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Abstract: In this paper, we introduce an iterative scheme with inertial effect using Mann iterative
scheme and gradient-projection for solving the bilevel variational inequality problem over the
intersection of the set of common fixed points of a finite number of nonexpansive mappings and
the set of solution points of the constrained optimization problem. Under some mild conditions
we obtain strong convergence of the proposed algorithm. Two examples of the proposed bilevel
variational inequality problem are also shown through numerical results.

Keywords: minimization problem; fixed point problem; inertial term; bilevel variational inequality

1. Introduction

Bilevel problem is defined as a mathematical program, where the problem contains another
problem as a constraint. Mathematically, bilevel problem is formulated as follows:

find x̄ ∈ S ⊂ X that solves problem P1 installed in space X, (1)

where S is the solution set of the problem

find x∗ ∈ Y ⊂ X that solves problem P2 installed in space X. (2)

Usually, (1) is called the upper level problem and (2) is called the lower level problem.
Many real life problems can be modeled as a bilevel problem and some studies have been performed
towards solving different kinds of bilevel problems using approximation theory—see, for example,
for bilevel optimization problem [1–3], for bilevel variational inequality problem [4–9], for bilevel
equilibrium problems [10–12], and [13,14] for its practical applications. In [14], application of
bilevel problem (bilevel optimization problem) in transportation (network design, optimal pricing),
economics (Stackelberg games, principal-agent problem, taxation, policy decisions), management
(network facility location, coordination of multi-divisional firms), engineering (optimal design, optimal
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chemical equilibria), etc. has been demonstrated. Due to the vast applications of bilevel problems,
the research on approximation algorithm for bilevel problems has increased over years and is still in
nascent stage.

A simple example of the practical bilevel model is a supplier and a store owner of a business chain
(supply chain management), i.e., suppose the supplier will always give his/her best output of some
commodities to the store owner in their business’s chain. Since both want to do well in their businesses,
the supplier will always give his/her best output to the store owner who in turn would like to do
his/her best in the business. In some sense, both would like to minimize their loss or rather maximize
their profit and thus act in the optimistic pattern. It is clear that, in this example, the store owner is the
upper-level decision maker and the supplier is the lower-level decision maker. Thus, in the study of
supply chain management, the bilevel problem can indeed play a fundamental role.

In this paper, our main aim is to solve a bilevel variational inequality problem over the intersection
of the set of common fixed points of finite number of nonexpansive mappings, denoted by BVIPO-FM,
and the set of solution points of the constrained minimization problem of real-valued convex function.
To be precise, let C be closed convex subset of a real Hilbert space H, F : H → H is a mapping,
f : C → R is a real-valued convex function, and Uj : C → C is a nonexpansive mapping for each
j ∈ {1, . . . , M}. Then, BVIPO-FM is given by

find x̄ ∈ Ω such that 〈F(x̄), x− x̄〉 ≥ 0, ∀x ∈ Ω, (3)

where Ω is the solution set of

find x∗ ∈ C such that f (x∗) = min
x∈C

f (x) and x∗ ∈
M⋂

j=1

FixUj. (4)

The notation FixUj represents the set of fixed points of Uj, i.e., FixUj = {y ∈ C : Uj(y) = y}
for j ∈ {1, . . . , M}. Thus, Ω = (

⋂M
j=1 FixUj)

⋂
Γ, where Γ is the solution set of constrained convex

minimization problem given by

find x∗ ∈ C such that f (x∗) = min
x∈C

f (x). (5)

The problem (3) is a classical variational inequality problem, denoted by VIP(Ω, F), which was
studied by many authors—for example, see in [7,15–17] and references therein. The solution set
of the variational inequality problem VIP(Ω, F) is denoted by SVIP(Ω, F). Therefore, BVIPO-FM
is obtained by solving VIP(Ω, F), where Ω = (

⋂M
j=1 FixUj)

⋂
Γ. Bilevel problem with upper-level

problem is variational inequality problem, which was introduced in [18]. These problems have
received significant attention from the mathematical programming community. Bilevel variational
inequality problem can be used to study various bilevel models in optimization, economics, operations
research, and transportation.

It is known that the gradient-projection algorithm—given by

xn+1 = PC(xn − λn∇ f (xn)), (6)

where the parameters λn are real positive numbers—is one of the powerful methods for solving
the minimization problem (5) (see [19–21]). In general, if the gradient ∇ f is Lipschitz continuous
and strongly monotone, then, the sequence {xn} generated by recursive Formula (6) converges
strongly to a minimizer of (6), where the parameters {λn} satisfy some suitable conditions. However,
if the gradient ∇ f is only to be inverse strongly monotone, the sequence {xn} generated by (6)
converges weakly.

In approximation theory, constructing iterative schemes with speedy rate of convergence is usually
of great interest. For this purpose, Polyak [22] proposed an inertial accelerated extrapolation process
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to solve the smooth convex minimization problem. Since then, there are growing interests by authors
working in this direction. Due to this reason, a lot of researchers constructed fast iterative algorithms
by using inertial extrapolation, including inertial forward–backward splitting methods [23,24], inertial
Douglas–Rachford splitting method [25], inertial forward-–backward-–forward method [26], inertial
proximal-extragradient method [27], and others.

In this paper, we introduce an algorithm with inertial effect for solving BVIPO-FM using projection
method for the variational inequality problem, the well-known Mann iterative scheme [28] for the
nonexpansive mappings Tj’s, and gradient-projection for the function f . It is proved that the sequence
generated by our proposed algorithm converges strongly to the solution of BVIPO-FM.

2. Preliminary

Let H be a real Hilbert space H. The symbols “⇀” and “→” denote weak and strong convergence,
respectively. Recall that for a nonempty closed convex subset C of H, the metric projection on C is
a mapping PC : H → C, defined by

PC(x) = arg min{‖y− x‖ : y ∈ C}, x ∈ H.

Lemma 1. Let C be a closed convex subset of H. Given x ∈ H and a point z ∈ C, then, z = PC(x) if and only
if 〈x− z, y− z〉 ≤ 0, ∀y ∈ C.

Definition 1. For C ⊂ H, the mapping T : C → H is said to be L-Lipschitz on C if there exists L > 0
such that

‖T(x)− T(y)‖ ≤ L‖x− y‖, ∀x, y ∈ C.

If L ∈ (0, 1), then, we call T a contraction mapping on C with constant L. If L = 1, then, T is called
a nonexpansive mapping on C.

Definition 2. The mapping T : H → H is said to be firmly nonexpansive if

〈x− y, T(x)− T(y)〉 ≥ ‖T(x)− T(y)‖2, ∀x, y ∈ H.

Alternatively, T : H → H is firmly nonexpansive if T can be expressed as

T =
1
2
(I + S),

where S : H → H is nonexpansive.

The class of firmly nonexpansive mappings belong to the class of nonexpansive mappings.

