Next Article in Journal
The Distribution Function of a Probability Measure on a Linearly Ordered Topological Space
Next Article in Special Issue
Variation Inequalities for One-Sided Singular Integrals and Related Commutators
Previous Article in Journal
On a New Generalization of Banach Contraction Principle with Application
Previous Article in Special Issue
Difference Mappings Associated with Nonsymmetric Monotone Types of Fejér’s Inequality
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

New Inequalities of Weaving K-Frames in Subspaces

College of Mathematics and Computer Science, Shangrao Normal University, Shangrao 334001, China
Mathematics 2019, 7(9), 863; https://doi.org/10.3390/math7090863
Submission received: 12 August 2019 / Revised: 15 September 2019 / Accepted: 16 September 2019 / Published: 18 September 2019
(This article belongs to the Special Issue Inequalities)

Abstract

:
In the present paper, we obtain some new inequalities for weaving K-frames in subspaces based on the operator methods. The inequalities are associated with a sequence of bounded complex numbers and a parameter λ R . We also give a double inequality for weaving K-frames with the help of two bounded linear operators induced by K-dual. Facts prove that our results cover those recently obtained on weaving frames due to Li and Leng, and Xiang.
MSC:
42C15; 47B40

1. Introduction

This paper adopts the following notations: J is a countable index set, H and K are complex Hilbert spaces, and Id H and R are used to denote respectively the identical operator on H and the set of real numbers. As usual, we denote by B ( H , K ) the set of all bounded linear operators on H and, if H = K , then B ( H , K ) is abbreviated to B ( H ) .
Frames were introduced by Duffin and Schaeffer [1] in their study of nonharmonic Fourier series, which have now been used widely not only in theoretical work [2,3], but also in many application areas such as quantum mechanics [4], sampling theory [5,6,7], acoustics [8], and signal processing [9]. As a generalization of frames, the notion of K-frames (also known as frames for operators) was proposed by L. Găvruţa [10] when dealing with atomic decompositions for a bounded linear operator K. Please check the papers [11,12,13,14,15,16,17] for further information of K-frames.
Recall that a family { ψ j } j J H is called a K-frame for H , if there exist two positive numbers A and B satisfying
A K f 2 j J | f , ψ j | 2 B f 2 , f H .
The constants A and B are called K-frame bounds. If K = Id H , then a K-frame turns to be a frame. In addition, if only the right-hand inequality holds, then we call { ψ j } j J a Bessel sequence.
Inspired by a question arising in distributed signal processing, Bemrose et al. [18] introduced the concept of weaving frames, which have interested many scholars because of their potential applications such as in wireless sensor networks and pre-processing of signals; see [19,20,21,22,23,24]. Later on, Deepshikha and Vashisht [25] applied the idea of L. Găvruţa to the case of weaving frames and thus providing us the notion of weaving K-frames.
Balan et al. [26] obtained an interesting inequality when they further examined the remarkable identity for Parseval frames deriving from their work on signal reconstruction [27]. The inequality was then extended to alternate dual frames and general frames by P. Găvruţa [28], the results in which have already been applied in quantum information theory [29]. Recently, those inequalities have been extended to some generalized versions of frames such as continuous g-frames [30], fusion frames and continuous fusion frames [31,32], Hilbert–Schmidt frames [33], and weaving frames [34,35].
Motivated by the above-mentioned works, in this paper, we establish several new inequalities for weaving K-frames in subspaces from the operator-theoretic point of view, and we show that our results can naturally lead to some corresponding results in [34,35].
One says that two frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H are woven, if there are universal constants C Ψ and D Ψ such that, for any σ J , { ψ 1 j } j σ { ψ 2 j } j σ c is a frame for H with bounds C Ψ and D Ψ . If C Ψ = D Ψ = 1 , then we call Ψ 1 and Ψ 2 1-woven. Each family { ψ 1 j } j σ { ψ 2 j } j σ c is said to be a waving frame, related to which there is an invertible operator S Ψ 1 Ψ 2 : H H , called the frame operator, given by
S Ψ 1 Ψ 2 f = j σ f , ψ 1 j ψ 1 j + j σ c f , ψ 2 j ψ 2 j .
Recall also that a frame Ψ 3 = { ψ 3 j } j J is called an alternate dual frame of { ψ 1 j } j σ { ψ 2 j } j σ c , if for each f H we have
f = j σ f , ψ 1 j ψ 3 j + j σ c f , ψ 2 j ψ 3 j , f H .
Lemma 1.
Suppose that P, Q, and K are bounded linear operators on H and P + Q = K . Then, for each f H ,
P f 2 + Re Q f , K f 3 4 K f 2 .
Proof. 
We have
P f 2 + Re Q f , K f = ( K Q ) f , ( K Q ) f + 1 2 ( Q f , K f + K f , Q f ) = ( Q Q ( K Q + Q K ) + 1 2 ( K Q + Q K ) ) f , f + K K f , f = ( Q 1 2 K ) ( Q 1 2 K ) f , f + 3 4 K K f , f 3 4 K f 2
for any f H . □
The next two lemmas are collected from the papers [36] and [32], respectively.
Lemma 2.
If Φ B ( H , K ) has a closed range, then there is the pseudo-inverse Φ B ( K , H ) of Φ such that
Φ Φ Φ = Φ , Φ Φ Φ = Φ , ( Φ Φ ) = Φ Φ , ( Φ Φ ) = Φ Φ .
Lemma 3.
If P and Q in B ( H ) satisfy P + Q = Id H , then, for any λ R , we have
P P + λ ( Q + Q ) = Q Q + ( 1 λ ) ( P + P ) + ( 2 λ 1 ) Id H ( 2 λ λ 2 ) Id H .

