New Inequalities of Weaving K-Frames in Subspaces
Abstract
:1. Introduction
2. Main Results
Funding
Conflicts of Interest
References
- Duffin, R.J.; Schaeffer, A.C. A class of nonharmonic Fourier series. Trans. Am. Math. Soc. 1952, 72, 341–366. [Google Scholar] [CrossRef]
- Dai, F. Characterizations of function spaces on the sphere using frames. Trans. Am. Math. Soc. 2006, 359, 567–589. [Google Scholar] [CrossRef]
- Pesenson, I.Z. Paley-Wiener-Schwartz nearly Parseval frames on noncompact symmetric spaces. In Commutative and Noncommutative Harmonic Analysis and Applications; Mayeli, A., Iosevich, A., Jorgensen, P.E.T., Ólafsson, G., Eds.; American Mathematical Society: Providence, RI, USA, 2013; Volume 603, pp. 55–71. ISBN 978-0-8218-9493-4. [Google Scholar]
- Gazeau, J.-P. Coherent States in Quantum Physics; Wiley-VCH: Berlin, Germany, 2009. [Google Scholar]
- Feichtinger, H.G.; Gröchenig, K. Theory and practice of irregular sampling. In Wavelets: Mathematics and Applications; Benedetto, J., Frazier, M., Eds.; CRC Press: Boca Raton, FL, USA, 1994; pp. 305–363. ISBN 978-0849382710. [Google Scholar]
- Poon, C. A consistent and stable approach to generalized sampling. J. Fourier Anal. Appl. 2014, 20, 985–1019. [Google Scholar] [CrossRef]
- Sun, W. Asymptotic properties of Gabor frame operators as sampling density tends to infinity. J. Funct. Anal. 2010, 258, 913–932. [Google Scholar] [CrossRef]
- Balazs, P.; Holighaus, N.; Necciari, T.; Stoeva, D.T. Frame theory for signal processing in psychoacoustics. In Excursions in Harmonic Analysis; Balan, R., Benedetto, J., Czaja, W., Dellatorre, M., Okoudjou, K., Eds.; Birkhäuser: Cham, Switzerland, 2017; Volume 5, pp. 225–268. ISBN 978-3-319-54710-7. [Google Scholar]
- Bölcskei, H.; Hlawatsch, F.; Feichtinger, H.G. Frame-theoretic analysis of oversampled filter banks. IEEE Trans. Signal Process. 1998, 46, 3256–3268. [Google Scholar] [CrossRef]
- Găvruţa, L. Frames for operators. Appl. Comput. Harmon. Anal. 2012, 32, 139–144. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.X. Canonical dual K-Bessel sequences and dual K-Bessel generators for unitary systems of Hilbert spaces. J. Math. Anal. Appl. 2016, 444, 598–609. [Google Scholar] [CrossRef]
- Jia, M.; Zhu, Y.C. Some results about the operator perturbation of a K-frame. Results Math. 2018, 73, 138. [Google Scholar] [CrossRef]
- Johnson, P.S.; Ramu, G. Class of bounded operators associated with an atomic system. Tamkang J. Math. 2015, 46, 85–90. [Google Scholar] [CrossRef]
- Poumai, K.T.; Jahan, S. Atomic systems for operators. Int. J. Wavelets Multiresolut. Inf. Process. 2019, 17, 1850066. [Google Scholar] [CrossRef]
- Poumai, K.T.; Jahan, S. On K-Atomic Decompositions in Banach Spaces. Electron. J. Math. Anal. Appl. 2018, 6, 183–197. [Google Scholar]
- Xiang, Z.Q.; Li, Y.M. Frame sequences and dual frames for operators. ScienceAsia 2016, 42, 222–230. [Google Scholar] [CrossRef]
- Xiao, X.C.; Zhu, Y.C.; Găvruţa, L. Some properties of K-frames in Hilbert spaces. Results Math. 2013, 63, 1243–1255. [Google Scholar] [CrossRef]
- Bemrose, T.; Casazza, P.G.; Gröchenig, K.; Lammers, M.C.; Lynch, R.G. Weaving frames. Oper. Matrices 2016, 10, 1093–1116. [Google Scholar] [CrossRef]