Definition 3. The mapping T : H → H is said to be

(a) monotone if
〈T(x)− T(y), x− y〉 ≥ 0, ∀x, y ∈ H;

(b) β-strongly monotone if there exists a constant β > 0 such that

〈T(x)− T(y), x− y〉 ≥ β‖x− y‖2, ∀x, y ∈ H;

(c) ν-inverse strongly monotone (ν-ism) if there exists ν > 0 such that

〈T(x)− T(y), x− y〉 ≥ ν‖T(x)− T(y)‖2, ∀x, y ∈ H.
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Definition 4. The mapping T : H → H is said to be an averaged mapping if it can be written as the average of
the identity mapping I and a nonexpansive mapping, that is

T = (1− α)I + αS, (7)

where α ∈ (0, 1) and S : H → H is nonexpansive. More precisely, when (7) holds, we say that T is α-averaged.

It is easy to see that firmly nonexpansive mapping (in particular, projection) is 1
2 -averaged

and 1-inverse strongly monotone mappings. Averaged mappings and ν-inverse strongly monotone
mapping (ν-ism) have received many investigations, see [29–32]. The following propositions about
averaged mappings and inverse strongly monotone mappings are some of the important facts in our
discussion in this paper.

Proposition 1 ([29,30]). Let the operators S, T, V : H → H be given:

(i) If T = (1− α)S + αV for some α ∈ (0, 1) and if S is averaged and V is nonexpansive, then, T is averaged.
(ii) T is firmly nonexpansive if and only if the complement I − T is firmly nonexpansive.
(iii) If T = (1− α)S + αV, for some α ∈ (0, 1) and if S is firmly nonexpansive and V is nonexpansive, then T

is averaged.
(iv) The composition of finitely many averaged mappings is averaged. That is, if each of the mappings {Ti}N

i=1
is averaged, then so is the composite T1 . . . TN . In particular, if T1 is α1-averaged and T2 is α2-averaged,
where α1, α2 ∈ (0, 1), then, the composite T1T2 is α-averaged, where α = α1 + α2 − α1α2.

Proposition 2 ([29,31]). Let T : H → H be given. We have

(a) T is nonexpansive if and only if the complement I − T is 1
2 -ism;

(b) If T is ν-ism and γ > 0, then γT is ν
γ -ism;

(c) T is averaged if and only if the complement I − T is ν-ism for some ν > 1
2 . Indeed, for α ∈ (0, 1), T is

α-averaged if and only if I − T is 1
2α -ism.

Lemma 2. (Opial’s condition) For any sequence {xn} in the Hilbert space H with xn ⇀ x, the inequality

lim inf
n→+∞

‖xn − x‖ < lim inf
n→+∞

‖xn − y‖

holds for each y ∈ H with y 6= x.

Lemma 3. For a real Hilbert space H, we have

(i) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2〈x, y〉, ∀x, y ∈ H;
(ii) ‖x + y‖2 ≤ ‖x‖2 + 2〈y, x + y〉, ∀x, y ∈ H.

Lemma 4. Let H be real Hilbert space. Then, ∀x, y ∈ H and ∀α ∈ [0, 1], we have

‖αx + (1− α)y‖2 = α‖x‖2 + α‖y‖2 − α(1− α)‖x− y‖2.

Lemma 5 ([33]). Let {cn} and {γn} be a sequences of non-negative real numbers, and {βn} be a sequence of
real numbers such that

cn+1 ≤ (1− αn)cn + βn + γn, n ≥ 1,

where 0 < αn < 1 and ∑ γn < ∞.

(i) If βn ≤ αn M for some M ≥ 0, then, {cn} is a bounded sequence.
(ii) If ∑ αn = ∞ and lim sup

n→∞

βn
αn
≤ 0, then, cn → 0 as n→ ∞.
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Definition 5. Let {Γn} be a real sequence. Then, {Γn} decreases at infinity if there exists n0 ∈ N such
that Γn+1 ≤ Γn for n ≥ n0. In other words, the sequence {Γn} does not decrease at infinity, if there exists
a subsequence {Γnt}t≥1 of {Γn} such that Γnt < Γnt+1 for all t ≥ 1.

Lemma 6 ([34]). Let {Γn} be a sequence of real numbers that does not decrease at infinity. Additionally,
consider the sequence of integers {ϕ(n)}n≥n0 defined by

ϕ(n) = max{k ∈ N : k ≤ n, Γk ≤ Γk+1}.

Then, {ϕ(n)}n≥n0 is a nondecreasing sequence verifying lim
n→∞

ϕ(n) = 0 and for all n ≥ n0, the following
two estimates hold:

Γϕ(n) ≤ Γϕ(n)+1 and Γn ≤ Γϕ(n)+1.

Let C be closed convex subset of a real Hilbert space H and given a bifunction g : C× C → R.
Then, the problem

find x̄ ∈ C such that g(x̄, y) ≥ 0, ∀y ∈ C

is called equilibrium problem (Fan inequality [35]) of g on C, denoted by EP(g, C). The set of all
solutions of the EP(g, C) is denoted by SEP(g, C), i.e., SEP(g, C) = {x̄ ∈ C : g(x̄, y) ≥ 0, ∀y ∈ C}.
If g(x, y) = 〈A(x), y− x〉 for every x, y ∈ C, where A is a mapping from C into H, then, the equilibrium
problem becomes the variational inequality problem.

We say that the bifunction g : C × C → R satisfies Condition CO on C if the following
four assumptions are satisfied:

(i) g(x, x) = 0, for all x ∈ C;
(ii) g is monotone on H, i.e., g(x, y) + g(y, x) ≤ 0, for all x, y ∈ C;
(iii) for each x, y, z ∈ C, lim sup

α↓0
g(αz + (1− α)x, y) ≤ g(x, y);

(iv) g(x, .) is convex and lower semicontinuous on H for each x ∈ C.

Lemma 7 ([36]). If g satisfies Condition CO on C, then, for each r > 0 and x ∈ H, the mapping given by

Tg
r (x) =

{
z ∈ C : g(z, y) +

1
r
〈y− z, z− x〉 ≥ 0, ∀y ∈ C

}
satisfies the following conditions:

(1) Tg
r is single-valued;

(2) Tg
r is firmly nonexpansive, i.e., for all x, y ∈ H,

‖Tg
r (x)− Tg

r (y)‖2 ≤ 〈Tg
r (x)− Tg

r (y), x− y〉;

(3) Fix(Tg
r ) = {x̄ ∈ H : g(x̄, y) ≥ 0, ∀y ∈ C}, where Fix(Tg

r ) is the fixed point set of Tg
r ;

(4) {x̄ ∈ H : g(x̄, y) ≥ 0, ∀y ∈ C} is closed and convex.

3. Main Result

In this paper, we are interested in finding a solution to BVIPO-FM, where F and f satisfy the
following conditions:

(A1) F : H → H is β-strongly monotone and κ-Lipschitz continuous on H.
(A2) The gradient ∇ f is L-Lipschitz continuous on C.

