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Abstract

:

Each of the descriptions of vertices, edges, and facets of the order and chain polytope of a finite partially ordered set are well known. In this paper, we give an explicit description of faces of 2-dimensional simplex in terms of vertices. Namely, it will be proved that an arbitrary triangle in 1-skeleton of the order or chain polytope forms the face of 2-dimensional simplex of each polytope. These results mean a generalization in the case of 2-faces of the characterization known in the case of edges.
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1. Introduction


The combinatorial structure of the order polytope   O ( P )   and the chain polytope   C ( P )   of a finite poset (partially ordered set) P is explicitly discussed in [1]. Moreover, in [2], the problem when the order polytope   O ( P )   and the chain polytope   C ( P )   are unimodularly equivalent is solved. It is also proved that the number of edges of the order polytope   O ( P )   is equal to that of the chain polytope   C ( P )   in [3]. In the present paper we give an explicit description of faces of 2-dimensional simplex of   O ( P )   and   C ( P )   in terms of vertices. In other words, we show that triangles in 1-skeleton of   O ( P )   or   C ( P )   are in one-to-one correspondence with faces of 2-dimensional simplex of each polytope. These results are a direct generalizations of [4] (Lemma 4, Lemma 5).




2. Definition and Known Results


Let   P = {  x 1  , ⋯ ,  x d  }   be a finite poset. To each subset   W ⊂ P  , we associate   ρ  ( W )  =  ∑  i ∈ W    e i  ∈   R  d   , where    e 1  , ⋯ ,  e d    are the canonical unit coordinate vectors of    R  d  . In particular   ρ ( ∅ )   is the origin of    R  d  . A poset ideal of P is a subset I of P such that, for all   x i   and   x j   with    x i  ∈ I   and    x j  ≤  x i   , one has    x j  ∈ I  . An antichain of P is a subset A of P such that   x i   and   x j   belonging to A with   i ≠ j   are incomparable. The empty set ∅ is a poset ideal as well as an antichain of P. We say that   x j  covers  x i   if    x i  <  x j    and    x i  <  x k  <  x j    for no    x k  ∈ P  . A chain    x  j 1   <  x  j 2   < ⋯ <  x  j ℓ     of P is called saturated if   x  j q    covers   x  j  q − 1     for   1 < q ≤ ℓ  . A maximal chain is a saturated chain such that   x  j 1    is a minimal element and   x  j ℓ    is a maximal element of the poset. The rank of P is   ♯ ( C ) − 1  , where C is a chain with maximum length of P.



The order polytope of P is the convex polytope   O  ( P )  ⊂   R  d    which consists of those    (  a 1  , ⋯  a d  )  ∈   R  d    such that   0 ≤  a i  ≤ 1   for every   1 ≤ i ≤ d   together with


   a i  ≥  a j   








if    x i  ≤  x j    in P.



The chain polytope of P is the convex polytope   C  ( P )  ⊂   R  d    which consists of those    (  a 1  , ⋯ ,  a d  )  ∈   R  d    such that    a i  ≥ 0   for every   1 ≤ i ≤ d   together with


   a  i i   +  a  i 2   + ⋯ +  a  i k   ≤ 1  








for every maximal chain    x  i 1   <  x  i 2   < ⋯ <  x  i k     of P.



One has   dim O ( P ) = dim C ( P ) = d  . The vertices of   O ( P )   is those   ρ ( I )   for which I is a poset ideal of P ([1] (Corollary1.3)) and the vertices of   C ( P )   is those   ρ ( A )   for which A is an antichain of P ([1] (Theorem2.2)). It then follows that the number of vertices of   O ( P )   is equal to that of   C ( P )  . Moreover, the volume of   O ( P )   and that of   C ( P )   are equal to   e ( P ) / d !  , where   e ( P )   is the number of linear extensions of P ([1] (Corollary4.2)). It also follows from [1] that the facets of   O ( P )   are the following:




	
   x i  = 0  , where    x i  ∈ P   is maximal;



	
   x j  = 1  , where    x j  ∈ P   is minimal;



	
   x i  =  x j   , where   x j   covers   x i  ,








and that the facets of   C ( P )   are the following:




	
   x i  = 0  , for all    x i  ∈ P  ;



	
   x  i 1   + ⋯ +  x  i k   = 1  , where    x  i 1   < ⋯ <  x  i k     is a maximal chain of P.