2. Main Results

We start with the definition on weaving K-frames due to Deepshikha and Vashisht [25].
Definition 1.
Two K-frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H are said to be K-woven, if there are universal constants C Ψ and D Ψ such that, for any σ J , the family { ψ 1 j } j σ { ψ 2 j } j σ c is a K-frame for H with K-frame bounds C Ψ and D Ψ . In this case, the family { ψ 1 j } j σ { ψ 2 j } j σ c is called a weaving K-frame.
Given a weaving K-frame { ψ 1 j } j σ { ψ 2 j } j σ c for H , recall that a Bessel sequence Φ = { ϕ j } j J for H is said to be a K-dual of { ψ 1 j } j σ { ψ 2 j } j σ c , if
K f = j σ f , ψ 1 j ϕ j + j σ c f , ψ 2 j ϕ j , f H .
Let Ψ 1 = { ψ 1 j } j J be a given K-frame for H . For any σ J , we can define a positive operator S Ψ 1 σ in the following way:
S Ψ 1 σ : H H , S Ψ 1 σ f = j σ f , ψ 1 j ψ 1 j .
In the following, we show that, for given two K-woven frames, we can get some inequalities under the condition that K has a closed range, which are related to a sequence of bounded complex numbers, the corresponding K-dual and a parameter λ R .
Theorem 1.
Suppose that K B ( H ) has a closed range and K-frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H are K-woven. Then,
(i) for any f R a n g e ( K ) , for all σ J , { a j } j J ( J ) , and λ R ,
j σ a j K f , ψ 1 j ϕ j + j σ c a j K f , ψ 2 j ϕ j 2 + Re ( j σ ( 1 a j ) K f , ψ 1 j ϕ j , f + j σ c ( 1 a j ) K f , ψ 2 j ϕ j , f ) = j σ ( 1 a j ) K f , ψ 1 j ϕ j + j σ c ( 1 a j ) K f , ψ 2 j ϕ j 2 + Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) ( λ λ 2 4 ) Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) + ( 1 λ 2 4 ) Re ( j σ ( 1 a j ) K f , ψ 1 j ϕ j , f + j σ c ( 1 a j ) K f , ψ 2 j ϕ j , f ) ,
where Φ = { ϕ j } j J is a K-dual of { ψ 1 j } j σ { ψ 2 j } j σ c .
(ii) for any f R a n g e ( K ) , for all σ J , { a j } j J ( J ) , and λ R ,
j σ a j ( K ) f , ϕ j ψ 1 j + j σ c a j ( K ) f , ϕ j ψ 2 j 2 + Re ( j σ ( 1 a j ) ( K ) f , ϕ j ψ 1 j , f + j σ c ( 1 a j ) ( K ) f , ϕ j ψ 2 j , f ) = j σ ( 1 a j ) ( K ) f , ϕ j ψ 1 j + j σ c ( 1 a j ) ( K ) f , ϕ j ψ 2 j 2 + Re ( j σ a j ( K ) f , ϕ j ψ 1 j , f + j σ c a j ( K ) f , ϕ j ψ 2 j , f ) ( 2 λ λ 2 ) Re ( j σ a j ( K ) f , ϕ j ψ 1 j , f + j σ c a j ( K ) f , ϕ j ψ 2 j , f ) + ( 1 λ 2 ) Re ( j σ ( 1 a j ) ( K ) f , ϕ j ψ 1 j , f + j σ c ( 1 a j ) ( K ) f , ϕ j ψ 2 j , f ) ,
where Φ = { ϕ j } j J is a K-dual of { ψ 1 j } j σ { ψ 2 j } j σ c .
Proof. 
We define two bounded linear operators P 1 and P 2 on H as follows:
P 1 f = j σ a j f , ψ 1 j ϕ j + j σ c a j f , ψ 2 j ϕ j , P 2 f = j σ ( 1 a j ) f , ψ 1 j ϕ j + j σ c ( 1 a j ) f , ψ 2 j ϕ j .
Then, clearly, P 1 f + P 2 f = K f for each f H and thus P 1 + P 2 = K . Since K has a closed range, by Lemma 2, we have
P 1 K + P 2 K = K K = P R a n g e ( K ) ,
where P R a n g e ( K ) is the orthogonal projection onto R a n g e ( K ) . Thus,
