31 × 10−3 0.1208 9.50 × 10−9 0.1139 5.89 × 10−4 1043.8940 23.2865
120 30.2424 7.13 × 10−1 0.1222 1.48 × 10−3 0.1151 5.28 × 10−9 0.1205 6.17 × 10−4 1043.7561 25.4520

Table 4. Approximation results for GMDB, where X is Merton’s jump diffusion model (MJD),
the Variance Gamma model (VG), or the normal inverse Gaussian model (NIG), b(s) = (K− s)+.

K Merton (Time) MC (Time) VG (Time) MC (Time) NIG (Time) MC (Time)
N = 28 N = 212 N = 28 N = 212 N = 28 N = 212

80 4.4349 4.4514 4.4508 3.8263 3.8395 3.8412 6.1072 6.1399 6.1435
(0.0877) (0.0863) (1027.4452) (0.0870) (0.0886) (1237.0955) (0.0891) (0.0879) (1695.8358)

90 5.9255 5.9823 5.9822 5.1947 5.2556 5.2574 7.9234 7.9881 7.9932
(0.0866) (0.0884) (1027.4338) (0.0853) (0.0890) (1237.0935) (0.0870) (0.0901) (1695.8093)

110 9.6156 9.7228 9.7250 8.6668 8.7901 8.7909 12.2390 12.3349 12.3326
(0.0854) (0.0861) (1027.4386) (0.0852) (0.0856) (1237.0956) (0.0876) (0.0879) (1695.8200)

120 11.7834 11.8986 11.9015 10.7420 10.8770 10.8771 14.6968 14.7924 14.8006
(0.0879) (0.0872) (1027.4401) (0.0863) (0.0885) (1237.1015) (0.0881) (0.0894) (1695.8699)

Table 5. Approximation results for finite GMDB, where X is BS or Kou, b(s) = (s− K)+, T = 20.

K BS (Relative Errors) Kou (Time) MC(Time)
N = 24 N = 28 N = 212 N = 24 N = 28 N = 212

80 19.1403 32.6564 32.6676 27.4259 42.7130 42.7070 42.7070
(0.414) (3.43 × 10−4) (1.56 × 10−9) (0.1194) (0.1173) (0.1173) (1090.9950)

90 17.0844 30.2620 30.3241 25.7974 41.4205 41.4301 41.4293
(0.436) (2.04 × 10−3) (7.46 × 10−9) (0.1194) (0.1175) (0.1183) (1091.1883)

110 13.2010 26.1378 26.2680 22.7491 39.1093 39.1448 39.1418
(0.497) (4.95 × 10−3) (1.00 × 10−8) (0.1183) (0.1174) (0.1197) (1091.1751)

120 11.3513 24.3848 24.5286 21.3090 38.0807 38.1253 38.1210
(0.537) (5.86 × 10−3) (7.08 × 10−9) (0.1176) (0.1172) (0.1184) (1091.1742)
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Table 6. Approximation results for finite GMDB, where X is Merton, VG, or NIG, b(s) = (s− K)+ and
T = 20.

K Merton (Time) MC (Time) VG (Time) MC (Time) NIG (Time) MC (Time)
N = 28 N = 212 N = 28 N = 212 N = 28 N = 212

80 33.2207 33.2371 33.2582 32.8072 32.8204 32.8216 34.3088 34.3415 34.3638
(0.1128) (0.1112) (1033.1533) (0.1109) (0.1105) (1242.9794) (0.1145) (0.1140) (1701.5796)

90 30.9514 31.0082 31.0310 30.4485 30.5094 30.5123 32.2714 32.3360 32.3611
(0.1121) (0.1111) (1033.2315) (0.1126) (0.1104) (1242.8595) (0.1167) (0.1140) (1701.3483)

110 27.0436 27.1508 27.1778 26.3865 26.5099 26.5150 28.8046 28.9006 28.9307
(0.1103) (0.1133) (1033.0862) (0.1090) (0.1139) (1242.7859) (0.1141) (0.1160) (1701.5626)

120 25.3774 25.4925 25.5214 24.6586 24.7936 24.7996 27.3386 27.4342 27.4663
(0.1104) (0.1122) (1033.0618) (0.1095) (0.1129) (1242.9656) (0.1139) (0.1182) (1701.6632)

Table 7. Approximation results for finite GMDB, where X is BS, b(s) = (s− K)+ and K = 120.

T 5 10 30 60 ∞

N = 28 1.2988 7.0082 39.2337 55.9713 58.2215
(8.60 × 10−2) (2.01 × 10−2) (3.65 × 10−3) (2.56 × 10−3) (2.46 × 10−3)

N = 212 1.4211 7.1521 39.3774 56.1150 58.3653
(1.22 × 10−7) (2.42 × 10−8) (4.41 × 10−9) (3.09 × 10−9) (2.97 × 10−9)
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Figure 1. Relative errors with payoff b(s) = (s− K)+: (a) BS model; (b) Kou model.
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Figure 2. Relative errors for BS model with payoff b(s) = (K− s)+ and finite expiry time T = 20.
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4.2. The 2D COS Results

In this subsection, the valuation results involving two assets in a GMDB contract are presented.
For illustrative purpose, we assumed that the density function of Tx is represented by the combination
of exponential distribution Equation (35). Besides, we considered a bivariate normal distribution.
In addition, suppose that (S1(t), S2(t)) is a bivariate geometric Brownian motion, where the log-asset
price at time t is bivariate normally distributed:

(X1(t), X2(t)) ∼ N (µ, Σt),

where:
µ = [0.02,−0.005], Σ = [0.04, 0.015; 0.015, 0.09].

Set (S1(0), S2(0)) = (90, 110), and the strike price K = 100. We considered the cosine expansion
over a symmetric interval [−100, 100]× [−100, 100].

In Gerber et al. [3], the valuation equations for GMDB with the exchange option type were
explicitly obtained by the Esscher transform, from which we can compute reference values and relative
errors. Motivated by the idea in Gerber et al. [3], we further considered some other option types.
Approximation results are given in Table 8, and the relative errors confirmed the accuracy of the
proposed procedure. It was observed that as N increased, the relative errors decreased.

Table 8. Approximation results for 2D GMDB.

Option Type N = 26 N = 28 N = 210 N = 212

Exchange Option 140.8768 153.5866 153.6412 153.6411
(8.31 × 10−2) (3.55 × 10−4) (6.38 × 10−7) (6.74 × 10−10)

Geometric Option 111.4024 114.0135 114.0281 114.0281
(2.30 × 10−2) (1.29 × 10−4) (1.54 × 10−7) (1.27 × 10−10)

Maximum Option 470.8768 483.5866 483.6412 483.6411
(2.64 × 10−2) (1.12 × 10−4) (2.03 × 10−7) (2.14 × 10−10)

Minimum Option 129.1232 116.4134 116.3588 116.3589
(1.10 × 10−1) (4.68 × 10−4) (8.43 × 10−7) (8.90 × 10−10)

5. Conclusions

In this paper, we used the COS method to value GMDB products under a general Lévy framework.
When the death benefit payment depended on only one stock fund, we used the 1D COS method to
value the products; when it depended on two stock funds, the 2D COS method was used for valuation.
Various numerical results illustrated the accuracy and efficiency of the proposed method.

Our COS method can only be used to value GMDB contracts that depend on the terminal value of
the stock price; however, we note that some products are also dependent on the running maximum or
minimum of the stock price; for example, life-contingent lookback options and barrier options. Hence,
we have to develop the COS method or search for another numerical method to solve this problem.
We leave this for future research.
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