In [4] a characterization of edges of   O ( P )   and those of   C ( P )   is obtained. Recall that a subposet Q of finite poset P is said to be connected in P if, for each x and y belonging to Q, there exists a sequence   x =  x 0  ,  x 1  , ⋯ ,  x s  = y   with each    x i  ∈ Q   for which   x  i − 1    and   x i   are comparable in P for each   1 ≤ i ≤ s  .



Lemma 1

([4] (Lemma 4, Lemma 5)) Let P be a finite poset.




	1.

	
Let I and J be poset ideals of P with   I ≠ J  . Then the convex hull of   { ρ ( I ) , ρ ( J ) }   forms an edge of   O ( P )   if and only if   I ⊂ J   and   J ∖ I   is connected in P.




	2.

	
Let A and B be antichains of P with   A ≠ B  . Then the convex hull of   { ρ ( A ) , ρ ( B ) }   forms an edge of   C ( P )   if and only if   ( A ∖ B ) ∪ ( B ∖ A )   is connected in P.












3. Faces of 2-Dimensional Simplex


Using Lemma 1, we show the following description of faces of 2-dimensional simplex.



Theorem 1.

Let P be a finite poset. Let I, J, and K be pairwise distinct poset ideals of P. Then the convex hull of   { ρ ( I ) , ρ ( J ) , ρ ( K ) }   forms a 2-face of   O ( P )   if and only if   I ⊂ J ⊂ K   and   K ∖ I   is connected in P.





Proof. 

(“Only if”) If the convex hull of   { ρ ( I ) , ρ ( J ) , ρ ( K ) }   forms a 2-face of   O ( P )  , then the convex hulls of   { ρ ( I ) , ρ ( J ) }  ,   { ρ ( J ) , ρ ( K ) }  , and   { ρ ( I ) , ρ ( K ) }   form edges of   O ( P )  . It then follows from Lemma 1 that   I ⊂ J ⊂ K   and   K ∖ I   is connected in P.



(“If”) Suppose that the convex hull of   { ρ ( I ) , ρ ( J ) , ρ ( K ) }   has dimension 1. Then there exists a line passing through the lattice points   ρ ( I ) , ρ ( J )  , and   ρ ( K )  . Hence   ρ ( I ) , ρ ( J )  , and   ρ ( K )   cannot be vertices of   O ( P )  . Thus the convex hull of   { ρ ( I ) , ρ ( J ) , ρ ( K ) }   has dimension 2.



Let   P = {  x 1  , ⋯ ,  x d  }  . If there exists a maximal element   x i   of P not belonging to   I ∪ J ∪ K  , then the convex hull of   { ρ ( I ) , ρ ( J ) , ρ ( K ) }   lies in the facet    x i  = 0  . If there exists a minimal element   x j   of P belonging to   I ∩ J ∩ K  , then the convex hull of   { ρ ( I ) , ρ ( J ) , ρ ( K ) }   lies in the facet    x j  = 1  . Hence, working with induction on   d ( ≥ 2 )  , we may assume that   I ∪ J ∪ K = P   and   I ∩ J ∩ K = ∅  . Suppose that   ∅ = I ⊂ J ⊂ K = P   and   K ∖ I = P   is connected.



Case 1.  ♯ ( J ) = 1  .



Let   J = {  x i  }   and    P ′  = P ∖  {  x i  }   . Then   P ′   is a connected poset. Let    x  i 1   , ⋯ ,  x  i q     be the maximal elements of P and    A  i j   =  { y ∈  P ′   |  y <  x  i j   }    , where   1 ≤ j ≤ q  . Then we write


   b k  =      ♯ (  {  i j   |   x k  ∈  A  i j   }  )     if    k ∉ {  i 1  , ⋯ ,  i q  , i }       0    if    k = i        − ♯ (  A  i j   )     if    k ∈ {  i 1  , ⋯ ,  i q  }       .  











We then claim that the hyperplane  H  of    R  d   defined by the equation   h  ( x )  =  ∑  k = 1  d   b k   x k  = 0   is a supporting hyperplane of   O ( P )   and that   H ∩ O ( P )   coincides with the convex hull of   { ρ ( ∅ ) , ρ ( J ) , ρ ( P ) }  . Clearly   h ( ρ ( ∅ ) ) = h ( ρ ( P ) ) = 0   and   h  ( ρ  ( J )  )  =  b i  = 0  . Let I be a poset ideal of P with   I ≠ ∅  ,   I ≠ P   and   I ≠ J  . We have to prove that   h ( ρ ( I ) ) > 0  . To simplify the notation, suppose that   I ∩  {  x  i 1   , ⋯ ,  x  i q   }  =  {  x  i 1   , ⋯ ,  x  i r   }   , where   0 ≤ r < q  . If   r = 0  , then   h ( ρ ( J ) ) > 0  . Let   1 ≤ r < q  ,    I ′  = I ∖  {  x i  }   , and   K =  ⋃  j = 1  r   (   A  i j   ∪  {  x  i j   }   )   . Then   I ′   and K are poset ideals of P and   h  ( ρ  ( K )  )  ≤ h  ( ρ  (  I ′  )  )  = h  ( ρ  ( I )  )   . We claim   h ( ρ ( K ) ) > 0  . One has   h ( ρ ( K ) ) ≥ 0  . Moreover,   h ( ρ ( K ) ) = 0   if and only if no   z ∈ K   belongs to    A  i  r + 1    ∪ ⋯ ∪  A  i q    . Now, since   P ′   is connected, it follows that there exists   z ∈ K   with   z ∈  A  i  r + 1    ∪ ⋯ ∪  A  i q    . Hence   h ( ρ ( K ) ) > 0  . Thus   h ( ρ ( I ) ) > 0  .



Case 2.  ♯ ( J ) = d − 1  .



Let   P ∖ J = {  x i  }   and    P ′  = P ∖  {  x i  }   . Then   P ′   is a connected poset. Thus we can show the existence of a supporting hyperplane of   O ( P )   which contains the convex hull of   { ρ ( ∅ ) , ρ ( J ) , ρ ( P ) }   by the same argument in Case 1.



Case 3.  2 ≤ ♯ ( J ) ≤ d − 2  .



To simplify the notation, suppose that   J = {  x 1  , ⋯ ,  x ℓ  }  . Then   P ∖ J = {  x  ℓ + 1   , ⋯ ,  x d  }  . Since J and   P ∖ J   are subposets of P, these posets are connected. Let    x  i 1   , ⋯ ,  x  i q     be the maximal elements of J and    x  i  q + 1    , ⋯ ,  x  i  q + r      the maximal elements of   P ∖ J  . Then we write


   A  i j   =      { y ∈ J  |  y <  x  i j   }     if   1 ≤ j ≤ q        { y ∈ P ∖ J  |  y <  x  i j   }     if   q + 1 ≤ j ≤ r        








and


   b k  =      ♯ (  {  i j   |   x i  ∈  A  i j   }  )     if    k ∉ {  i 1  , ⋯ ,  i q  ,  i  q + 1   , ⋯ ,  i  q + r   }        − ♯ (  A  i j   )     if    k ∈ {  i 1  , ⋯ ,  i q  ,  i  q + 1   , ⋯ ,  i  q + r   }       .  











We then claim that the hyperplane  H  of    R  d   defined by the equation   h  ( x )  =  ∑  k = 1  d   b k   x k  = 0   is a supporting hyperplane of   O ( P )   and   H ∩ O ( P )   coincides with the convex hull of   { ρ ( ∅ ) , ρ ( J ) , ρ ( P ) }  . Clearly   h ( ρ ( ∅ ) ) = h ( ρ ( J ) ) = h ( ρ ( P ∖ J ) ) = 0  , then   h ( ρ ( P ) ) = h ( ρ ( J ) ) + h ( ρ ( P ∖ J ) ) = 0  . Let I be a poset ideal of P with   I ≠ ∅  ,   I ≠ P   and   I ≠ J  . What we must prove is   h ( ρ ( I ) ) > 0  .