P 1 K R a n g e ( K ) + P 2 K R a n g e ( K ) = Id R a n g e ( K ) .
By Lemma 3 (taking λ 2 instead of λ ), we get
P 1 K f 2 + λ Re P 2 K f , f = P 2 K f 2 + ( 2 λ ) Re P 1 K f , f + ( λ 1 ) f 2 ,
for any f R a n g e ( K ) . Hence,
P 1 K f 2 = P 2 K f 2 + 2 Re P 1 K f , f λ ( Re P 1 K f , f + Re P 2 K f , f ) + ( λ 1 ) f 2 = P 2 K f 2 + 2 Re P 1 K f , f λ f 2 + ( λ 1 ) f 2 = P 2 K f 2 + 2 Re P 1 K f , f Re P 1 K f , f Re P 2 K f , f .
It follows that
P 1 K f 2 + Re P 2 K f , f = P 2 K f 2 + Re P 1 K f , f ,
from which we arrive at
j σ a j K f , ψ 1 j ϕ j + j σ c a j K f , ψ 2 j ϕ j 2 + Re ( j σ ( 1 a j ) K f , ψ 1 j ϕ j , f + j σ c ( 1 a j ) K f , ψ 2 j ϕ j , f ) = j σ ( 1 a j ) K f , ψ 1 j ϕ j + j σ c ( 1 a j ) K f , ψ 2 j ϕ j 2 + Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) .
For the inequality in Equation (1), we apply Lemma 3 again,
P 1 K f 2 ( λ λ 2 4 ) f 2 λ Re P 2 K f , f = ( λ λ 2 4 ) Re P 1 K f + P 2 K f , f λ Re P 2 K f , f = ( λ λ 2 4 ) Re P 1 K f , f λ 2 4 Re P 2 K f , f .
Thus, for any f R a n g e ( K ) ,
j σ a j K f , ψ 1 j ϕ j + j σ c a j K f , ψ 2 j ϕ j 2 + Re ( j σ ( 1 a j ) K f , ψ 1 j ϕ j , f + j σ c ( 1 a j ) K f , ψ 2 j ϕ j , f ) ( λ λ 2 4 ) Re P 1 K f , f + ( 1 λ 2 4 ) Re P 2 K f , f = ( λ λ 2 4 ) Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) + ( 1 λ 2 4 ) Re ( j σ ( 1 a j ) K f , ψ 1 j ϕ j , f + j σ c ( 1 a j ) K f , ψ 2 j ϕ j , f ) .
(ii) The proof is similar to (i), so we omit the details. □
Corollary 1.
Suppose that two frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H are woven. Then, for any f H , for all σ J and all λ R , we have
j σ c | f , ψ 2 j | 2 + j σ | S Ψ 1 σ f , S Ψ 1 Ψ 2 1 ψ 1 j | 2 + j σ c | S Ψ 1 σ f , S Ψ 1 Ψ 2 1 ψ 2 j | 2 = j σ | f , ψ 1 j | 2 + j σ | S Ψ 2 σ c f , S Ψ 1 Ψ 2 1 ψ 1 j | 2 + j σ c | S Ψ 2 σ c f , S Ψ 1 Ψ 2 1 ψ 2 j | 2 ( λ λ 2 4 ) j σ | f , ψ 1 j | 2 + ( 1 λ 2 4 ) j σ c | f , ψ 2 j | 2 .
Proof. 
Letting K = Id H and
ϕ j = S Ψ 1 Ψ 2 1 / 2 ψ 1 j , j σ , S Ψ 1 Ψ 2 1 / 2 ψ 2 j , j σ c .
In addition, taking S Ψ 1 Ψ 2 1 / 2 ψ 1 j , S Ψ 1 Ψ 2 1 / 2 ψ 2 j and S Ψ 1 Ψ 2 1 / 2 f instead of ψ 1 j , ψ 2 j and f respectively in (i) of Theorem 1 leads to
j σ a j f , ψ 1 j S Ψ 1 Ψ 2 1 / 2 ψ 1 j + j σ c a j f , ψ 2 j S Ψ 1 Ψ 2 1 / 2 ψ 2 j 2 + Re ( j σ ( 1 a j ) f , ψ 1 j ψ 1 j , f + j σ c ( 1 a j ) f , ψ 2 j ψ 2 j , f ) = j σ ( 1 a j ) f , ψ 1 j S Ψ 1 Ψ 2 1 / 2 ψ 1 j + j σ c ( 1 a j ) f , ψ 2 j S Ψ 1 Ψ 2 1 / 2 ψ 2 j 2 + Re ( j σ a j f , ψ 1 j ψ 1 j , f + j σ c a j f , ψ 2 j ψ 2 j , f ) ( λ λ 2 4 ) Re ( j σ a j f , ψ 1 j ψ 1 j , f + j σ c a j f , ψ 2 j ψ 2 j , f ) + ( 1 λ 2 4 ) Re ( j σ ( 1 a j ) f , ψ 1 j ψ 1 j , f + j σ c ( 1 a j ) f , ψ 2 j ψ 2 j , f ) .
A direction calculation shows that