- Casazza, P.G.; Freeman, D.; Lynch, R.G. Weaving Schauder frames. J. Approx. Theory 2016, 211, 42–60. [Google Scholar] [CrossRef] [Green Version]
- Deepshikha; Vashisht, L.K. On weaving frames. Houston J. Math. 2018, 44, 887–915. [Google Scholar]
- Khosravi, A.; Banyarani, J.S. Weaving g-frames and weaving fusion frames. Bull. Malays. Math. Sci. Soc. 2018, 42, 3111–3129. [Google Scholar] [CrossRef]
- Rahimi, A.; Samadzadeh, Z.; Daraby, B. Frame related operators for woven frames. Int. J. Wavelets Multiresolut. Inf. Process. 2019, 17, 1950010. [Google Scholar] [CrossRef]
- Vashisht, L.K.; Garg, S.; Deepshikha; Das, P.K. On generalized weaving frames in Hilbert spaces. Rocky Mt. J. Math. 2018, 48, 661–685. [Google Scholar] [CrossRef]
- Vashisht, L.K.; Deepshikha. Weaving properties of generalized continuous frames generated by an iterated function system. J. Geom. Phys. 2016, 110, 282–295. [Google Scholar] [CrossRef]
- Deepshikha; Vashisht, L.K. Weaving K-frames in Hilbert spaces. Results Math. 2018, 73, 81. [Google Scholar] [CrossRef]
- Balan, R.; Casazza, P.G.; Edidin, D.; Kutyniok, G. A new identity for Parseval frames. Proc. Am. Math. Soc. 2007, 135, 1007–1015. [Google Scholar] [CrossRef]
- Balan, R.; Casazza, P.G.; Edidin, D. On signal reconstruction without phase. Appl. Comput. Harmon. Anal. 2006, 20, 345–356. [Google Scholar] [CrossRef] [Green Version]
- Găvruţa, P. On some identities and inequalities for frames in Hilbert spaces. J. Math. Anal. Appl. 2006, 321, 469–478. [Google Scholar] [CrossRef] [Green Version]
- Jivulescu, M.A.; Găvruţa, P. Indices of sharpness for Parseval frames, quantum effects and observables. Sci. Bull. Politeh. Univ. Timiş. Trans. Math. Phys. 2015, 60, 17–29. [Google Scholar]
- Fu, Y.L.; Zhang, W. Some new inequalities for dual continuous g-frames. Mathematics 2019, 7, 662. [Google Scholar] [CrossRef]
- Li, D.W.; Leng, J.S. On some new inequalities for fusion frames in Hilbert spaces. Math. Inequal. Appl. 2017, 20, 889–900. [Google Scholar] [CrossRef]
- Li, D.W.; Leng, J.S. On some new inequalities for continuous fusion frames in Hilbert spaces. Mediterr. J. Math. 2018, 15, 173. [Google Scholar] [CrossRef]
- Poria, A. Some identities and inequalities for Hilbert-Schmidt frames. Mediterr. J. Math. 2017, 14, 59. [Google Scholar] [CrossRef]
- Li, D.W.; Leng, J.S. New inequalities for weaving frames in Hilbert spaces. arXiv 2018, arXiv:1809.00863. [Google Scholar]
- Xiang, Z.Q. More on inequalities for weaving frames in Hilbert spaces. Mathematics 2019, 7, 141. [Google Scholar] [CrossRef]
- Christensen, O. An Introduction to Frames and Riesz Bases; Birkhäuser: Boston, MA, USA, 2000. [Google Scholar]
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiang, Z.-Q. New Inequalities of Weaving K-Frames in Subspaces. Mathematics 2019, 7, 863. https://doi.org/10.3390/math7090863
Xiang Z-Q. New Inequalities of Weaving K-Frames in Subspaces. Mathematics. 2019; 7(9):863. https://doi.org/10.3390/math7090863
Chicago/Turabian StyleXiang, Zhong-Qi. 2019. "New Inequalities of Weaving K-Frames in Subspaces" Mathematics 7, no. 9: 863. https://doi.org/10.3390/math7090863
APA StyleXiang, Z. -Q. (2019). New Inequalities of Weaving K-Frames in Subspaces. Mathematics, 7(9), 863. https://doi.org/10.3390/math7090863