We are now in a position to state our inertial algorithm and prove its strong convergence
to the solution of BVIPO-FM assuming that F satisfies condition (A1), f satisfies condition (A2),
and SVIP(Ω, F) is nonempty.
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We have plenty of choices for {αn}, {εn}, and {ρn} satisfying parameter restrictions (C3), (C4),
and (C5). For example, if we take αn = 1

3n , εn = 1
n2 and ρn = n+1

3n+1 , then, 0 < αn < 1, lim
n→∞

αn = 0,

lim
n→∞

εn
αn

= lim
n→∞

3
n = 0 (εn = o(αn)), 0 ≤ ρn = n+1

3n+1 ≤ 1− αn = 3n−1
3n and lim

n→∞
ρn = 1

3 . Therefore, (C3),

(C4), and (C5) are satisfied.

Remark 1. From (C4) and Step 1 of Algorithm 1, we have that

θn

αn
‖xn − xn−1‖ → 0, n→ ∞.

Since {αn} is bounded, we also have

θn‖xn − xn−1‖ → 0, n→ ∞.

Note that Step 1 of Algorithm 1 is easily implemented in numerical computation since the value of
‖xn − xn−1‖ is a priori known before choosing βn.

Algorithm 1—Inertial Algorithm for BVIPO-FM

Initialization: Choose x0, x1 ∈ C. Let a positive real constants θ, µ and the real sequences {αn}, {εn},
{ρn}, {λn}, {βn} satisfy the following conditions:

(C1) 0 ≤ θ < 1;
(C2) 0 < µ < min{ 2β

κ2 , 1
2β};

(C3) 0 < αn < 1, lim
n→∞

αn = 0 and
∞
∑

n=1
αn = ∞;

(C4) εn > 0 and εn = o(αn);
(C5) 0 ≤ ρn ≤ 1− αn and lim

n→∞
ρn = ρ < 1;

(C6) 0 < a ≤ λn ≤ b < 2
L and lim

n→∞
λn = λ̂;

(C7) 0 < ξ ≤ βn ≤ ζ < 1.

Step 1. Given the iterates xn−1 and xn (n ≥ 1), choose θn such that 0 ≤ θn ≤ θ̄n, where

θ̄n :=

{
min

{
θ, εn
‖xn−1−xn‖

}
, if xn−1 6= xn

θ, otherwise.

Step 2. Evaluate zn = xn + θn(xn − xn−1).
Step 3. Evaluate yn = PC(zn − λn∇ f (zn)).
Step 4. Evaluate tj

n = (1− βn)yn + βnUj(yn) for each j ∈ {1, . . . , M}.
Step 5. Evaluate tn = arg max{‖v− yn‖ : v ∈ {t1

n, . . . , tM
n }}.

Step 6. Compute
xn+1 = ρnzn + Ψµ,αn ,ρn(tn),

where Ψµ,αn ,ρn := (1− ρn)I − αnµF.

Remark 2. Note that the point x̄ ∈ C solves the minimization problem (5) if and only if

PC(x̄− λ∇ f (x̄)) = x̄,

where λ > 0 is any fixed positive number. Therefore, the solution set Γ of the problem (5) is closed and convex
subset of H, because for 0 < λ < 2

L the mapping PC(I − λ∇ f ) is nonexpansive mapping and solution points
of (5) are fixed points of PC(I − λ∇ f ). Moreover, Uj is nonexpansive and hence FixUj is closed and convex for
each j ∈ {1, . . . , M}.
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Lemma 8. For a real number λ > 0 with 0 < a ≤ λ ≤ b < 2
L , the mapping Tλ := PC(I − λ∇ f ) is

2+λL
4 -averaged.

Proof. Since ∇ f is L-Lipschitz, the gradient ∇ f is 1
L -ism [37], which then implies that λ∇ f is 1

λL -ism.
So by Proposition 2 (c), I − λ∇ f is λL

2 -averaged. Now since the projection PC is 1
2 -averaged, we see

from Proposition 2 (iv) that the composite PC(I − λ∇ f ) is 2+λL
4 -averaged. Therefore, for some

nonexpansive mapping T, Tλ can written as

Tλ := PC(I − λ∇ f ) = (1− δ)I + δT, (8)

where 1
2 < a1 = 2+aL

4 ≤ δ = 2+λL
4 ≤ b1 = 2+bL

4 < 1. Note that, in view of Remark 2 and (8), the point
x̄ ∈ C solves the minimization problem (5) if and only if T(x̄) = x̄.

Lemma 9. For each n, the mapping Ψµ,αn ,ρn defined in Step 6 of Algorithm 1 satisfies the inequality

‖Ψµ,αn ,ρn(x)−Ψµ,αn ,ρn(y)‖ ≤ (1− η − αnτ)‖x− y‖, ∀x, y ∈ H,

where τ = 1−
√

1− µ(2β− µκ2) ∈ (0, 1).

Proof. From (C2), it is easy to see that

0 < 1− 2µβ < 1− µ(2β− µκ2) < 1.

This implies that 0 <
√

1− µ(2β− µκ2) < 1.
Then,

‖Ψµ,αn ,ρn(x)−Ψµ,αn ,ρn(y)‖ = ‖[(1− ρn)x− αnµF(x)]− [(1− ρn)y− αnµF(y)]‖
= ‖(1− ρn − αn)(x− y) + αn[(x− y)− µ(F(x)− F(y))]‖
≤ (1− ρn − αn)‖x− y‖+ αn‖(x− y)− µ(F(x)− F(y))‖. (9)

By the strong monotonicity and the Lipschitz continuity of F, we have

‖(x− y)− µ(F(x)− F(y))‖2 = ‖x− y‖2 + µ2‖F(x)− F(y)‖2

−2µ〈x− y, F(x)− F(y)〉
≤ ‖x− y‖2 + µ2κ2‖x− y‖2 − 2µβ‖x− y‖2

= (1 + µ2κ2 − 2µβ)‖x− y‖2. (10)

From (9) and (10), we have

‖Ψµ,αn ,ρn(x)−Ψµ,αn ,ρn(y)‖

≤ (1− ρn − αn)‖x− y‖+ αn

√
(1 + µ2κ2 − 2µβ)‖x− y‖2

= (1− ρn − αn)‖x− y‖+ αn

√
1− µ(2β− µκ2)‖x− y‖

= (1− ρn − αnτ)‖x− y‖,

where τ = 1−
√

1− µ(2β− µκ2) ∈ (0, 1).

Theorem 1. The sequence {xn} generated by Algorithm 1 converges strongly to the unique solution
of BVIPO-FM.