j σ f , ψ 1 j S Ψ 1 Ψ 2 1 / 2 ψ 1 j 2 = S Ψ 1 Ψ 2 1 / 2 j σ f , ψ 1 j ψ 1 j 2 = S Ψ 1 Ψ 2 1 / 2 S Ψ 1 σ f 2 = S Ψ 1 Ψ 2 1 / 2 S Ψ 1 σ f , S Ψ 1 Ψ 2 1 / 2 S Ψ 1 σ f = S Ψ 1 Ψ 2 S Ψ 1 Ψ 2 1 S Ψ 1 σ f , S Ψ 1 Ψ 2 1 S Ψ 1 σ f = j σ S Ψ 1 Ψ 2 1 S Ψ 1 σ f , ψ 1 j ψ 1 j , S Ψ 1 Ψ 2 1 S Ψ 1 σ f + j σ c S Ψ 1 Ψ 2 1 S Ψ 1 σ f , ψ 2 j ψ 2 j , S Ψ 1 Ψ 2 1 S Ψ 1 σ f = j σ | S Ψ 1 σ f , S Ψ 1 Ψ 2 1 ψ 1 j | 2 + j σ c | S Ψ 1 σ f , S Ψ 1 Ψ 2 1 ψ 2 j | 2 ,
and, similarly,
j σ c f , ψ 2 j S Ψ 1 Ψ 2 1 / 2 ψ 2 j 2 = j σ | S Ψ 2 σ c f , S Ψ 1 Ψ 2 1 ψ 1 j | 2 + j σ c | S Ψ 2 σ c f , S Ψ 1 Ψ 2 1 ψ 2 j | 2 .
Thus, the result follows if, in Equation (5), we take a j = 1 , j σ , 0 , j σ c .  □
Corollary 2.
Suppose that two frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H are woven. Then, for any σ J , for all λ R and all f H , we have
j σ f , ϕ j ψ 1 j 2 + Re j σ c f , ϕ j ψ 2 j , f = j σ c f , ϕ j ψ 2 j 2 + Re j σ f , ϕ j ψ 1 j , f ( 2 λ λ 2 ) Re j σ f , ϕ j ψ 1 j , f + ( 1 λ 2 ) Re j σ c f , ϕ j ψ 2 j , f ,
where Φ = { ϕ j } j J is an alternate dual of { ψ 1 j } j σ { ψ 2 j } j σ c .
Proof. 
The result follows immediately from (ii) in Theorem 1 when taking K = Id H and
a j = 1 , j σ , 0 , j σ c .
 □
Suppose that two frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H are 1-woven. For any σ J and any j J , taking ϕ j = ψ 1 j , j σ , ψ 2 j , j σ c . Then, obviously, Φ = { ϕ j } j J is an alternate dual of the frame { ψ 1 j } j σ { ψ 2 j } j σ c . Thus, Corollary 2 provides us a direct consequence as follows.
Corollary 3.
Let the two frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H be 1-woven. Then, for any σ J , for all λ R and all f H , we have
j σ f , ψ 1 j ψ 1 j 2 + j σ c | f , ψ 2 j | 2 = j σ c f , ψ 2 j ψ 2 j 2 + j σ | f , ψ 1 j | 2 ( 2 λ λ 2 ) j σ | f , ψ 1 j | 2 + ( 1 λ 2 ) j σ c | f , ψ 2 j | 2 .
Remark 1.
Corollaries 1 and 2 are respectively Theorems 7 and 9 in [34], and Theorem 5 in [34] can be obtained if we put λ = 1 2 in Corollary 3.
Theorem 2.
Suppose that K B ( H ) has a closed range and that K-frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H are K-woven. Then, for any f R a n g e ( K ) , for all σ J , { a j } j J ( J ) , and λ R ,
j σ a j K f , ψ 1 j ϕ j + j σ c a j K f , ψ 2 j ϕ j 2 + j σ ( 1 a j ) K f , ψ 1 j ϕ j + j σ c ( 1 a j ) K f , ψ 2 j ϕ j 2 ( 2 λ λ 2 2 1 ) Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) + ( 1 λ 2 2 ) Re ( j σ ( 1 a j ) K f , ψ 1 j ϕ j , f + j σ c ( 1 a j ) K f , ψ 2 j ϕ j , f ) ,
where Φ = { ϕ j } j J is a K-dual of { ψ 1 j } j σ { ψ 2 j } j σ c .
Moreover, if ( P 1 K ) P 2 K is a positive operator, then
j σ a j K f , ψ 1 j ϕ j + j σ c a j K f , ψ 2 j ϕ j 2 + j σ ( 1 a j ) K f , ψ 1 j ϕ j + j σ c ( 1 a j ) K f , ψ 2 j ϕ j 2 f 2
for any f R a n g e ( K ) , where P 1 and P 2 are given in Equation (2).
Proof. 
For any f R a n g e ( K ) , for all σ J , { a j } j J ( J ) , and λ R , we know, by combining Equation (3) and Lemma 3, that