If   I ⊂ J  , then I is a poset ideal of J. To simplify the notation, suppose that   I ∩  {  x  i 1   , ⋯ ,  x  i q   }  =  {  x  i 1   , ⋯ ,  x  i s   }    , where   0 ≤ s < q  . If   s = 0  , then   h ( ρ ( I ) ) > 0  . Let   1 ≤ s < q  ,   K =  ⋃  j = 1  s   (   A  i j   ∪  {  x  i j   }   )   . Then K is a poset ideal of J and   h ( ρ ( K ) ) ≤ h ( ρ ( I ) )  . Thus we can show   h ( ρ ( K ) ) > 0   by the same argument in Case 1 (Replace r with s and   P ′   with J).



If   J ⊂ I  , then   I ∖ J   is a poset ideal of   P ∖ J  . To simplify the notation, suppose that    ( I ∖ J )  ∩  {  x  i  q + 1    , ⋯ ,  x  i  q + r    }  =  {  x  i  q + 1    , ⋯ ,  x  i  q + t    }    , where   0 ≤ t < r  . If   t = 0  , then   h ( ρ ( I ) ) = h ( ρ ( J ) ) + h ( ρ ( I ∖ J ) ) = h ( ρ ( I ∖ J ) ) > 0  . Let   1 ≤ t < r  ,   K =  ⋃  j = q + 1   q + t    (   A  i j   ∪  {  x  i j   }   )   . Then K is a poset ideal of   P ∖ J   and   h ( ρ ( K ) ) ≤ h ( ρ ( I ∖ J ) ) = h ( ρ ( I ) )  . Thus we can show   h ( ρ ( K ) ) > 0   by the same argument in Case 1 (Replace r with   q + t  , q with   q + r   and   P ′   with   P ∖ J  ). Consequently,   h ( ρ ( I ) ) > 0  , as desired. □





Let   A ▵ B   denote the symmetric difference of the sets A and B, that is   A ▵ B = ( A ∖ B ) ∪ ( B ∖ A )  .



Theorem 2.

Let P be a finite poset. Let A, B, and C be pairwise distinct antichains of P. Then the convex hull of   { ρ ( A ) , ρ ( B ) , ρ ( C ) }   forms a 2-face of   C ( P )   if and only if   A ▵ B  ,   B ▵ C   and   C ▵ A   are connected in P.





Proof. 

(“Only if”) If the convex hull of   { ρ ( A ) , ρ ( B ) , ρ ( C ) }   forms a 2-face of   C ( P )  , then the convex hulls of   { ρ ( A ) , ρ ( B ) }  ,   { ρ ( B ) , ρ ( C ) }  , and   { ρ ( A ) , ρ ( C ) }   form edges of   C ( P )  . It then follows from Lemma 1 that   A ▵ B  ,   B ▵ C   and   C ▵ A   are connected in P.



(“If”) Suppose that the convex hull of   { ρ ( A ) , ρ ( B ) , ρ ( C ) }   has dimension 1. Then there exists a line passing through the lattice points   ρ ( A )  ,   ρ ( B )  , and   ρ ( C )  . Hence   ρ ( A )  ,   ρ ( B )  , and   ρ ( C )   cannot be vertices of   C ( P )  . Thus the convex hull of   { ρ ( A ) , ρ ( B ) , ρ ( C ) }   has dimension 2.