Proof. Let x̄ ∈ SVIP(Ω, F).
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Now, from the definition of zn, we get

‖zn − x̄‖ = ‖xn + θn(xn − xn−1)− x̄‖
≤ ‖xn − x̄‖+ θn‖xn − xn−1‖. (11)

Note that for each n, there is a nonexpansive mapping Tn such that yn = (1− δn)zn + δnTn(zn),
where δn = 2+λn L

4 ∈ [a1, b1] ⊂ (0, 1) for a1 = 2+aL
4 and b1 = 2+bL

4 . Now, using Lemma 4 and the fact
that Tn(x̄) = x̄, we have

‖yn − x̄‖2 = ‖(1− δn)zn + δnTn(zn)− x̄‖2

= (1− δn)‖zn − x̄‖2 + δn‖Tn(zn)− x̄‖2

−δn(1− δn)‖Tn(zn)− zn‖2

≤ ‖zn − x̄‖2 − δn(1− δn)‖Tn(zn)− zn‖2. (12)

Let {jn}∞
n=1 be the sequence of natural numbers such that 1 ≤ jn ≤ M where jn ∈ arg max{‖tj

n −
xn‖ : j ∈ {1, . . . , M}}. This means that tn = (1− βn)yn + βnUjn(yn). Thus, by Lemma 4

‖tn − x̄‖2 = (1− βn)‖yn − x̄‖2 + βn‖Ujn(yn)− x̄‖2

−βn(1− βn)‖Ujn(yn)− yn‖2

≤ ‖yn − x̄‖2 − βn(1− βn)‖Ujn(yn)− yn‖2. (13)

From (11)–(13) we have
‖tn − x̄‖ ≤ ‖yn − x̄‖ ≤ ‖zn − x̄‖. (14)

Using the definition of xn+1, (14) and Lemma 9, we get

‖xn+1 − x̄‖ = ‖ρnzn + Ψµ,αn ,ρn(tn)− x̄‖
= ‖Ψµ,αn ,ρn(tn)−Ψµ,αn ,ρn(x̄) + ρn(zn − x̄)− αnµF(x̄)‖
≤ ‖Ψµ,αn ,ρn(tn)−Ψµ,αn ,ρn(x̄)‖+ ρn‖zn − x̄‖+ αnµ‖F(x̄)‖
≤ (1− ρn − αnτ)‖tn − x̄‖+ ρn‖zn − x̄‖+ αnµ‖F(x̄)‖
≤ (1− αnτ)‖zn − x̄‖+ αnµ‖F(x̄)‖
≤ (1− αnτ)‖xn − x̄‖+ (1− αnτ)θn‖xn − xn−1‖+ αnµ‖F(x̄)‖

≤ (1− αnτ)‖xn − x̄‖+ αnτ
{ (1− αnτ)

τ

θn

αn
‖xn − xn−1‖+

µ‖F(x̄)‖
τ

}
. (15)

where τ = 1−
√

1− µ(2β− µL2) ∈ (0, 1). Observe that by condition (C3) and by Remark 1, we see that

lim
n→∞

(1− αnτ)

τ

θn

αn
‖xn − xn−1‖ = 0.

Let

M̄ = 2 max
{µ‖F(x̄)‖

τ
, sup

n≥1

(1− αnτ)

τ

θn

αn
‖xn − xn−1‖

}
.

Then, (15) becomes
‖xn+1 − x̄‖ ≤ (1− αnτ)‖xn − x̄‖+ αnτM̄.

Thus, by Lemma 5 the sequence {xn} is bounded. As a consequence, {zn}, {yn}, {tn}, and {F(tn)}
are also bounded.
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Now, using the definition of zn and Lemma 3 (i), we obtain

‖zn − x̄‖2 = ‖xn + θn(xn − xn−1)− x̄‖2

= ‖xn − x̄‖2 + θ2
n‖xn − xn−1‖2 + 2θn〈xn − x̄, xn − xn−1〉. (16)

Again, by Lemma 3 (i), we have

〈xn − x̄, xn − xn−1〉 =
1
2
‖xn − x̄‖2 − 1

2
‖xn−1 − x̄‖2 +

1
2
‖xn − xn−1‖2. (17)

From (16) and (17), and since 0 ≤ θn < 1, we get

‖zn − x̄‖2 = ‖xn − x̄‖2 + θ2
n‖xn − xn−1‖2

+θn(‖xn − x̄‖2 − ‖xn−1 − x̄‖2 + ‖xn − xn−1‖2)

≤ ‖xn − x̄‖2 + 2θn‖xn − xn−1‖2 (18)

+θn(‖xn − x̄‖2 − ‖xn−1 − x̄‖2).

Using the definition of xn+1 together with (14) and Lemma 9, we have

‖xn+1 − x̄‖2 = ‖ρnzn + Ψµ,αn ,ρn(tn)− x̄‖2

= ‖Ψµ,αn ,ρn(tn)−Ψµ,αn ,ρn(x̄) + ρn(zn − x̄)− αnµF(x̄)‖2

= ‖Ψµ,αn ,ρn(tn)−Ψµ,αn ,ρn(x̄) + ρn(zn − x̄)‖2

−2αnµ〈F(x̄), xn+1 − x̄〉

=
{
‖Ψµ,αn ,ρn(tn)−Ψµ,αn ,ρn(x̄)‖+ ρn‖zn − x̄‖

}2

−2αnµ〈F(x̄), xn+1 − x̄〉

≤
{
(1− ρn − αnτ)‖tn − x̄‖+ ρn‖zn − x̄‖

}2

−2αnµ〈F(x̄), xn+1 − x̄〉
≤ (1− ρn − αnτ)‖tn − x̄‖2 + ρn‖zn − x̄‖2 (19)

−2αnµ〈F(x̄), xn+1 − x̄〉.

From (12) and (13), we obtain

‖tn − x̂‖2 ≤ ‖zn − x̂‖2 − δn(1− δn)‖Tn(zn)− zn‖2 (20)

−βn(1− βn)‖Ujn(yn)− yn‖2.

In view of (19) and (20), we get

‖xn+1 − x̄‖2 ≤ (1− ρn − αnτ)‖tn − x̄‖2 + ρn‖zn − x̄‖2

−2αnµ〈F(x̄), xn+1 − x̄〉
≤ (1− ρn − αnτ)‖zn − x̄‖2 + ρn‖zn − x̄‖2 − 2αnµ〈F(x̄), xn+1 − x̄〉

−δn(1− ρn − αnτ)(1− δn)‖Tn(zn)− zn‖2

−βn(1− ρn − αnτ)(1− βn)‖Ujn(yn)− yn‖2

= (1− αnτ)‖zn − x̄‖2 − 2αnµ〈F(x̄), xn+1 − x̄〉 (21)

−δn(1− ρn − αnτ)(1− δn)‖Tn(zn)− zn‖2

−βn(1− ρn − αnτ)(1− βn)‖Ujn(yn)− yn‖2.
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Since the sequence {xn} is bounded, there exists M̄ such that −2αnµ〈F(x̄), xn+1 − x̄〉 ≤ M̄ for
all n ≥ 1. Thus, from (18) and (21), we get

‖xn+1 − x̄‖2≤ (1− αnτ)‖xn − x̄‖2 + 2(1− αnτ)θn‖xn − xn−1‖2

+(1− αnτ)θn(‖xn − x̄‖2 − ‖xn−1 − x̄‖2) + αn M̄
−δn(1− ρn − αnτ)(1− δn)‖Tn(zn)− zn‖2

−βn(1− ρn − αnτ)(1− βn)‖Ujn(yn)− yn‖2.

Let us distinguish the following two cases related to the behavior of the sequence {Γn},
where Γn = ‖xn − x̄‖2.

Case 1. Suppose the sequence {Γn} decrease at infinity. Thus, there exists n0 ∈ N such that
Γn+1 ≤ Γn for n ≥ n0. Then, {Γn} converges and Γn − Γn+1 → 0 as n→ 0.