j σ a j K f , ψ 1 j ϕ j + j σ c a j K f , ψ 2 j ϕ j 2 + j σ ( 1 a j ) K f , ψ 1 j ϕ j + j σ c ( 1 a j ) K f , ψ 2 j ϕ j 2 = P 1 K f 2 + P 2 K f 2 = 2 P 2 K f 2 + Re P 1 K f , f Re P 2 K f , f ( 2 λ 2 2 ) f 2 ( 4 2 λ ) Re P 1 K f , f + Re P 1 K f , f Re P 2 K f , f = ( 2 λ λ 2 2 1 ) Re P 1 K f , f + ( 1 λ 2 2 ) Re P 2 K f , f = ( 2 λ λ 2 2 1 ) Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) + ( 1 λ 2 2 ) Re ( j σ ( 1 a j ) K f , ψ 1 j ϕ j , f + j σ c ( 1 a j ) K f , ψ 2 j ϕ j , f ) .
For the “Moreover” part, we have for any f R a n g e ( K ) that
P 1 K f 2 = P 2 K f 2 Re P 2 K f , f + Re P 1 K f , f = Re P 2 K f , P 2 K f Re P 2 K f , f + Re P 1 K f , f = ( Re P 2 K f , P 1 K f + P 2 K f Re P 2 K f , P 2 K f ) + Re P 1 K f , f = Re P 2 K f , P 1 K f + Re P 1 K f , f Re P 1 K f , f .
With a similar discussion, we can show that P 2 K f 2 Re P 2 K f , f . Thus,
j σ a j K f , ψ 1 j ϕ j + j σ c a j K f , ψ 2 j ϕ j 2 + j σ ( 1 a j ) K f , ψ 1 j ϕ j + j σ c ( 1 a j ) K f , ψ 2 j ϕ j 2 Re P 1 K f , f + Re P 2 K f , f = Re P 1 K f + P 2 K f , f = f 2 .
 □
Corollary 4.
Suppose that two frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H are woven. Then, for any σ J , for all λ R and all f H , we have
( 2 λ λ 2 2 1 ) j σ | f , ψ 1 j | 2 + ( 1 λ 2 2 ) j σ c | f , ψ 2 j | 2 j σ | S Ψ 1 σ f , S Ψ 1 Ψ 2 1 ψ 1 j | 2 + j σ c | S Ψ 1 σ f , S Ψ 1 Ψ 2 1 ψ 2 j | 2 + j σ | S Ψ 2 σ c f , S Ψ 1 Ψ 2 1 ψ 1 j | 2 + j σ c | S Ψ 2 σ c f , S Ψ 1 Ψ 2 1 ψ 2 j | 2 j σ | f , ψ 1 j | 2 + j σ c | f , ψ 2 j | 2 .
Proof. 
Letting K = Id H and for any σ J , taking
a j = 1 , j σ , 0 , j σ c , ϕ j = S Ψ 1 Ψ 2 1 / 2 ψ 1 j , j σ , S Ψ 1 Ψ 2 1 / 2 ψ 2 j , j σ c .
If, now, we replace ψ 1 j , ψ 2 j and f in the left-hand inequality of Theorem 2 respectively by S Ψ 1 Ψ 2 1 / 2 ψ 1 j , S Ψ 1 Ψ 2 1 / 2 ψ 2 j and S Ψ 1 Ψ 2 1 / 2 f , then
j σ f , ψ 1 j S Ψ 1 Ψ 2 1 / 2 ψ 1 j 2 + j σ c f , ψ 2 j S Ψ 1 Ψ 2 1 / 2 ψ 2 j 2 ( 2 λ λ 2 2 1 ) Re j σ f , ψ 1 j ψ 1 j , f + ( 1 λ 2 2 ) Re j σ c f , ψ 2 j ψ 2 j , f = ( 2 λ λ 2 2 1 ) j σ | f , ψ 1 j | 2 + ( 1 λ 2 2 ) j σ c | f , ψ 2 j | 2 .
This along with Equations (6) and (7) gives the left-hand inequality in Equation (8), and the proof of the right-hand inequality is similar and we omit the details. □
Theorem 3.
Suppose that K B ( H ) has a closed range and that K-frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H are K-woven. Then, for all σ J , for any { a j } j J ( J ) , λ R and f R a n g e ( K ) ,
Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) j σ a j K f , ψ 1 j ϕ j + j σ c a j K f , ψ 2 j ϕ j 2 ( 1 λ 2 ) 2 Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) + λ 2 4 Re ( j σ ( 1 a j ) K f , ψ 1 j ϕ j , f + j σ c ( 1 a j ) K f , ψ 2 j ϕ j , f ) ,
where Φ = { ϕ j } j J is a K-dual of { ψ 1 j } j σ { ψ 2 j } j σ c .
Moreover, if ( P 1 K ) P 2 K 0 , then
Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) j σ a j K f , ψ 1 j ϕ j + j σ c a j K f , ψ 2 j ϕ j 2 0
