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Abstract: The main purpose of the current work is to present firstly a new generalization of Caristi’s
fixed point result and secondly the Banach contraction principle. An example and an application is
given to show the usability of our results.
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1. Introduction and Preliminaries

Metric fixed point theory plays a crucial role in the field of functional analysis. It was first
introduced by the great Polish mathematician Banach [1]. Over the years, due to its significance and
application in different fields of science, a lot of generalizations have been done in different directions
by several authors see, for example, [2–17] and references therein. Assuredly, the Caristi’s fixed point
theorem [18] is the most valuable generalization of this principle.

For any nonempty set Λ, set:

Ξ = {$ : Λ→ R : $ is a lower semi-continuous and bounded below function}.

Theorem 1. [18] Let (Λ, d) be a complete metric space and Γ : Λ → Λ be a self-map. If there exists $ ∈ Ξ
such that:

d(η, Γη) ≤ $(η)− $(Γη)

for all η ∈ Λ. Then Γ has a fixed point.

Recently, Du [19] established a direct proof of Caristi’s fixed point theorem without using Zorn’s
lemma. In the next section we introduce a new generalization of Caristi’s fixed point theorem and
provide the proof without using Zorn’s lemma.

2. A Generalization of Caristi’s Fixed Point Theorem

Let Ω be the collection of functions ϑ : R→ (0, ∞) satisfying the following conditions:

(Ω1) ϑ is strictly increasing and continuous;
(Ω2) For every sequence {αn} ⊆ R+, limn→∞ αn = 0 if and only if limn→∞ ϑ(αn) = 1;
(Ω3) For every α, β ∈ R, ϑ(α + β) ≤ ϑ(α)ϑ(β);
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Obviously, for a function ϑ, satisfying (Ω2), ϑ(α) = 1 iff α = 0.

Example 1. ϑ1(t) = 1 + tanh t ∈ Ω, ϑ2(t) = et,

ϑ3(t) =


1 + ln(1 + t), if t ∈ [0, ∞) ,

et, if t ∈ (−∞, 0] ,

are some elements in Ω.

Theorem 2. Let (Λ, d) be a complete metric space and Γ : Λ → Λ be a self-map. If there exist $ ∈ Ξ and
ϑ ∈ Ω such that:

ϑ(d(η, Γη)) ≤ ϑ($(η))

ϑ($(Γη))
, (1)

for all η ∈ Λ, then Γ has a fixed point.

Proof. For any η ∈ Λ, define:

Υη = {µ ∈ Λ : ϑ(d(η, µ)) ≤ ϑ($(η))

ϑ($(µ))
}.

Obviously, Υη 6= ∅ for any η ∈ Λ, since η ∈ Υη. Let us firstly show that for any µ ∈ Υη, we have
$(µ) ≤ $(η) and Υµ ⊆ Υη. Suppose µ ∈ Υη. Then,

1 ≤ ϑ(d(η, µ)) ≤ ϑ($(η))

ϑ($(µ))
, (2)

which implies ϑ($(µ)) ≤ ϑ($(η)) and since ϑ is strictly increasing, we get $(µ) ≤ $(η). Now let ζ ∈ Υµ.
Then:

1 ≤ ϑ(d(µ, ζ)) ≤ ϑ($(µ))

ϑ($(ζ))
. (3)

From Equation (2) and Equation (3), we get:

ϑ(d(η, ζ)) ≤ ϑ(d(η, µ) + d(µ, ζ))

≤ ϑ(d(η, µ))ϑ(d(µ, ζ))

≤ ϑ($(η))

ϑ($(µ))

ϑ($(µ))

ϑ($(ζ))

=
ϑ($(η))

ϑ($(ζ))
.

Therefore, ζ ∈ Υη. Thus, Υµ ⊆ Υη. Choose a point η1 ∈ Λ and construct a sequence {ηn} in Λ in
the following way: For any ηn there exists ηn+1 ∈ Υηn such that:

$(ηn+1) ≤ inf
ζ∈Υηn

$(ζ) +
1
n

.

Since ηn+1 ∈ Υηn, we get $(ηn+1) ≤ $(ηn), for all n ∈ N. Thus, the sequence {$(ηn)} is non-increasing.
Since $ is bounded below, there exists L ∈ R such that lim $(ηn) = L. For any n, m ∈ N with n < m,
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ϑ(d(ηn, ηm)) ≤ ϑ(
m−1

∑
i=n

d(ηi, ηi+1))

≤
m−1

∏
i=n

ϑ(d(ηi, ηi+1))

≤
m−1

∏
i=n

ϑ($(ηi))

ϑ($(ηi+1))

=
ϑ($(ηn))

ϑ($(ηm))

≤ ϑ($(ηn))

ϑ(L)
. (4)

Therefore, from continuity of ϑ and by taking the limit in both sides of Equation (4),
we obtain that limn,m→∞ ϑ(d(ηn, ηm)) = 1. Therefore, ϑ(limn,m→∞ d(ηn, ηm)) = 1, which gives us
limn,m→∞ d(ηn, ηm) = 0. Thus, we proved that {ηn} is a Cauchy sequence. Completeness of Λ ensures
that there exists v ∈ Λ such that ηn → v as n → ∞. We claim that v is a fixed point of Γ. Taking the
limit in both sides of Equation (4) as m→ ∞, we obtain:

ϑ(d(ηn, v)) ≤ ϑ($(ηn))

ϑ($(v))
.

This gives us v ∈ Υηn, for all n ∈ N and so v ∈ ∩∞
n=1Υηn. Also, for any w ∈ ∩∞

n=1Υηn, we have:

ϑ(d(ηn, w)) ≤ ϑ($(ηn))

ϑ($(w))
≤ ϑ($(ηn))

infζ∈Υηn ϑ($(ζ))
≤

ϑ($(ηn))ϑ(
1
n
)

ϑ($(ηn+1))
. (5)

Taking the limit in both sides of Equation (5) as n → ∞, we obtain ϑ(d(v, w)) ≤ 1 and so
d(v, w) = 0. Thus, w = v. Therefore, ∩∞

n=1Υηn = {v}. On the other hand, v ∈ ∩∞
n=1Υηn implies

Υv ⊆ ∩∞
n=1Υηn = {v}. Thus Υv = {v}. Furthermore, from Equation (1), we have Γv ∈ Υv = {v}.

Therefore, Γv = v. The proof is completed.

Note that taking ϑ(t) = et, Theorem (2) reduces to Carisi’s fixed point theorem. Thus, Theorem (2)
is a generalization of Caristi’s theorem.

Theorem 3. Let (Λ, d) be a complete metric space and Γ : Λ → Λ be a self-map. If there exist $ ∈ Ξ and
ϑ ∈ Ω such that:

ϑ(ξ(d(η, Γη))) ≤ ϑ($(η))

ϑ($(Γη))
, (6)

for all η ∈ Λ, where ξ : [0, ∞)→ [0, ∞) is a continuous, non-decreasing, and concave downward function such
that ξ−1({0}) = {0}, then Γ has a fixed point.

Proof. Define a function:
d′(η, µ) = ξ(d(η, µ))

for all η, µ ∈ Λ. Then it is easy to check that (Λ, d′) is a complete metric space and the conditions of
Theorem (2) holds for (Λ, d′). Thus, by Theorem (2), Γ has a fixed point.

3. A Generalization of Banach’s Fixed Point Theorem

In this section, we introduce a generalization of Banach contraction principle via a different
approach from Caristi’s result.
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Theorem 4. Let (Λ, d) be a complete metric space and Γ : Λ → Λ be a continuous self-map. If there exists
a function $ : [0, ∞)→ [0, ∞) such that limt→0+ $(t) = 0, $(0) = 0 and:

d(Γη, Γµ) ≤ $(d(η, µ))− $(d(Γη, Γµ)), (7)

for all η, µ ∈ Λ, then Γ has a unique fixed point.