From (22) we have

δn(1− ρn − αnτ)(1− δn)‖Tn(zn)− zn‖2

≤ (Γn − Γn+1) + αn M1 + (1− αnτ)θn(Γn − Γn−1)

+2(1− αnτ)θn‖xn − xn−1‖2.
(22)

Since Γn − Γn+1 → 0 (Γn−1 − Γn → 0) and using condition (C3) and Remark 1 (noting αn → 0,
0 < αn < 1, θn‖xn − xn−1‖ → 0 and {xn} is bounded), from (22) we have

δn(1− ρn − αnτ)(1− δn)‖Tn(zn)− zn‖2 → 0, n→ ∞. (23)

The conditions (C2) and (C5) (i.e., 0 < αn < 1, αn → 0 and 0 < ρn ≤ 1− αn), together with (23)
and the fact that δn = 2+λn L

4 ∈ [a1, b1] ⊂ (0, 1), we obtain

‖Tn(zn)− zn‖ → 0, n→ ∞. (24)

Similarly, from (23) and the restriction condition imposed on βn in (C6), together with conditions
(C2) and (C5), we have

‖Ujn(yn)− yn‖ → 0, n→ ∞. (25)

Thus, using the definition of yn together with (24) gives

‖yn − zn‖ = ‖(1− δn)zn + δnTn(zn)− zn‖ = δn‖Tn(zn)− zn‖ → 0, n→ ∞. (26)

Moreover, using the definition of zn and Remark 1, we have

‖xn − zn‖ = ‖xn − xn − θn(xn − xn−1)‖ = θn‖xn − xn−1‖ → 0, n→ ∞. (27)

By (26) and (27), we get

‖xn − yn‖ ≤ ‖xn − zn‖+ ‖yn − zn‖ → 0, n→ ∞. (28)

By the definition of tn together with (25) gives

‖tn − yn‖ = ‖(1− βn)yn + βnUjn(yn)− yn‖ = βn‖Ujn(yn)− yn‖ → 0, n→ ∞. (29)

By (28) and (29), we get

‖xn − tn‖ ≤ ‖xn − yn‖+ ‖yn − tn‖ → 0, n→ ∞. (30)
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Again, from (26) and (29), we obtain

‖zn − tn‖ ≤ ‖zn − yn‖+ ‖yn − tn‖ → 0, n→ ∞. (31)

By the definition of xn+1, with the parameter restriction conditions (C2) and (C6) together with
(31) and boundedness of {F(tn)}, we have

‖xn+1 − tn‖= ‖ρnzn + Ψµ,αn ,ρn(tn)− tn‖
= ‖ρnzn + (1− ρn)tn − αnµF(tn)− tn‖
≤ ρn‖zn − tn‖+ αnµ‖F(tn)‖ → 0, n→ ∞.

(32)

Results from (30) and (32) give

‖xn+1 − xn‖ ≤ ‖xn+1 − tn‖+ ‖tn − xn‖ → 0, n→ ∞. (33)

By definition of tj
n and tn, and using (30), for all j ∈ {1, . . . , M}, we have

‖tj
n − xn‖ ≤ ‖tn − xn‖ → 0, n→ ∞

and this together with (28), yields

‖tj
n − yn‖ ≤ ‖tj

n − xn‖+ ‖yn − xn‖ → 0, n→ ∞

for all j ∈ {1, . . . , M}. Thus,

‖Uj(yn)− yn‖ =
1

βn
‖tj

n − yn‖ → 0, n→ ∞ (34)

for all j ∈ {1, . . . , M}. Therefore, from (28) and (34)

‖Uj(xn)− xn‖= ‖Uj(xn)−Uj(yn)‖+ ‖Uj(yn)− yn‖+ ‖yn − xn‖
≤ ‖Uj(yn)− yn‖+ 2‖yn − xn‖ → 0, n→ ∞

(35)

for all j ∈ {1, . . . , M}. Moreover, from (24) and (27)

‖Tn(xn)− xn‖= ‖Tn(xn)− Tn(zn)‖+ ‖Tn(zn)− zn‖+ ‖zn − xn‖
≤ ‖Tn(zn)− zn‖+ 2‖zn − xn‖ → 0, n→ ∞.

(36)

From (C6), we have 0 < λ̂ < 2
L . Thus, let T := PC(I − λ̂∇ f ). Then, using the nonexpansiveness

of projection mapping and (C6) of assumption 1 together with (28) and boundedness of {‖∇ f (zn)‖}
({zn} is bouded and ∇ f is Lipschitz continuous), we get

‖T(zn)−xn‖ = ‖T(zn)− yn + yn − xn‖
≤ ‖T(zn)− yn‖+ ‖yn − xn‖
= ‖PC(zn − λ̂∇ f (zn))− PC(zn − λn∇ f (zn))‖+ ‖yn − xn‖
≤ |λ̂− λn|‖∇ f (zn)‖+ ‖yn − xn‖ → 0, n→ ∞.

(37)

Hence, in view of (27), (37), and the nonexpansiveness of T, we get

‖T(xn)− xn‖= ‖T(xn)− T(zn) + T(zn)− xn‖
≤ ‖xn − zn‖+ ‖T(zn)− xn‖ → 0, n→ ∞.

(38)

Let p be a weak cluster point of {xn}, there exists a subsequence {xnk} of {xn} such that xnk ⇀ p
as k → ∞. We observe that p ∈ C because {xnk} ⊂ C and C is weakly closed. Assume p /∈ Fix(Uj0)
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for some j0 ∈ {1, . . . , M}. Since xnk ⇀ p and Uj0 is a nonexpansive mapping, from (35) and Opial’s
condition, one has

lim inf
k→+∞

‖xnk − p‖ < lim inf
k→+∞

‖xnk −Uj0(p)‖

= lim inf
k→+∞

‖xnk −Uj0(xnk ) + Uj0(xnk )−Uj0(p)‖

≤ lim inf
k→+∞

(‖xnk −Uj0(xnk )‖+ ‖Uj0(xnk )−Uj0(p)‖)

= lim inf
k→+∞

‖Uj0(xnk )−Uj0(p)‖

≤ lim inf
k→+∞

‖xnk − p‖

which is a contradiction. It must be the case that p ∈ Fix(Uj) for all j ∈ {1, . . . , M}. Similarly, using Opial’s
condition and (38), we can show that p ∈ Fix(T), i.e., p ∈ Γ. Therefore, p ∈ Ω = (

⋂M
j=1 FixUj)

⋂
Γ.

Next, we show that lim sup
n→∞

〈F(x̄), x̄ − xn+1〉 ≤ 0. Indeed, since x̄ ∈ SVI(Ω, F) and p ∈ Ω,

we obtain that

lim sup
n→∞

〈F(x̄), x̄− xn〉 = lim
k→∞
〈F(x̄), x̄− xnk 〉 = 〈F(x̄), x̄− p〉 ≤ 0.

Since ‖xn+1 − xn‖ → 0 from (33), by (39), we have

lim sup
n→∞

〈F(x̄), x̄− xn+1〉 ≤ 0.

