On a New Generalization of Banach Contraction Principle with Application
Abstract
:1. Introduction and Preliminaries
2. A Generalization of Caristi’s Fixed Point Theorem
- ()
- is strictly increasing and continuous;
- ()
- For every sequence , if and only if
- ()
- For every ,
3. A Generalization of Banach’s Fixed Point Theorem
4. Application to Integral Equations
- (A)
- and are continuous;
- (B)
- is continuous and measurable at for all ;
- (C)
- for all and for all ;
- (D)
- For each and for all .
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur applications aux equations integrales. Fundam. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Berinde, V.; Pǎcurar, M. An iterative method for approximating fixed points of Prešić nonexpansive mappings. Rev. Anal. Numer. Theor. Approx. 2009, 38, 144–153. [Google Scholar]
- Asl, J.H.; Rezapour, S.; Shahzad, N. On fixed points of α − ψ contractive multifunctions. Fixed Point Theory Appl. 2012, 2012, 212. [Google Scholar] [CrossRef]
- Işık, H. Solvability to coupled systems of functional equations via fixed point theory. TWMS J. Appl. Eng. Math. 2018, 8, 230–237. [Google Scholar] [CrossRef]
- Abbas, M.; Illic, D.; Nazir, T. Iterative approximation of fixed points of generalized weak Presic type k-step iterative method for a class of operators. Filomat 2015, 29, 713–724. [Google Scholar] [CrossRef]
- Chen, Y.Z. A Prešić type contractive condition and its applications. Nonlinar Anal. 2009, 71, 2012–2017. [Google Scholar] [CrossRef]
- Berinde, V. General constructive fixed point theorem for Ćirić-type almost contractions in metric spaces. Carpath. J. Math. 2008, 24, 10–19. [Google Scholar]
- Işık, H.; Turkoglu, D. Some fixed point theorems in ordered partial metric spaces. J. Inequalities Spec. Funct. 2013, 4, 13–18. [Google Scholar]
- Ahmad, J.; Al-Rawashdeh, A.; Azam, A. Fixed point results for {α,ξ}-expansive locally contractive mappings. J. Inequalities Appl. 2014, 2014, 364. [Google Scholar] [CrossRef]
- Berinde, V.; Pǎcurar, M. Two elementary applications of some Prešić type fixed point theorems. Creat. Math. Inform. 2011, 20, 32–42. [Google Scholar]
- Lu, N.; He, F.; Huang, H. Answers to questions on the generalized Banach contraction conjecture in b-metric spaces. J. Fixed Point Theory Appl. 2019, 21, 43. [Google Scholar] [CrossRef]
- Işık, H.; Turkoglu, D. Generalized weakly α-contractive mappings and applications to ordinary differential equations. Miskolc Math. Notes 2016, 17, 365–379. [Google Scholar] [CrossRef]
- Choudhury, B.S.; Metiya, N.; Bandyopadhyay, C. Fixed points of multivalued α-admissible mappings and stability of fixed point sets in metric spaces. Rend. Circ. Mat. Palermo 2015, 64, 43–55. [Google Scholar] [CrossRef]
- Ahmad, J.; Al-Rawashdeh, A.; Azam, A. New Fixed Point Theorems for Generalized F-Contractions in Complete Metric Spaces. Fixed Point Theory Appl. 2015, 2015, 80. [Google Scholar] [CrossRef]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Işık, H.; Ionescu, C. New type of multivalued contractions with related results and applications. UPB Sci. Bull. Ser. A 2018, 80, 13–22. [Google Scholar]
- Abbas, M.; Berzig, M.; Nazir, T.; Karapinar, E. Iterative approximation of fixed points for Prešić type F-Contraction Operators. UPB Sci. Bull. Ser. A 2016, 78, 147–160. [Google Scholar]
- Caristi, J. Fixed point theorems for mappings satisfying inwardness conditions. Trans. Amer. Math. Soc. 1976, 215, 241–251. [Google Scholar] [CrossRef]
- Du, W.-S. A direct proof of Caristi’s fixed point theorem. Appl. Math. Sci. 2016, 46, 2289–2294. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Işık, H.; Mohammadi, B.; Haddadi, M.R.; Parvaneh, V. On a New Generalization of Banach Contraction Principle with Application. Mathematics 2019, 7, 862. https://doi.org/10.3390/math7090862
Işık H, Mohammadi B, Haddadi MR, Parvaneh V. On a New Generalization of Banach Contraction Principle with Application. Mathematics. 2019; 7(9):862. https://doi.org/10.3390/math7090862
Chicago/Turabian StyleIşık, Hüseyin, Babak Mohammadi, Mohammad Reza Haddadi, and Vahid Parvaneh. 2019. "On a New Generalization of Banach Contraction Principle with Application" Mathematics 7, no. 9: 862. https://doi.org/10.3390/math7090862
APA StyleIşık, H., Mohammadi, B., Haddadi, M. R., & Parvaneh, V. (2019). On a New Generalization of Banach Contraction Principle with Application. Mathematics, 7(9), 862. https://doi.org/10.3390/math7090862