for any f R a n g e ( K ) , where P 1 and P 2 are given in Equation (2).
Proof. 
For all σ J , for any { a j } j J ( J ) , λ R and f R a n g e ( K ) , we see from Equation (4) that
Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) j σ a j K f , ψ 1 j ϕ j + j σ c a j K f , ψ 2 j ϕ j 2 = Re P 1 K f , f P 1 K f 2 Re P 1 K f , f ( λ λ 2 4 ) Re P 1 K f , f + λ 2 4 Re P 2 K f , f = ( 1 λ 2 ) 2 Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) + λ 2 4 Re ( j σ ( 1 a j ) K f , ψ 1 j ϕ j , f + j σ c ( 1 a j ) K f , ψ 2 j ϕ j , f ) .
Suppose now that ( P 1 K ) P 2 K is a positive operator. Then
Re ( j σ a j K f , ψ 1 j ϕ j , f + j σ c a j K f , ψ 2 j ϕ j , f ) j σ a j K f , ψ 1 j ϕ j + j σ c a j K f , ψ 2 j ϕ j 2 = Re P 1 K f , f P 1 K f 2 = Re P 1 K f , P 1 K f + P 2 K f Re P 1 K f , P 1 K f = Re P 1 K f , P 2 K f = Re f , ( P 1 K ) P 2 K f 0 .
 □
Corollary 5.
Let the two frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H be woven. Then, for any σ J , for all λ R and all f H , we have
0 j σ | f , ψ 1 j | 2 j σ | S Ψ 1 σ f , S Ψ 1 Ψ 2 1 ψ 1 j | 2 j σ c | S Ψ 1 σ f , S Ψ 1 Ψ 2 1 ψ 2 j | 2 ( 1 λ 2 ) 2 j σ | f , ψ 1 j | 2 + λ 2 4 j σ c | f , ψ 2 j | 2 .
Proof. 
The proof is similar to Corollary 4 by using Theorem 3, so we omit it. □
Remark 2.
Corollaries 4 and 5 are respectively Theorems 15 and 14 in [34].
We conclude the paper with a double inequality for K-weaving frames stated as follows.
Theorem 4.
Suppose that K-frames Ψ 1 = { ψ 1 j } j J and Ψ 2 = { ψ 2 j } j J in H are K-woven. Then, for any σ J , for all { a j } j J ( J ) and all f H , we have
3 4 K f 2 j σ a j f , ψ 1 j ϕ j + j σ c a j f , ψ 2 j ϕ j 2 + Re ( j σ ( 1 a j ) f , ψ 1 j ϕ j , K f + j σ c ( 1 a j ) f , ψ 2 j ϕ j , K f ) 3 K 2 + P 1 P 2 2 4 f 2 ,
where P 1 and P 2 are given in Equation (2), and Φ = { ϕ j } j J is a K-dual of { ψ 1 j } j σ { ψ 2 j } j σ c .
Proof. 
For any σ J , for all { a j } j J ( J ) and all f H , it is easy to check that P 1 + P 2 = K . By Lemma 1, we get
j σ a j f , ψ 1 j ϕ j + j σ c a j f , ψ 2 j ϕ j 2 + Re ( j σ ( 1 a j ) f , ψ 1 j ϕ j , K f + j σ c ( 1 a j ) f , ψ 2 j ϕ j , K f ) = P 1 f 2 + Re P 2 f , K f 3 4 K f 2 .
We also have
j σ a j f , ψ 1 j ϕ j + j σ c a j f , ψ 2 j ϕ j 2 + Re ( j σ ( 1 a j ) f , ψ 1 j ϕ j , K f + j σ c ( 1 a j ) f , ψ 2 j ϕ j , K f ) = P 1 f , P 1 f + 1 2 P 2 f , K f + 1 2 K f , P 2 f = P 1 f , P 1 f + 1 2 ( K P 1 ) f , K f + 1 2 K f , ( K P 1 ) f = K f , K f 1 2 [ P 1 f , K f P 1 f , P 1 f ] 1 2 [ K f , P 1 f P 1 f , P 1 f ] = K f , K f 1 2 P 1 f , P 2 f 1 2 P 2 f , P 1 f = 3 4 K f , K f + 1 4 P 1 f + P 2 f , P 1 f + P 2 f 1 2 P 1 f , P 2 f 1 2 P 2 f , P 1 f = 3 4 K f , K f + 1 4 ( P 1 P 2 ) f , ( P 1 P 2 ) f 3 4 K 2 f 2 + 1 4 P 1 P 2 2 f 2 = 3 K 2 + P 1 P 2 2 4 f 2 ,
and the proof is over. □
Remark 3.
Theorem 3 in [35] can be obtained when taking K = Id H in Theorem 4.