From (11), (14) and (19), we have

‖xn+1 − x̄‖2 ≤ (1− ρn − αnτ)‖tn − x̄‖2 + ρn‖zn − x̄‖2

−2αnµ〈F(x̄), xn+1 − x̄〉
≤ (1− αnτ)‖zn − x̄‖2 − 2αnµ〈F(x̄), xn+1 − x̄〉
≤ (1− αnτ)(‖xn − x̄‖+ θn‖xn − xn−1‖)2 − 2αnµ〈F(x̄), xn+1 − x̄〉
≤ (1− αnτ)

(
‖xn − x̄‖2 + θ2

n‖xn − xn−1‖2

+2θn‖xn − xn−1‖‖xn − x̄‖
)
− 2αnµ〈F(x̄), xn+1 − x̄〉

≤ (1− αnτ)‖xn − x̄‖2 + θ2
n‖xn − xn−1‖2 (39)

+2θn‖xn − xn−1‖‖xn − x̄‖ − 2αnµ〈F(x̄), xn+1 − x̄〉.

Since {xn} is bounded, there exists M2 > 0 such that ‖xn − x̄‖ ≤ M2 for all n ≥ 1. Thus, in view
of (39), we have

‖xn+1 − x̄‖2 ≤ (1− αnτ)‖xn − x̄‖2 + θn‖xn − xn−1‖(θn‖xn − xn−1‖+ 2M2)

+2αnµ〈F(x̄), x̄− xn+1〉. (40)

Therefore, from (41), we get

Γn+1 ≤
(
1−ωn

)
Γn + ωnϑn, (41)

where ωn = αnτ and

ϑn = 1
τ

(
θn
αn
‖xn − xn−1‖

){
θn‖xn − xn−1‖+ 2M2

}
+ 2µ

τ 〈F(x̄), x̄− xn+1〉.

From (C2) and Remark 1, we have
∞
∑

n=1
ωn = ∞ and lim sup

n→∞
ϑn ≤ 0. Thus, using Lemma 5 and (41),

we get Γn → 0 as n→ ∞. Hence, xn → x̄ as n→ ∞.
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Case 2. Assume that {Γn} does not decrease at infinity. Let ϕ : N→ N be a mapping for all n ≥ n0

(for some n0 large enough) defined by

ϕ(n) = max{k ∈ N : k ≤ n, Γk ≤ Γk+1}.

By Lemma 6, {ϕ(n)}∞
n=n0

is a nondecreasing sequence, ϕ(n)→ ∞ as n→ ∞ and

Γϕ(n) ≤ Γϕ(n)+1 and Γn ≤ Γϕ(n)+1, ∀n ≥ n0. (42)

In view of ‖xϕ(n) − x̄‖2 − ‖xϕ(n)+1 − x̄‖2 = Γϕ(n) − Γϕ(n)+1 ≤ 0 for all n ≥ n0 and (22), for all
n ≥ n0 we have

δϕ(n)(1− ρϕ(n) − αϕ(n)τ)(1− δϕ(n))‖Tϕ(n)(zϕ(n))− zϕ(n)‖2

≤ (Γϕ(n) − Γϕ(n)+1) + αϕ(n)M1 + (1− αϕ(n)τ)θϕ(n)(Γϕ(n) − Γϕ(n)−1)

+2(1− αϕ(n)τ)θϕ(n)‖xϕ(n) − xϕ(n)−1‖2

≤ αϕ(n)M1 + (1− αϕ(n)τ)θϕ(n)(Γϕ(n) − Γϕ(n)−1)

+2(1− αϕ(n)τ)θϕ(n)‖xϕ(n) − xϕ(n)−1‖2

≤ αϕ(n)M1 + (1− αϕ(n)τ)θϕ(n)‖xϕ(n) − xϕ(n)−1‖
(√

Γϕ(n) +
√

Γϕ(n)−1

)
+2(1− αϕ(n)τ)θϕ(n)‖xϕ(n) − xϕ(n)−1‖2. (43)

Thus, from (43), conditions (C3) and (C4), and Remark 1, we have

‖Tϕ(n)(zϕ(n))− zn‖ → 0, n→ ∞. (44)

Similarly,
‖Ujϕ(n)

(yϕ(n))− yϕ(n)‖ → 0, n→ ∞. (45)

Using similar procedure as above in Case 1, we have lim
n→∞

‖xϕ(n)+1 − xϕ(n)‖ = 0 and

for T := PC(I − λ̂∇ f ), we have

lim
n→∞

‖T(xϕ(n))− xϕ(n)‖ = lim
n→∞

‖Uj(xϕ(n))− xϕ(n)‖ = 0

for all j ∈ {1, . . . , M}. Since {xϕ(n)} is bounded, there exists a subsequence of {xϕ(n)}, still denoted
by {xϕ(n)}, which converges weakly to p. By similar argument as above in Case 1, we conclude
immediately that p ∈ Ω. In addition, by the similar argument as above in Case 1, we have
lim sup

n→∞
〈F(x̄), x̄− xϕ(n)〉 ≤ 0. Since lim

n→∞
‖xϕ(n)+1 − xϕ(n)‖ = 0, we get lim sup

n→∞
〈F(x̄), x̄− xϕ(n)+1〉 ≤ 0.

From (41), we have
Γϕ(n)+1≤

(
1−ωϕ(n)

)
Γϕ(n) + ωϕ(n)ϑϕ(n), (46)

where ωϕ(n) = αϕ(n)τ and

ϑϕ(n) =
1
τ

(
θϕ(n)
αϕ(n)
‖xϕ(n) − xϕ(n)−1‖

){
θϕ(n)‖xϕ(n) − xϕ(n)−1‖+ 2M2

}
+ 2µ

τ 〈F(x̄), x̄− xϕ(n)+1〉.

Using Γϕ(n) − Γϕ(n)+1 ≤ 0 for all n ≥ n0 and ϑϕ(n) > 0, the last inequality gives

0 ≤ −ωϕ(n)Γϕ(n) + ωϕ(n)ϑϕ(n).

Since ωϕ(n) > 0, we obtain ‖xϕ(n) − x̄‖2 = Γϕ(n) ≤ ϑϕ(n). Moreover, since lim sup
n→∞

ϑϕ(n) ≤ 0,

we have lim
n→∞

‖xϕ(n) − x̄‖ = 0. Thus, lim
n→∞

‖xϕ(n) − x̄‖ = 0 together with lim
n→∞

‖xϕ(n)+1 − xϕ(n)‖ = 0,
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gives lim
n→∞

Γϕ(n)+1 = 0. Therefore, from (42), we obtain lim
n→∞

Γn = 0, that is, xn → x̄ as n→ ∞.

This completes the proof.

4. Applications

The mapping F : H → H, given by F(x) = x− p for a fixed point p ∈ H, is one simple example
of β-strongly monotone and κ-Lipschitz continuous mapping, where β = 1 and κ = 1. If F(x) = x− p
for a fixed point p ∈ H, then, BVIPO-FM becomes the problem of finding the projection of p onto
(
⋂M

j=1 FixUj)
⋂

Γ. When p = 0, this projection is the minimum-norm solution in (
⋂M

j=1 FixUj)
⋂

Γ.
Let BVIPO-M denote the bilevel variational inequality problem over the intersection of the

set of common solution points of finite number of constrained minimization problems, stated as
follows: For a closed convex subset C of a real Hilbert space H, a nonlinear mapping F : H → H and
a real-valued convex functions f j : C → R for j ∈ {0, 1, . . . , M}, BVIPO-M is the problem given by

find x̄ ∈ Ω such that 〈F(x̄), x− x̄〉 ≥ 0, ∀x ∈ Ω,

where Ω is the solution-set of

find x∗ ∈ C such that f j(x∗) = min
x∈C

f j(x), ∀j ∈ {0, 1, . . . , M}.

If the gradient of f j (∇ f j) is Lj-Lipschitz continuous on C, then, for 0 < ς < 2
Lj

the mapping

PC(I − ς∇ f j) is nonexpansive mapping and {x∗ ∈ C : f j(x∗) = min
x∈C

f j(x)} = Fix(PC(I − ς∇ f j)).

This leads to the following corollary as an immediate consequence of our main theorem for
approximation of solution of BVIPO-M, assuming that SVIP(F, Ω) is nonempty.

Corollary 1. If F satisfies condition (A1), f = f0 satisfy condition (A2), and the gradient of each f j (each ∇ f j)
is Lj-Lipschitz continuous on C for all j ∈ {1, . . . , M}, then, for 0 < ς < 2

max{L1,...,LM}
, replacing each Uj by

PC(I − ς∇ f j) for all j ∈ {1, . . . , M} in Algorithm 1 (in Step 4), the sequence {xn} generated by the algorithm
strongly converges to the unique solution of BVIPO-M.

Let C be closed convex subset C of a real Hilbert space H, F : H → H is a mapping , f : C → R is
a real-valued convex function, and each gj : C× C → R is a bifunction for j ∈ {1, . . . , M}. BVIPO-EM
denotes the bilevel variational inequality problem over the intersection of the set of common solution
points of a finite number of equilibrium problems and the set of solution points of the constrained
minimization problem given by

find x̄ ∈ Ω such that 〈F(x̄), x− x̄〉 ≥ 0, ∀x ∈ Ω,

where Ω is the solution-set of

find x∗ ∈ C such that f (x∗) = min
x∈C

f (x) and x∗ ∈
M⋂

j=1

SEP(gj, C).

If each gj satisfies Condition CO on C for all j ∈ {1, . . . , M}, then, by Lemma 7 (1) and (3), for each

j ∈ {1, . . . , M}, T
gj
r is nonexpansive and FixT

gj
r = SEP(gj, C). Applying Theorem 1, we obtain the

following result for approximation of solution of BVIPO-EM, assuming that SVIP(F, Ω) is nonempty.

Corollary 2. If F satisfy condition (A1), f satisfy condition (A2), and each gj satisfies Condition CO on C for
all j ∈ {1, . . . , M}, then, for r > 0, replacing each Uj by T

gj
r for all j ∈ {1, . . . , M} in Algorithm 1 (in Step 4),

the sequence {xn} generated by the algorithm strongly converges to the unique solution of BVIPO-EM.
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Let C be closed convex subset C of a real Hilbert space H, F : H → H is a mapping , f : C → R is
a real-valued convex function and each Fj : C → H for j ∈ {1, . . . , M} is a mapping for j ∈ {1, . . . , M}.
Now, suppose that BVIPO-VM denotes the bilevel variational inequality problem over the intersection
of the set of common solution points of finite number of variational inequality problems and the set of
solution points of the constrained minimization problem given by

find x̄ ∈ Ω such that 〈F(x̄), x− x̄〉 ≥ 0, ∀x ∈ Ω,

where Ω is the solution-set of

find x∗ ∈ C such that f (x∗) = min
x∈C

f (x) and x∗ ∈
M⋂

j=1

SVIP(Fj, C).

Note that if each Fj is ηj-inverse strongly monotone on C for all j ∈ {1, . . . , M} and
0 < $ ≤ 2ηj, then,

(a) PC(I − $Fj) is nonexpansive;
(b) x∗ is fixed point of PC(I− $Fj) iff x∗ is the solution of the variational inequality problem VIP(Fj, C),

i.e., Fix(PC(I − $Fj)) = SVIP(Fj, C).

By Theorem 1, we have the following corollary for approximation of solution of BVIPO-VM,
assuming that SVIP(F, Ω) is nonempty.

Corollary 3. If F satisfy condition (A1), f satisfy condition (A2) and each Fj is ηj-inverse strongly monotone
on C for all j ∈ {1, . . . , M}, then for 0 < $ ≤ 2 min{η1, . . . , ηM}, replacing each Uj by PC(I − $Fj) for all
j ∈ {1, . . . , M} in Algorithm 1 (in Step 4), the sequence {xn} generated by the algorithm strongly converges to
the unique solution of BVIPO-VM.

5. Numerical Results

Example 1. Consider the bilevel variational inequality problem

find x̄ ∈ Ω such that 〈F(x̄), x− x̄〉 ≥ 0, ∀x ∈ Ω,

where Ω is the solution-set of

find x∗ ∈ C such that f j(x∗) = min
x∈C

f j(x), ∀j ∈ {0, 1, . . . , M}

for H = RN , C = {x = (x1, . . . , xN) ∈ RN : −2 ≤ xi ≤ 2, ∀i ∈ {1, . . . , N}}, and F and f j are given by

F(x) = F(x1, . . . , xN) = (γ1x1, . . . , γN xN),

f j(x) =
1
2
‖(I − PDj)Ajx‖2, ∀j ∈ {0, 1, . . . , M},

where γi > 0 for all i ∈ {1, . . . , N},

Dj =
{

x = (x1, . . . , xN) ∈ RN :
−1

j + 1
≤ xi ≤

1
j + 2

, ∀i ∈ {1, . . . , N}
}

,



Mathematics 2019, 7, 841 16 of 21

Aj : RN → RN is given by Aj = σj IN×N for σj > 0 (IN×N is N × N identity matrix) for j ∈
{0, 1, . . . , M}. Note the following:

(i) F is β-strongly monotone and κ-Lipschitz continuous on H = RN , where β = min{γi : i = 1, . . . , N}
and κ = max{γi : i = 1, . . . , N}.

(ii) Aj is bounded linear operator, ‖Aj‖ = σj; and Aj is self-adjoint operator.
(iii) The gradient of each f j (each ∇ f j) is Lj-Lipschitz continuous on C for all j ∈ {0, 1, . . . , M}, where

Lj = σ2
j and ∇ f j is given by (see [38])

∇ f j(x) = Aj(I − PDj)Ajx = σ2
j x− σjPDj(σjx).

(iv) For each j ∈ {0, 1, . . . , M},

{x∗ ∈ C : f j(x∗) = min
x∈C

f j(x)} = Γj,

where Γj =
{

x ∈ RN : −1
σj(j+1) ≤ xi ≤ 1

σj(j+2) , ∀i = 1, . . . , N
}

. Hence,

Ω =
M⋂

j=1

Γj =
{

x ∈ RN : LB ≤ xi ≤ UB, ∀i ∈ {1, . . . , N}
}

,

where LB = max
{ −1

σj(j+1) : j ∈ {0, 1, . . . , M}
}

and UB = min
{ 1

σj(j+2) : j ∈ {0, 1, . . . , M}
}

.
(v) 0 is the solution of the given bilevel variational inequality problem, i.e., SVIP(Ω, F)= {0}.

We set σj = 2j for each j ∈ {0, 1, . . . , M} and M = 4. Therefore,

Ω =
{

x ∈ RN :
−1
80
≤ xi ≤

1
96

, ∀i ∈ {1, . . . , N}
}

and the gradient of f = f0 is L-Lipschitz continuous on C where L = L0 = σ2
0 = 1. We will test our experiment

for different dimension N and different parameters.
Take θ = 1

2 and γi = i for each i ∈ {1, . . . , N}. Thus, F is 1-strongly monotone and N-Lipschitz
continuous on RN . Hence, notice that the positive real constants µ, ς, and λn are chosen to be 0 < ς <

2
max{L1,L2,L3,L4}

= 1
128 , 0 < µ < min{ 2

N2 , 1
2}, and 0 < a ≤ λn ≤ b < 2

N . We describe the numerical results

of Algorithm 1 (applying Corollary 1) for the positive real constants µ and ς given by ς = 1
200 and

µ =

{
1
3 , if N = 1, 2

2
N2−1 , if N = 3, 4, 5, . . .

.

In Figures 1 and 2 and Table 1, the real sequences {αn}, {εn}, {ρn}, {λn}, {βn}, {θn} are chosen
as follows:

Data 1. αn = 1
2n+4 , εn = 1

(n+2)2 , ρn = n+3
2n+4 , λn = 2

N+1 , βn = n+3
2n+2 , θn = θ̄n.

Data 2. αn = 1
3n0.5+1 , εn = 1

3n1.5+n , ρn = 2n0.5−1
3n0.5+1 , λn = 1

N , βn = 1
2 , θn = θ̄n.

Data 3. αn = 1
5n , εn = 1

n3 , ρn = 4n−1
5n+1 , λn = 1

N+1 , βn = 10n+91
11n+110 , θn = θ̄n.

The stopping criteria in Table 1 is defined as ‖xn − xn−1‖ ≤ 10−3.
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Figure 1. For N = 100 and x0, x1 are for randomly generated starting points x0 and x1 (the same
starting points for Data 1 and Data 2).

Figure 2. For Data 3 and for randomly generated starting points x0 and x1.

Table 1. For starting points x0 = 10(1, . . . , 1) ∈ RN and x1 = 10x0.

N = 10 N = 1200

Iter(n) CPU(s) ‖xn‖ Iter(n) CPU(s) ‖xn‖
Data 1 10 0.0165 0.4231 9 0.0182 0.5739
Data 2 9 0.0186 0.4461 8 0.0193 0.3755
Data 3 10 0.0178 0.1356 8 0.0191 0.4524

Figure 3 demonstrates the behavior of Algorithm 1 for different parameters ρn (Case 1: ρn = 1
5n+3 ; Case

2: ρn = 2n+2
5n+3 ; Case 2: ρn = 3n+3

5n+3 ; Case 4: ρn = 4n+2
5n+3 ), where αn = 1

5n+3 , εn = 1
(5n+3)3 , λn = 1

N+1 ,

βn = n+10
10n+90 , θn = θ̄n.

From Figures 1–3 and Table 1, it is clear to see that your algorithm depends of the dimension, starting
points, and parameters. From Figure 3, we can see that the sequence generated by the algorithm converges faster
to the solution of the problem for the choice of ρn, where ρ ( lim

n→∞
ρn = ρ) is very close to 0.
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Figure 3. For N = 50 and starting points x0 = 100(1, . . . , 1) ∈ RN and x1 = −50(1, . . . , 1) ∈ RN .

Example 2. Consider BVIPO-FM is given by

find x̄ ∈ Ω such that 〈F(x̄), x− x̄〉 ≥ 0, ∀x ∈ Ω,

where Ω is the solution set of

find x∗ ∈ C such that f (x∗) = min
x∈C

f (x) and x∗ ∈ FixU

for H = RN = C and F, f , and U are given by

F(x) = F(x1, . . . , xN) = (a1x1 + b1, . . . , aN xN + bN),

f (x) =
1
2
‖(I − PD)2x‖2,

Ux = x,

where ai > 0, bi > 0 for all i ∈ {1, . . . , N} and

D =
{

x ∈ RN :
−2 max{bi : i = 1, . . . , N}

min{ai : i = 1, . . . , N} ≤ xi ≤ 0, ∀i ∈ {1, . . . , N}
}

.

We took ai = i and bi = N + 1− i. Thus, F is β-strongly monotone and κ-Lipschitz continuous on
H = RN , where β = 1 and κ = N. The gradient of f is L-Lipschitz continuous on C, where L = 1 and ∇ f is
given by ∇ f (x) = 4x− 2PQ(2x). Moreover, Ω = {x ∈ RN : −N ≤ xi ≤ 0, ∀i = 1, . . . , N} and

SVIP(Ω, F) =
{(
− N,

−(N − 1)
2

,
−(N − 2)

3
, . . . ,

−1
N

)}
.

Table 2 illustrates the numerical result of our algorithm, solving BVIPO-FM given in this example for
different dimensions and different stopping criteria ‖xn−xn−1‖

‖x1−x0‖
≤ TOL, where the parameters are given in the

following: αn = 1
5n−1 , εn = 1

(5n−1)2 , ρn = 1
5 , λn = 1

N , βn = 1
2 , θn = θ̄n.
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Table 2. For starting points x0 = 100(1, . . . , 1) ∈ RN and x1 = 100x0.

TOL = 10−2 TOL = 10−3 TOL = 10−4

Iter(n) CPU(s) Iter(n) CPU(s) Iter(n) CPU(s)

N = 2 4 0.00345 23 0.3163 107 0.9705
N = 10 10 0.02217 36 0.4802 116 1.2201
N = 100 21 0.20681 47 0.9207 149 1.8491

For TOL= 10−5, N = 4, x0 = (1, 2, 3, 4), and x1 = (5, 6, 7, 8), the approximate solution obtained after
319 iterations is

x319 = (−3.978599508,−1.487950389,−0.641608433,−0.24194702778).

6. Conclusions

We have proposed a strongly convergent inertial algorithm for a class of bilevel variational
inequality problem over the intersection of the set of common fixed points of finite number of
nonexpansive mappings and the set of solution points of the constrained minimization problem
of real-valued convex function (BVIPO-FM). The contribution of our result in this paper is twofold.
First, it provides effective way of solving BVIPO-FM, where iterative scheme combines inertial term to
speed up the convergence of the algorithm. Second, our result can be applied to find a solution
to the bilevel variational inequality problem over the solution set of the problem P, where the
problem P (the lower level problem) can be converted as a common fixed point of a finite number of
nonexpansive mappings.
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