Proof. Consider an arbitrary element η0 ∈ Λ. Construct a sequence {ηn} in Λ with ηn+1 = Γ(ηn),
for all n ∈ N∪ {0}. Using Equation (7) for η = ηn and µ = ηn+1, we have:

0 ≤ d(ηn, ηn+1) = d(Γηn−1, Γηn) ≤ $(d(ηn−1, ηn))− $(d(Γηn−1, Γηn))

= $(d(ηn−1, ηn))− $(d(ηn, ηn+1)). (8)

Thus, the sequence {$(d(ηn, ηn+1))} is nonincreasing. Since $ is bounded below, there exists
L ∈ R+ such that limn→∞ $(d(ηn, ηn+1)) = L. For any n, m ∈ N with n < m,

d(ηn, ηm) ≤
m−1

∑
i=n

d(ηi, ηi+1)

≤
m−1

∑
i=n

($(d(ηi−1, ηi))− $(d(ηi, ηi+1)))

= $(d(ηn−1, ηn))− $(d(ηm−1, ηm))

≤ $(d(ηn, ηn+1))− L. (9)

Taking the limit in both sides of Equation (9), we obtain limn,m→∞ d(ηn, ηm) = 0. Thus, we proved
that {ηn} is a Cauchy sequence. Completeness of Λ ensures that there exists ζ ∈ Λ such that ηn → ζ

as n→ ∞. We claim that ζ is a fixed point of Γ. We have:

d(ζ, Γζ) = lim
n→∞

d(ηn+1, Γζ) = lim
n→∞

d(Γηn, Γζ)

≤ lim
n→∞

$(d(ηn, ζ))− $(d(Γηn, Γζ))

≤ lim
n→∞

$(d(ηn, ζ)) = 0.

The proof is completed.

Remark 1. Note that Theorem 4 is a generalization of the Banach contraction principle. If Γ : Λ → Λ is a
Banach contraction, there exists k ∈ [0, 1) such that d(Γη, Γµ) ≤ kd(η, µ), for all η, µ ∈ Λ. Hence:

d(Γη, Γµ) ≤ kd(η, µ) ≤ k
1 + k−

√
k

d(η, µ),

for all η ∈ Λ. Consequently,

kd(Γη, Γµ) + (1−
√

k)d(Γη, Γµ) ≤ kd(η, µ)

and so,
(1−

√
k)d(Γη, Γµ) ≤ kd(η, µ)− kd(Γη, Γµ).

Therefore,

d(Γη, Γµ) ≤ k
1−
√

k
d(η, µ)− k

1−
√

k
d(Γη, Γµ).

Taking $(t) = k
1−
√

k
t, we have d(Γη, Γµ) ≤ $(d(η, µ))− $(d(Γη, Γµ)), for all η, µ ∈ Λ.
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Choosing $(t) = tet, for all t ≥ 0, we deduce the following corollary.

Corollary 1. Let (Λ, d) be a complete metric space and Γ : Λ→ Λ be a continuous self-map. Let:

d(Γη, Γµ)(1 + ed(Γη,Γµ))

d(η, µ)ed(η,µ)
≤ 1, (10)

for all η, µ ∈ Λ with η 6= µ. Then Γ has a unique fixed point.

Example 2. Let Λ = {κj =
j(j+1)

2 : j = 1, 2, · · · }, d(η, µ) = |η − µ| and:

Γη = { κ1, η = κ1,
κj−1, η = κj, j ≥ 2.

We need only check the following two cases:

Case 1: η = κj, j ≥ 2 and µ = κ1.

d(Γη, Γµ) = |κj−1 − 1|

and d(η, µ) = |κj − 1|. Then,

d(Γη, Γµ)(1 + ed(Γη,Γµ))

d(η, µ)ed(η,µ)
=

(κj−1 − 1)(1 + eκj−1−1)

(κj − 1)eκj−1

=
( j(j−1)

2 − 1)(1 + e
j(j−1)

2 −1)

( j(j+1)
2 − 1)e

j(j+1)
2 −1

≤ 2(e
j(j−1)

2 −1)

e
j(j+1)

2 −1

< 2e−j ≤ 1.

Case 2: η = κj, µ = κl , j > l. So,

d(Γη, Γµ) = |κj−1 − κl−1|

and d(η, µ) = |κj − κl |. Then,

d(Γη, Γµ)(1 + ed(Γη,Γµ))

d(η, µ)ed(η,µ)
=

(κj−1 − κm−1)(1 + eκj−1−κl−1)

(κj − κl)e
κj−κl

=
( j(j−1)

2 − l(l−1)
2 )(1 + e

j(j−1)
2 − l(l−1)

2 )

( j(j+1)
2 − l(l+1)

2 )e
j(j+1)

2 − l(l+1)
2

≤ j + l − 1
j + l + 1

2(e
j(j−1)

2 − l(l−1)
2 )

e
j(j+1)

2 − l(l+1)
2

< 2e−(j−l) ≤ 2e−1 ≤ 1.

So, by Corollary 1, Γ has a unique fixed point. Here Γκ1 = κ1.
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Note that Γ is not a Banach contraction. Since,

sup
d(Γκj, Γκ1)

d(κj, κ1)
= sup

κj−1 − 1
κj − 1

= sup

j(j− 1)
2

− 1

j(j + 1)
2

− 1
= 1.

4. Application to Integral Equations

Take I = [0, T ]. Let Λ = C(I ,R) be the set of all real valued continuous functions with domain
I . Define:

d(η, µ) = sup
t∈I

(|η(t)− µ(t)|) = ||η − µ||.

Consider the integral equation:

η(t) = p(t) +
∫ T

0
G(t, s)K(s, η(s))ds, t ∈ [0, T ] (11)

Assume that the following conditions hold:

(A) p : I → R and K : I ×R→ R are continuous;
(B) G : I × I → R is continuous and measurable at s ∈ I for all t ∈ I ;
(C) G(t, s) ≥ 0 for all t, s ∈ I and

∫ T
0 G(t, s)ds ≤ 1 for all t ∈ I ;

(D) For each t ∈ I and for all η, µ ∈ Λ.

|K(t, η(t))−K(t, µ(t))| ≤ −1 +
√

1 + 4(η(t)− µ(t))2

2

Theorem 5. Under the assumptions (A)–(D), the integral Equation (7) has a solution in Λ.

Proof. Define Υ : Λ→ Λ as:

Υη(t) = p(t) +
∫ T

0
G(t, s)K(s, η(s))ds, t ∈ [0, T ].

We have:

|Υη(t)− Υµ(t)| = |
∫ T

0
G(t, s)(K(s, η(s))−K(s, µ(s))ds|

≤
∫ T

0
G(t, s)|K(s, η(s))−K(s, µ(s))|ds

≤
∫ T

0
G(t, s)(

−1 +
√

1 + 4(η(s)− µ(s))2

2
)ds

≤
∫ T

0
G(t, s)(

−1 +
√

1 + 4||η − µ||2
2

)ds

=
−1 +

√
1 + 4||η − µ||2

2

=
−1 +

√
1 + 4[d(η, µ)]2

2



Mathematics 2019, 7, 862 7 of 8

for every t ∈ [0, 1]. Take sup to find that:

d(Υη, Υµ) = ||Υη − Υµ||

≤ −1 +
√

1 + 4[d(η, µ)]2

2
.

From the above inequality, we obtain:

(1 + 2d(Υη, Υµ))2 ≤ 1 + 4[d(η, µ)]2.

This is equivalent to:

d(Υη, Υµ)) + [d(Υη, Υµ)]2 ≤ [d(η, µ)]2.

Therefore,

d(Υη, Υµ)) ≤ [d(η, µ)]2 − [d(Υη, Υµ)]2.

Taking $(t) = t2, we get:

d(Υη, Υµ) ≤ $(d(η, µ))− $(d(Υη, Υµ)),

for all η, µ ∈ Λ, which is Equation (7). Therefore, by Theorem 4, Υ has a fixed point. Hence there is a
solution for Equation (11).

5. Conclusions

In this paper, we introduced a new generalization of the Banach contraction principle. The
new contraction will be a powerful tool for the existence solution of integral equations, differential
equations, and also the fractional integro-differential equations. We think that the multi-valued version
of this new contraction can be considered by researchers. The new multi-valued contraction will be
a powerful tool for the existence solution of Volterra-integral inclusions.
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10. Berinde, V.; Pǎcurar, M. Two elementary applications of some Prešić type fixed point theorems.
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