Funding

This research was funded by the National Natural Science Foundation of China under Grant Nos. 11761057 and 11561057.

Conflicts of Interest

The author declares no conflict of interest.

References

  1. Duffin, R.J.; Schaeffer, A.C. A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 1952, 72, 341–366. [Google Scholar] [CrossRef]
  2. Dai, F. Characterizations of function spaces on the sphere using frames. Trans. Am. Math. Soc. 2006, 359, 567–589. [Google Scholar] [CrossRef]
  3. Pesenson, I.Z. Paley-Wiener-Schwartz nearly Parseval frames on noncompact symmetric spaces. In Commutative and Noncommutative Harmonic Analysis and Applications; Mayeli, A., Iosevich, A., Jorgensen, P.E.T., Ólafsson, G., Eds.; American Mathematical Society: Providence, RI, USA, 2013; Volume 603, pp. 55–71. ISBN 978-0-8218-9493-4. [Google Scholar]
  4. Gazeau, J.-P. Coherent States in Quantum Physics; Wiley-VCH: Berlin, Germany, 2009. [Google Scholar]
  5. Feichtinger, H.G.; Gröchenig, K. Theory and practice of irregular sampling. In Wavelets: Mathematics and Applications; Benedetto, J., Frazier, M., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 305–363. ISBN 978-0849382710. [Google Scholar]
  6. Poon, C. A consistent and stable approach to generalized sampling. J. Fourier Anal. Appl. 2014, 20, 985–1019. [Google Scholar] [CrossRef]
  7. Sun, W. Asymptotic properties of Gabor frame operators as sampling density tends to infinity. J. Funct. Anal. 2010, 258, 913–932. [Google Scholar] [CrossRef]
  8. Balazs, P.; Holighaus, N.; Necciari, T.; Stoeva, D.T. Frame theory for signal processing in psychoacoustics. In Excursions in Harmonic Analysis; Balan, R., Benedetto, J., Czaja, W., Dellatorre, M., Okoudjou, K., Eds.; Birkhäuser: Cham, Switzerland, 2017; Volume 5, pp. 225–268. ISBN 978-3-319-54710-7. [Google Scholar]
  9. Bölcskei, H.; Hlawatsch, F.; Feichtinger, H.G. Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 1998, 46, 3256–3268. [Google Scholar] [CrossRef]
  10. Găvruţa, L. Frames for operators. Appl. Comput. Harmon. Anal. 2012, 32, 139–144. [Google Scholar] [CrossRef] [Green Version]
  11. Guo, X.X. Canonical dual K-Bessel sequences and dual K-Bessel generators for unitary systems of Hilbert spaces. J. Math. Anal. Appl. 2016, 444, 598–609. [Google Scholar] [CrossRef]
  12. Jia, M.; Zhu, Y.C. Some results about the operator perturbation of a K-frame. Results Math. 2018, 73, 138. [Google Scholar] [CrossRef]
  13. Johnson, P.S.; Ramu, G. Class of bounded operators associated with an atomic system. Tamkang J. Math. 2015, 46, 85–90. [Google Scholar] [CrossRef]
  14. Poumai, K.T.; Jahan, S. Atomic systems for operators. Int. J. Wavelets Multiresolut. Inf. Process. 2019, 17, 1850066. [Google Scholar] [CrossRef]
  15. Poumai, K.T.; Jahan, S. On K-Atomic Decompositions in Banach Spaces. Electron. J. Math. Anal. Appl. 2018, 6, 183–197. [Google Scholar]
  16. Xiang, Z.Q.; Li, Y.M. Frame sequences and dual frames for operators. ScienceAsia 2016, 42, 222–230. [Google Scholar] [CrossRef]
  17. Xiao, X.C.; Zhu, Y.C.; Găvruţa, L. Some properties of K-frames in Hilbert spaces. Results Math. 2013, 63, 1243–1255. [Google Scholar] [CrossRef]
  18. Bemrose, T.; Casazza, P.G.; Gröchenig, K.; Lammers, M.C.; Lynch, R.G. Weaving frames. Oper. Matrices 2016, 10, 1093–1116. [Google Scholar] [CrossRef]