Let   P = {  x 1  , ⋯ ,  x d  }  . If   A ∪ B ∪ C ≠ P   and    x i  ∉ A ∪ B ∪ C  , then the convex hull of   { ρ ( A ) , ρ ( B ) , ρ ( C ) }   lies in the facet    x i  = 0  . Furthermore, if   A ∪ B ∪ C = P   and   A ∩ B ∩ C ≠ ∅  , then    x j  ∈ A ∩ B ∩ C   is isolated in P and   x j   itself is a maximal chain of P. Thus the convex hull of   { ρ ( A ) , ρ ( B ) , ρ ( C ) }   lies in the facet    x j  = 1  . Hence, working with induction on   d ( ≥ 2 )  , we may assume that   A ∪ B ∪ C = P   and   A ∩ B ∩ C = ∅  . As stated in the proof of [3] ([Theorem 2.1]), if   A ▵ B   is connected in P, then A and B satisfy either (i)   B ⊂ A   or (ii)   y < x   whenever   x ∈ A   and   y ∈ B   are comparable. Hence, we consider the following three cases:



(a) If   B ⊂ A  , then   A ▵ B = A ∖ B   is connected in P, and thus   ♯ ( A ∖ B ) = 1  . Let   A ∖ B = {  x k  }  . If   C ∩ A ≠ ∅  , then   C ∩ A = {  x k  }  , since   A ∩ B ∩ C = C ∩ B = ∅  . Namely   x k   is isolated in P. Hence   B ▵ C = B ∪ C = A ∪ B ∪ C = P   cannot be connected. Thus   C ∩ A = ∅  . In this case, we may assume   z < x   if   x ∈ A   and   z ∈ C   are comparable. Furthermore, P has rank 1.



(b) If   B ⊄ A   and   B ∩ A ≠ ∅  , then we may assume   y < x   if   x ∈ A   and   y ∈ B   are comparable. If   C ⊂ B   with   C ∩ A ∩ B = ∅  , then as stated in (a),   C ▵ A   cannot be connected. Since   C ⊄ B  , we may assume   z < y   if   y ∈ B   and   z ∈ C   are comparable. If   C ∩ B ≠ ∅  , then   C ∩ A = ∅   and P has rank 1 or 2. Similarly, if   C ∩ B = ∅  , then   C ∩ A = ∅   and P has rank 2.



(c) Let   B ⊄ A   and   B ∩ A = ∅  . We may assume that if   x ∈ A   and   y ∈ B   are comparable, then   y < x  . If   C ⊂ B  , then we regard this case as equivalent to (a). Let   C ⊄ B  . We may assume   z < y   if   y ∈ B   and   z ∈ C   are comparable. Moreover, if   C ∩ B ≠ ∅  , then we regard this case as equivalent to (b). If   C ∩ B = ∅  , then   C ∩ A = ∅   and P has rank 2.



Consequently, there are five cases as regards antichains for   C ( P )  .



Case 1.  B ⊂ A  ,   C ∩ A = ∅  , and   C ∩ B = ∅  .



For each    x i  ∈ B   we write   b i   for the number of elements   z ∈ C   with   z <  x i   . For each    x j  ∈ C   we write   c j   for the number of elements   y ∈ B   with    x j  < y  . Let    a k  = 0   for   A ∖ B = {  x k  }  . Clearly    ∑   x i  ∈ B    b i  =  ∑   x j  ∈ C    c j  = q  , where q is the number of pairs   ( y , z )   with   y ∈ B  ,   z ∈ C   and   z < y  . Let   h  ( x )  =  ∑   x i  ∈ B    b i   x i  +  ∑   x j  ∈ C    c j   x j  +  a k   x k    and let  H  be the hyperplane of    R  d   defined by   h ( x ) = q  . Then   h ( ρ ( A ) ) = h ( ρ ( B ) ) = h ( ρ ( C ) ) = q  . We claim that, for any antichain D of P with   D ≠ A  ,   D ≠ B  , and   D ≠ C  , one has   h ( ρ ( D ) ) < q  . Let   D =  B 1  ∪  C 1    or   D =  {  x k  }  ∪  C 1    with    B 1  ⊊ B   and    C 1  ⊊ C  . Suppose   D =  B 1  ∪  C 1   . Since   B ▵ C   is connected and since D is an antichain of P, it follows that    ∑   x i  ∈  B 1     b i  +  ∑   x j  ∈  C 1     c j  < q  . Thus   h ( ρ ( D ) ) < q .   Suppose that   D =  {  x k  }  ∪  C 1   . It follows that    ∑   x j  ∈  C 1     c j  +  a k  =  ∑   x j  ∈  C 1     c j  <  ∑   x j  ∈ C    c j  = q .   Thus   h ( ρ ( D ) ) < q .  



Case 2.  B ⊄ A  ,   B ∩ A ≠ ∅  ,   C ⊄ B  ,   C ∩ B ≠ ∅  ,   C ∩ A = ∅  , and P has rank 1.



We define four numbers as follows:


      α i       = ♯ (  { y ∈ B ∖ A  |  y <  x i   ,   x i  ∈ A ∖ B }  ) ;        γ j       = ♯ (  { x ∈ A ∖ B  |   x j  < x  ,   x j  ∈ B ∖ A }  ) ;        α k       = ♯ (  { z ∈ C ∖ B  |  z <  x k   ,   x k  ∈ B ∖ C }  ) ;        γ ℓ       = ♯ (  { y ∈ B ∖ C  |   x ℓ  < y  ,   x ℓ  ∈ C ∖ B }  ) .     











Since P has rank 1,   B ⊂ A ∪ C = P  . It follows that   A = ( A ∖ B ) ∪ ( B ∖ C )  ,   C = ( B ∖ A ) ∪ ( C ∖ B )  . Then


      ∑   x s  ∈ A    α s  =  ∑   x i  ∈ A ∖ B    α i  +  ∑   x k  ∈ B ∖ C    α k       = q ;        ∑   x j  ∈ B ∖ A    γ j  +  ∑   x k  ∈ B ∖ C    α k       = q ;        ∑   x u  ∈ C    γ u  =  ∑   x j  ∈ B ∖ A    γ j  +  ∑   x ℓ  ∈ C ∖ B    γ ℓ       = q ,     








where   q 1   is the number of pairs   ( x , y )   with   x ∈ A ∖ B  ,   y ∈ B ∖ A   and   y < x  ,   q 2   is the number of pairs   ( y , z )   with   y ∈ B ∖ C  ,   z ∈ C ∖ B   and   z < y  , and   q =  q 1  +  q 2   . Let


     h ( x )      =  ∑   x s  ∈ A    α s   x s  +  ∑   x u  ∈ C    γ u   x u           =  ∑   x i  ∈ A ∖ B    α i   x i  +   ∑   x j  ∈ B ∖ A    γ j   x j  +  ∑   x k  ∈ B ∖ C    α k   x k   +  ∑   x ℓ  ∈ C ∖ B    γ ℓ   x ℓ      








and  H  the hyperplane of    R  d   defined by   h ( x ) = q  . Then   h ( ρ ( A ) ) = h ( ρ ( B ) ) = h ( ρ ( C ) ) = q  . We claim that, for any antichain D of P with   D ≠ A  ,   D ≠ B   and   D ≠ C  , one has   h ( ρ ( D ) ) < q  . Let   D =  D 1  ∪  D 2    with   D 1   is an antichain of   A ▵ B   and   D 2   is an antichain of   B ▵ C  . Since   A ▵ B  ,   B ▵ C   are connected, it follows that   h  ( ρ  (  D 1  )  )  <  q 1    and   h  ( ρ  (  D 2  )  )  <  q 2   . Thus   h  ( ρ  ( D )  )  = h  ( ρ  (  D 1  )  )  + h  ( ρ  (  D 2  )  )  <  q 1  +  q 2  = q .  



Case 3.  B ⊄ A  ,   B ∩ A ≠ ∅  ,   C ⊄ B  ,   C ∩ B ≠ ∅  ,   C ∩ A = ∅  , and P has rank 2.



For each    x i  ∈ P   we write   c ( i )   for the number of maximal chains, which contain   x i  . Let q be the number of maximal chains in P. Since each    x i  ∈ A   is maximal element and each    x k  ∈ C   is minimal element,    ∑   x i  ∈ A   c  ( i )  =  ∑   x k  ∈ C   c  ( k )  = q  . Then


      ∑   x j  ∈ B   c  ( j )       =  ∑   x s  ∈ B ∩ A   c  ( s )  +  ∑   x t  ∈ B ∩ C   c  ( t )  +  ∑   x u  ∈ B ∖  ( A ∪ C )    c  ( u )           =  ∑   x s  ∈ B ∩ A   c  ( s )  +  ∑   x t  ∈ B ∩ C   c  ( t )  +   ∑   x v  ∈ A ∖ B   c  ( v )  −  ∑   x t  ∈ B ∩ C   c  ( t )            =  ∑   x i  ∈ A   c  ( i )  = q .     











Let   h  ( x )  =  ∑   x i  ∈ P   c  ( i )   x i    and  H  the hyperplane of    R  d   defined by   h ( x ) = q  . Then   h ( ρ ( A ) ) = h ( ρ ( B ) ) = h ( ρ ( C ) ) = q  . We claim that, for any antichain D of P with   D ≠ A  ,   D ≠ B   and   D ≠ C  , one has   h ( ρ ( D ) ) < q  .   D =  A 1  ∪  B 1  ∪  C 1    with    A 1  ⊂ A ∖ B  ,    B 1  ⊊ B  , and    C 1  ⊊ C ∖ B  . Now, we define two subsets of B:


      B 2       = {  x j  ∈ B  |   x j  <  x i  ,   x i  ∈  A 1  } ;        B 3       = {  x j  ∈ B  |   x k  <  x j  ,   x k  ∈  C 1  } .     











Then    B 1  ∩  B 2  =  B 1  ∩  B 3  =  B 2  ∩  B 3  = ∅   and    B 1  ∪  B 2  ∪  B 3  ⊂  B 3   . Let    ∑   x i  ∈ A   c  ( i )  =  q 1   ,    ∑   x j  ∈  B 1    c  ( j )  =  q 2   ,    ∑   x k  ∈  C 1    c  ( k )  =  q 3   ,    ∑   x j  ∈  B 2    c  ( j )  =  q 1 ′   , and    ∑   x j  ∈  B 3    c  ( j )  =  q 3 ′   . Since   A ▵ B  ,   B ▵ C   are connected, it follows that    q 1  <  q 1 ′    and    q 3  <  q 3 ′   . Hence


     h ( ρ ( D ) )      =  ∑   x i  ∈  A 1    c  ( i )  +  ∑   x j  ∈  B 1    c  ( j )  +  ∑   x k  ∈  C 1    c  ( k )           =  q 1  +  q 2  +  q 3  <  q 1 ′  +  q 2  +  q 3 ′           =  ∑   x j  ∈  B 2    c  ( j )  +  ∑   x j  ∈  B 1    c  ( j )  +  ∑   x j  ∈  B 3    c  ( j )  ≤  ∑   x j  ∈ B   c  ( j )  = q .     











Thus   h ( ρ ( D ) ) < q  .



Case 4.  B ⊄ A  ,   B ∩ A ≠ ∅  ,   C ∩ B = ∅  , and   C ∩ A = ∅  .



Since P has rank 2, we can show   h ( ρ ( D ) ) < q   by the same argument in Case 3 (Suppose   C ∩ B =  ∅  ).



Case 5.  B ⊄ A  ,   B ∩ A = ∅  ,   C ∩ B = ∅   and   C ∩ A = ∅  .



Since P has rank 2, we can show   h ( ρ ( D ) ) < q   by the same argument in Case 3 (Suppose   B ∩ A = C ∩ B = ∅  ).



In conclusion, each  H  is a supporting hyperplane of   C ( P )   and   H ∩ C ( P )   coincides with the convex hull of   { ρ ( A ) , ρ ( B ) , ρ ( C ) }  , as desired. □





Corollary 1.

Triangles in 1-skeleton of   O ( P )   or   C ( P )   are in one-to-one correspondence with faces of 2-dimensional simplex of each polytope.
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