  19. Casazza, P.G.; Freeman, D.; Lynch, R.G. Weaving Schauder frames. J. Approx. Theory 2016, 211, 42–60. [Google Scholar] [CrossRef] [Green Version]
  20. Deepshikha; Vashisht, L.K. On weaving frames. Houston J. Math. 2018, 44, 887–915. [Google Scholar]
  21. Khosravi, A.; Banyarani, J.S. Weaving g-frames and weaving fusion frames. Bull. Malays. Math. Sci. Soc. 2018, 42, 3111–3129. [Google Scholar] [CrossRef]
  22. Rahimi, A.; Samadzadeh, Z.; Daraby, B. Frame related operators for woven frames. Int. J. Wavelets Multiresolut. Inf. Process. 2019, 17, 1950010. [Google Scholar] [CrossRef]
  23. Vashisht, L.K.; Garg, S.; Deepshikha; Das, P.K. On generalized weaving frames in Hilbert spaces. Rocky Mt. J. Math. 2018, 48, 661–685. [Google Scholar] [CrossRef]
  24. Vashisht, L.K.; Deepshikha. Weaving properties of generalized continuous frames generated by an iterated function system. J. Geom. Phys. 2016, 110, 282–295. [Google Scholar] [CrossRef]
  25. Deepshikha; Vashisht, L.K. Weaving K-frames in Hilbert spaces. Results Math. 2018, 73, 81. [Google Scholar] [CrossRef]
  26. Balan, R.; Casazza, P.G.; Edidin, D.; Kutyniok, G. A new identity for Parseval frames. Proc. Am. Math. Soc. 2007, 135, 1007–1015. [Google Scholar] [CrossRef]
  27. Balan, R.; Casazza, P.G.; Edidin, D. On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 2006, 20, 345–356. [Google Scholar] [CrossRef] [Green Version]
  28. Găvruţa, P. On some identities and inequalities for frames in Hilbert spaces. J. Math. Anal. Appl. 2006, 321, 469–478. [Google Scholar] [CrossRef] [Green Version]
  29. Jivulescu, M.A.; Găvruţa, P. Indices of sharpness for Parseval frames, quantum effects and observables. Sci. Bull. Politeh. Univ. Timiş. Trans. Math. Phys. 2015, 60, 17–29. [Google Scholar]
  30. Fu, Y.L.; Zhang, W. Some new inequalities for dual continuous g-frames. Mathematics 2019, 7, 662. [Google Scholar] [CrossRef]
  31. Li, D.W.; Leng, J.S. On some new inequalities for fusion frames in Hilbert spaces. Math. Inequal. Appl. 2017, 20, 889–900. [Google Scholar] [CrossRef]
  32. Li, D.W.; Leng, J.S. On some new inequalities for continuous fusion frames in Hilbert spaces. Mediterr. J. Math. 2018, 15, 173. [Google Scholar] [CrossRef]
  33. Poria, A. Some identities and inequalities for Hilbert-Schmidt frames. Mediterr. J. Math. 2017, 14, 59. [Google Scholar] [CrossRef]
  34. Li, D.W.; Leng, J.S. New inequalities for weaving frames in Hilbert spaces. arXiv 2018, arXiv:1809.00863. [Google Scholar]
  35. Xiang, Z.Q. More on inequalities for weaving frames in Hilbert spaces. Mathematics 2019, 7, 141. [Google Scholar] [CrossRef]
  36. Christensen, O. An Introduction to Frames and Riesz Bases; Birkhäuser: Boston, MA, USA, 2000. [Google Scholar]

Share and Cite

MDPI and ACS Style

Xiang, Z.-Q. New Inequalities of Weaving K-Frames in Subspaces. Mathematics 2019, 7, 863. https://doi.org/10.3390/math7090863

AMA Style

Xiang Z-Q. New Inequalities of Weaving K-Frames in Subspaces. Mathematics. 2019; 7(9):863. https://doi.org/10.3390/math7090863

Chicago/Turabian Style

Xiang, Zhong-Qi. 2019. "New Inequalities of Weaving K-Frames in Subspaces" Mathematics 7, no. 9: 863. https://doi.org/10.3390/math7090863

APA Style

Xiang, Z. -Q. (2019). New Inequalities of Weaving K-Frames in Subspaces. Mathematics, 7(9), 863. https://doi.org/10.3390/math7090863

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop