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Abstract: In high-dimensional data, the performances of various classifiers are largely dependent on
the selection of important features. Most of the individual classifiers with the existing feature selection
(FS) methods do not perform well for highly correlated data. Obtaining important features using
the FS method and selecting the best performing classifier is a challenging task in high throughput
data. In this article, we propose a combination of resampling-based least absolute shrinkage and
selection operator (LASSO) feature selection (RLFS) and ensembles of regularized regression (ERRM)
capable of dealing data with the high correlation structures. The ERRM boosts the prediction accuracy
with the top-ranked features obtained from RLFS. The RLFS utilizes the lasso penalty with sure
independence screening (SIS) condition to select the top k ranked features. The ERRM includes
five individual penalty based classifiers: LASSO, adaptive LASSO (ALASSO), elastic net (ENET),
smoothly clipped absolute deviations (SCAD), and minimax concave penalty (MCP). It was built
on the idea of bagging and rank aggregation. Upon performing simulation studies and applying to
smokers’ cancer gene expression data, we demonstrated that the proposed combination of ERRM
with RLFS achieved superior performance of accuracy and geometric mean.

Keywords: ensembles; feature selection; high-throughput; gene expression data; resampling; lasso;
adaptive lasso; elastic net; SCAD; MCP

MSC: 62P10; 62F40; 62F07

1. Introduction

With the advances of high throughput technology in biomedical research, large volumes of
high-dimensional data are being generated [1–3]. Some of the examples of what produces such data
are microarray gene expression [4–6] data sequencing, RNA-seq [7], genome-wide association studies
(GWASs) [8,9], and DNA-methylation studies [10,11]. These data are high dimensional in nature,
where the total count of features is significantly larger than the number of samples (p >> n)—termed
the curse of dimensionality. Although this is one of the major problems, there are many other problems,
such as noise, redundancy, and over parameterization. To deal with these problems, many two-stage
approaches of feature selection (FS) and classification algorithms have been proposed in machine
learning over the last decade.

The FS methods are used to reduce the dimensionality of data by removing noisy and redundant
features that help in selecting the truly important features. The FS methods are classified into
rank-based and subset methods [12,13]. Rank-based methods rank all the features with respect
to their importance based on some criteria. Although there is a lack of threshold to select the optimal

Mathematics 2020, 8, 110; doi:10.3390/math8010110 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-2824-0850
https://orcid.org/0000-0003-2824-0850
http://dx.doi.org/10.3390/math8010110
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/1/110?type=check_update&version=2


Mathematics 2020, 8, 110 2 of 23

number of top-ranked features, this can be solved using the sure independence screening (SIS) [14]
conditions. Some of the popular rank-based FS methods used in bioinformatics are information
gain [15], Fisher score [16], chi-square [17], and minimum redundancy maximum relevance [18].
These rank-based FS methods have several advantages, such as that they avoid overfitting and are
computationally faster because they do not depend on the performances of classification algorithms.
However, these methods do not consider joint importance because they focus on marginal significance.
To overcome this issue, feature subset section methods were introduced. The subset methods [19] are
the ones where the subsets of features are selected with some predetermined threshold based on some
criteria, but these methods need more computational time in a high-dimensional data setting and lead
to an NP-hard problem [20]. Some of the popular subset methods include Boruta [21] and relief [22].

For the classification of gene expression data, there are non-parametric-based popular algorithms,
such as random forests [23], Adaboost [24], and support vector machines [25]. The support vector
machines are known to perform well in highly correlated gene expression data compared to the
random forests [26]. The random forests and Adaboost are based on the concept of decision trees,
and the support vector machines are based on the idea of hyperplanes. In addition to the above, there
are parametric machine learning algorithms, such as penalized logistic regression (PLR) models, that
have five different penalties which are predominantly popular in high-dimensional data. The first two
classifiers are Lasso [27] and ridge [28] that are based on L1 and L2 penalties. The third classifier is a
combination of these and is termed as elastic net [29]. The other two PLR classifiers are SCAD [30]
and MCP [31], which are based on non-concave and concave respectively. All these individual
classifiers are very common in machine learning and bioinformatics [32]. However, in highly correlated
gene expression data, the individual classifiers do not perform well in terms of prediction accuracy.
To overcome the issue of individual classifiers, ensemble classifiers are proposed [33,34]. The ensemble
classifiers are bagging and aggregating methods [35,36] that are employed to improve the accuracy of
several “weak” classifiers [37]. The tree-based method of classification by ensembles from random
partitions (CERP) [38] showed good performance but is computer-intensive. The ensembles of logistic
regression models (LORENS) [39] for high-dimensional data were proven to be better for classification.
However, there was a decrease in performance when there were a smaller number of true, important
variables in the high-dimensional space because of random partitioning.

To address these issues, there is a need to develop a novel combination of FS with a classification
method and compare the proposed method with the other combinations of popular FS with the
classifiers through extensive simulation studies and a real data application. In a high dimensional
data set, it is necessary to filter out the redundant and unimportant features using the FS methods.
This helps in reducing the computational time and helps in boosting the prediction accuracy with the
help of significant features.

In this article, we introduce the combination of an ensemble classifier with an FS method—the
resampling-based lasso feature selection (RLFS) method for ranking features, and ensemble of regularized
regression models (ERRM) for classification purposes. The resampling approach was proven to be one
of the best FS screening steps in a high-dimensional data setting [13]. The RLFS uses the selection
probability with lasso penalty, and the threshold for selecting the top-ranked features is set using
b-SIS condition; and these select features were applied to the ERRM to achieve the best prediction
accuracy. The ERRM uses five individual regularization models, lasso, adaptive lasso, elastic net,
SCAD, and MCP.

2. Materials and Methods

The FS method includes the proposed RLFS method, information gain, chi-square, and minimum
redundancy maximum relevance. The classification methods include support vector machines,
penalized regression models, and tree-based methods, such as random forests and adaptive boosting.
The programs for all the experiments were written using R software [40]. The FS and classification
were performed with the packages [41–46] obtained from CRAN. The weighted rank aggregation
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was evaluated with the RankAggreg package obtained from [47]. The codes for implementing the
algorithms are available at [48]. The SMK-CAN-187 data were obtained from [49]; some of the
applications of the data can be found in the articles [50,51] where the importance of screening approach
in high dimensional data is elaborated.

2.1. Data Setup

To assess the performances of the models, we developed simulation study and also considered a
real application of gene expression data.

2.1.1. Simulation Data Setup

The data were generated based on a random multivariate normal distribution where the mean
was assigned as 0, and the variance-covariance matrix ∑x adapts a compound symmetry structure
with the diagonal items set to 1 and the off-diagonal items being ρ values.

∑x =


1 ρ · · · ρ

ρ 1 · · · ρ
...

...
. . .

...
ρ ρ · · · 1


p×p

. (1)

The class labels were generated using the Bernoulli trails with the following probability:

πi(yi = 1|xi) =
exp(xiβ)

1 + exp(xiβ)
. (2)

The data matrix xi ∼ Np(0, ∑x) was generated using the random multivariate normal distribution,
and the response variable yi was generated by binomial distribution, as shown in Equations (1) and (2)
respectively. For sufficient comparison of the performance of the model and subsidizing the effects of
the data splits, all of the regularized regression models were built using the 10-fold cross-validation
procedure, and the averages were taken over 100 partitioning times referred to as 100 iterations in this
paper. The data generated are high-dimensional in nature with the number of samples, n = 200 and
total features, p = 1000. The true regression coefficients were set to 25, which were generated using
uniform distribution with the minimum and maximum values 2 and 4, respectively.

With this setup of high-dimensional data, we simulated three different types of data, each with
correlation structures ρ = 0.2, 0.5, and 0.8 respectively. These values show the low, intermediate,
and high correlation structures in the datasets which are significantly similar to what we usually
see in the gene expression or others among many types of data in the field of bioinformatics [13,52].
At first, the data were divided randomly into training and testing sets with 75% and 25% of samples
respectively; 75% of the training data was given to the FS methods, which ranked the genes concerning
their importance, and then the top-ranked genes were selected based on b-SIS condition. The selected
genes were applied in all the classifiers. For standard comparison and mitigating the effects of the
data splitting, all of the regularized regression models were built using the 10-fold cross-validation;
the models were assessed for testing the performance with the testing data using different evaluation
metrics, and averages were taken over 100 splitting times referred to as 100 iterations.

2.1.2. Experimental Data Setup

To test the performance of the proposed combination of ERRM with RLFS, and compare it with
the rest of the combinations of FS and classifiers, the gene expression data SMK-CAN-187 were
analyzed. The data include 187 samples and 19,993 genes obtained from smokers, which included
90 samples from those with lung cancer and 97 samples from those without lung cancer. This data is
high-dimensional, with the number of genes being 19,993. The preprocessing procedures are necessary
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to handle these high-dimensional data. At first, the data were randomly divided into training and
testing sets with 75% and 25% of samples respectively. As the first filtering step, 75% of the training
data were given to the marginal maximum likelihood estimator (MMLE), to overcome the redundant
noisy features, and the genes were ranked based on their level of significance. The ranked significant
genes were next applied to the FS methods along with the proposed RLFS method as the second
filtering step, and a final list of truly significant genes was obtained. These significant genes were
applied to all the classification models along with the proposed ERRM classifier. All of the models
were built using the 10-fold cross-validation. The average classification accuracy and Gmean of our
proposed framework were tested using the test data. The above procedure was repeated for 100 times
and the averages were taken.

2.1.3. Data Notations

Let the expression levels of features in ith sample be represented as xi = (xi1, xi2, ....., xip) for
i = 1, ....., n, where n is the total number of samples and p is the total number of features. The response
variables, yi ∈ {0, 1}, where yi = 0 means that ith individual is in the non disease group and yi = 1 is
disease group.

The original data xi were split into 75% for the training set xj and 25% for the testing set xk.
The training set xj = (xj1, xj2, ....., xjp) for j = 1, ....., t, where t is the number of training samples,
the response variable yj for the training set. The testing set xk = (xk1, xk2, ....., xkp) for k = 1, ....., v,
where v is the number of testing samples; the response variable is yk for the testing set. The classifiers
are fitted on xj, and the class labels yj as training data set to predict the classification of yk using xk of
the testing set.

The detailed procedure is as follows. The training data xj were given to the FS methods, and the
new reduced feature set xr = (xj1, xj2, ....., xj f ) for j = 1, ....., t, where t was the samples included in
training data, and f was the reduced number of features after the FS step. This reduced feature set xr

was used as new training data for building the classification models.

2.2. Rank Based Feature Selection Methods

With the gain in popularity of high dimensional data in bioinformatics, the challenges to deal
with it also grew. In gene expression data, having large p and small n problems, the n represents the
samples as patients and p represents the features as genes. Dealing with such a large number of genes
that are generated by conducting large biological experiments involves computationally intensive
tasks that become too expensive to handle. The performance drops when such a large number of
genes are added to the model. To overcome this problem, employing FS methods becomes a necessity.
In statistical machine learning, there are many FS methods developed to deal with the gene expression
data. But most of the existing algorithms are not completely robust applications to the gene expression
data. Hence, we propose an FS method that ranks the features based on some criteria explained in
the next section. We also explain some other popular FS methods in classification problems, such as
information gain, chi-square, and minimum redundancy maximum relevance.

2.2.1. Information Gain

The information gain (IG) method [15] is simple, and one of the widely used FS methods. This
univariate FS method is used to assess the quantity of information shared between the training feature
set xj = (xj1, xj2, ....., xjp) for j = 1, ....., t, where t is the number of training samples, for g = 1, 2, ....p,
where g is the feature in p number of features, and the response variable yj. It provides an ordered
ranking of all the features having a strong correlation with the response variable that helps to obtain
good classification performance.

The information gain between the gth feature in xj and the response variable yj is given as follows:

IG(xj; yj) = H(xj)−H(xj|yj), (3)
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where H(xj) is entropy of xj and H(xj|yj) is entropy of xj given yj. The entropy [53] of xj is defined by
the following equation:

H(xj) = ∑
g∈xj

π(g)log(π(g)), (4)

where g indicates discrete random variable xj and π(g) gives the probability of g on all values of xj.
Given the random variable yj, the conditional entropy of xj is:

H(xj|yj) = ∑
y∈yj

π(y) ∑
g∈xj

π(g|y)log(π(g|y)), (5)

where π(y) is the prior probability of yj; π(g|y) is conditional probability of g in a given y that shows
the uncertainty of xj given yj.

IG(xj; yj) = ∑
g∈xj

∑
y∈yj

π(g, y)log
π(g, y)

π(g)π(y)
, (6)

where π(g, y) is the joint probability of g and y . IG is symmetric such that IG(xj; yj) = IG(yj; xj),
and is zero if the variables xj and yj are independent.

2.2.2. Chi-Square Test

The chi-square test (Chi2) belongs to the category of the non-parametric test, which is used mainly
in determining the significant relation between two categorical variables. As part of the preprocessing
step, we used the “equal interval width” approach to transform the numerical variables into categorical
counterparts. The “equal interval width” algorithm first divides the data into q intervals of equal
size. The width of each interval is defined as: w = (max−min)/q and the interval boundaries are
determined by: min + w, min + 2w, ...., min + (q− 1)w.

The general rule in Chi2 is that the features have a strong dependency on the class labels selected,
and the features independent of the class labels are ignored.

From the training set, xj = (xj1, ....xjp), g = 1, 2, ....p, where g is every feature in p number
of features. Given a particular feature g with r different feature values [53], the Chi2 score of that
particular feature can be calculated as:

χ̃2(g) =
r

∑
j=1

p

∑
s=1

(Ojs − Ejs)
2

Ejs
, (7)

where Ojs is the number of instances with the jth feature value given feature g. In addition, Ejs =
O∗sOj∗

O ,
where Oj∗ indicates the number of data instances with the feature value given feature g, O∗s denotes
the number of data instances in r, and p is total number of features.

When two features are independent, the Ojs is closer to the expected count Ejs; consequently, we
will have smaller Chi2 score. On the other hand, the higher Chi2 score implies that the feature is more
dependent on the response and it can be selected for building the model during training.

2.2.3. Minimum Redundancy Maximum Relevance

The minimum redundancy and maximum relevance method (MRMR) is built on optimization
criteria of mutual information (redundancy and relevance); hence, it is also defined under mutual
information based methods. If a feature has uniformly of expressions or if they are randomly
distributed in different classes, its mutual information with such classes is null [18]. If a feature is
expressed differentially for different classes, it should have strong mutual information. Hence, we use
mutual information as a measure of the relevance of features. MRMR also reduces the redundant
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features from the feature set. For a given set of features, it tries to measure both the redundancy among
features and relevance between features and class vectors.

The redundancy and relevance are calculated based on mutual information, which is as follows:
We know that, in the training set xj, g = 1, ...., p represents every feature in xj and yj is the response
variable.

I(g, y) = ∑
g∈xj

∑
y∈yj

log
π(g, y)

π(g)π(y)
. (8)

In the following equation, for simplicity, let us consider the training set xj as X and response
variable yj as Y. The objective function is shown below:

JMRMR(XS, Y) =
1
|S| ∑i∈S

I(Xi, Y)− 1
|S|2 ∑

i,j∈S
I(Xi, Xj), (9)

where S is the subset of selected features and Xi is the ith feature. The first term is a measure of
relevance that is the sum of mutual information of all the selected features in the set S with respect to
the output Y. The second term is measure of redundancy that is the sum of the mutual information
between all the selected features in the subset S. By optimizing the Equation (9), we are maximizing
the first term and minimizing the second term simultaneously.

2.3. Classification Algorithms

Along with gene selection, improving prediction accuracy when dealing with high-dimensional
data has always been a challenging task. There is a wide range of popular classification algorithms used
when dealing with high throughput data, such as tree-based methods [54], support vector machines,
and penalized regression models [55]. These popular models are discussed briefly in this section.

2.3.1. Logistic Regression

Logistic regression (LR) is perhaps one of the primary and popular models used while dealing
with binary classification problems [56]. Logistic regression for dealing with more than two classes is
called multinomial logistic regression. The primary focus here is on the binary classification. Given the
set of inputs, the output is a predicted probability that the given input point belongs to a particular
class. The output is always within [0, 1]. Logistic regression is based on the assumption that the
original input space can be divided into two separate regions, one for each class, by a plane. This plane
helps to discriminate between the dots belonging to different classes and is called as linear discriminant
or linear boundary.

One of the limitations is the number of parameters that can be estimated needs to be smaller and
should not exceed the number of samples.

2.3.2. Regularized Regression Models

Regularization is a technique used in logistic regression by employing penalties to overcome the
limitations of dealing with high-dimensional data. Here, we discuss the PLR models such as lasso,
adaptive lasso, elastic net, SCAD, and MCP. These five methods are included in the proposed ERRM
and also tested as independent classifiers for comparing performance with the ERRM.

The logistic regression equation:

log
(

π(yj = 1|xj)

1− π(yj = 1|xj)

)
= β0 + βxj, (10)

where j = 1....t and β = (β1...β f )
T .
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From logistic regression Equation (10), the log-likelihood estimator is shown as below:

l(β, yj) =
t

∑
j=1
{yjlog(π(yj = 1|xj)) + (1− yj)log(1− π(yj = 1|xj))}. (11)

Logistic regression offers the benefit by simultaneous estimation of the probabilities π(xj) and
1 − π(xj) for each class. The criterion for prediction is I{π(yj = 1|xj) ≥ 0.5}, where I(·) is an
indicator function.

The parameters for PLR are estimated by minimizing above function:

β̂PLR = argmin
β

[
− l(β, yj) + p(β)

]
, (12)

where p(β) is a penalty function, l(β, yj) is the log-likelihood function.
Lasso is a widely used method in variable selection and classification purposes in high

dimensional data. It is one of the five methods used in the proposed ERRM for classification purposes.
The LASSO penalized regression method is defined below:

β̂LASSO = argmin
β

[
− l(β, yj) + λ

f

∑
j=1
|β j|
]

, (13)

where f is the reduced number of features; λ is the tuning parameter that controls the strength of the
L1 penalty.

The oracle property [30] has consistency in variable selection and asymptotic normality. The lasso
works well in subset selection; however, it lacks the oracle property. To overcome this, different
weights are assigned to different coefficients: this describes a weighted lasso called adaptive lasso.
The adaptive lasso (ALASSO) penalty is shown below:

β̂ALASSO = argmin
β

[
− l(β, yj) + λ

f

∑
j=1

wj|β j|
]

, (14)

where f is the reduced number of features, λ is the tuning parameter that controls the strength of the
L2 penalty, and wj is the weight vector based on ridge estimator. The ridge estimator [28] uses the L2
regularization method which obtains the size of coefficients by adding the L2 penalty.

The elastic net (ENET) [57] is the combination of lasso which uses the L1 penalty, and ridge which
uses the L2 penalty. The sizable number of variables is obtained, which helps in avoiding the model
turning into an excessively sparse model.

The ENET penalty is defined as:

β̂ENET = argmin
β

[
− l(β, yj) + λ

(
1− α

2

f

∑
j=1
|β j|2 + α

f

∑
j=1
|β j|
)]

, (15)

where λ is the tuning parameter that controls the penalty, f is the number of features, α is the mixing
parameter between ridge α = 0 and lasso α = 1.

The smoothly clipped absolute deviation penalty (SCAD) [30] is a sparse logistic regression model
with a non-concave penalty function. It improves the properties of the L1 penalty. The regression
coefficients are estimated by minimizing the log-likelihood function:

β̂SCAD = argmin
β

[
− l(β, yj) + λ

f

∑
j=1

pλ(β j)

]
. (16)
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In Equation (16) the pλ(β j) is defined by:

|βi|I(|β j |≤λ) +

(
{(c2 − 1)λ2 − (cλ− |β j|)2

+}I(λ ≤ |β j|)
2(c− 1)

)
, c > 2 and λ ≥ 0 . (17)

Minimax concave penalty (MCP) [31] is very similar to the SCAD. However, the MCP relaxes the
penalization rate immediately, while for SCAD, the rate remains smooth before it starts decreasing.
The MCP equation is given as follows:

β̂MCP = argmin
β

[
− l(β, yj) + λ

f

∑
j=1

pλ(β j)

]
. (18)

In Equation (18) the pλ(β j) is defined as:

(2cλ|β j| − β2
j

2c

)
I(|β j| ≤ cλ) +

( cλ2

2

)
I(|β j| > cλ), for λ ≥ 0 and c > 1. (19)

2.3.3. Random Forests

The random forest (RF) [23] is an interpretive and straightforward method commonly used for
classification purposes in bioinformatics. It is also known for its variable importance ranking in high
dimensional data sets. RF is built on the concept of decision trees. Decision trees are usually more
decipherable when dealing with binary responses. The idea of RF is to operate as an ensemble instead
of relying on a single model. RF is a combination of a large number of decision trees where each tree
has some random subset of features obtained from the data by allowing repetitions. This process is
called bagging. The majority voting scheme is applied by aggregating all the tree models and obtaining
one final prediction.

2.3.4. Support Vector Machines

Support vector machines (SVM) [25] are well known amongst most of the mainstream algorithms
in supervised learning. The main goal of a SVM is to choose a hyperplane that can best divide the data
in the high dimensional space. This helps to avoid overfitting. The SVM detects the maximum margin
hyperplane, the hyperplane that maximizes the distance between the hyperplane, and the closest
dots [58]. The maximum margin indicates that the classes are well separable and correctly classified.
It is represented as a linear combination of training points. As a result, the decision boundary function
for classifying points as to hyperplane only involves dot products between those points.

2.3.5. Adaboost

Adaboost is also known as adaptive boosting (AB) [24]. It improves the performance of a
particular weak boosting classifier through an iterative process. This ensemble learning algorithm
can be extensively applied to classification problems. The primary objective here is to assign more
weights to the patterns that are harder to classify. Initially, the same weights are assigned to each
training item. The weights of the wrongly classified items are incremented while the weights of the
correctly classified items are decreased in each iteration. Hence, with the additional iterations and
more classifiers, the weak learner is bound to cast on the challenging samples of the training set.

2.4. The Proposed Framework

We propose a combination of the FS method and classification method. For the filtering
procedure, the resampling-based lasso feature selection method is introduced, and for the classification,
the ensemble of regularized regression models is developed.
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2.4.1. The Resampling-Based Lasso Feature Selection

From [13], we see that the resampling-based FS is relatively more efficient in comparison to the
other existing FS methods in gene expression data. The RLFS method is based on the lasso penalized
regression method and the resampling approach employed to obtain the ranked important features
using the frequency.

The least absolute shrinkage and selection operator (LASSO) [27] estimator is based on
L1-regularization. The L1-regularization method limits the size of coefficients pushes the unimportant
regression coefficients to zero by using the L1 penalty. Due to this property, variable selection is
achieved. It plays a crucial role in achieving better prediction accuracy along with the gene selection
in bioinformatics.

β̂lasso = argmin
β

[
−

t

∑
j=1
{yjlog(π(yj = 1|xj)) + (1− yj)log(1− π(yj = 1|xj))}+ λ

p

∑
j=1
|β j|
]

. (20)

The selection probability S( fm) of the features based on the lasso is shown in the below equation.

S( fm) =
1
R

R

∑
i=1

1
L

L

∑
j=1

I(βijm 6= 0), for m = 1, 2, ..., p. (21)

The b-SIS criteria to select the top k ranked features is defined by,⌈
b× n

log(n)

⌉
, (22)

where R is defined by the total number of resampling, L is total number of λ values, fm is the feature
indexed as i, p is total number of features, n is total number of samples, and βijm is defined as regression
coefficient of mth feature and I() indicator variable. Each R number of resamples and L number of
values of λ are considered to build the variable selection model. The 10-fold cross validation is
considered while building the model.

After ranking the features using the RLFS method, we employ the b-SIS approach to select the top
features based on Equation (22) where b is set to two. The number of true important variables selected
among the top b-SIS ranked features is calculated in each iteration and the average of this is taken over
100 iterations.

2.4.2. The Ensembles of Regularized Regression Models

LASSO, ALASSO, ENET, SCAD, and MCP are the five individual regularized regression models
included as base learners in our ERRM. The role of bootstrapped aggregation or bagging is to reduce
the variance by averaging over an “ensemble” of trees, which will improve the performance of weak
classifiers. B = Bk

1, ...., Bk
M is the number of random bootstrapped samples obtained from reduced

training set xr with corresponding class label yj. The five regularized regression models are trained on
each bootstrapped sample B named sub-training data, leading to 5× B models. These five regularized
models are then trained using the 10-fold cross-validation to predict the classes on the out of bag
samples called sub-testing data where the best model fit in each of the five regularized regression
model is obtained. Henceforth, in each of the five regularized models, the best model is selected
and the testing data xk is applied to obtain the final list of predicted classes for each of these models.
For binary classification problems, in addition to accuracy, the sensitivity and specificity are primarily
sought. The E evaluation metrics are computed for each of these best models of five regularized
models. In order to get an optimized classifier using all the evaluation measures E is essential, and this
is achieved using weighted rank aggregation. Here, each of the regularized models is ranked based
on the performance of E evaluation metrics. The models are ranked based on the increasing order of
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performance; in the case of a matching score of accuracy for two or more models, other metrics such
as sensitivity and specificity are considered. The best performing model among the five models is
obtained based on these ranks. This procedure is repeated to obtain the best performing model in each
of the tree T. Finally, the majority voting procedure is applied over the T trees to obtain a final list
of predicted classes. The test class label is applied to measure the final E measures for assessing the
performance of the proposed ensembles. The Algorithm 1 defines the proposed ERRM procedure.

The complete workflow of the proposed RLFS-ERRM framework is shown in Figure 1.

Version January 3, 2020 submitted to Journal Not Specified 11

Data Matrix:
features xi: xi1,xi2, .....,xip for i = 1, ...,n and

class labels yi : 0 or 1

Training set xj : xj1, ...,xjp for i = 1, ..., t
75% of samples

Testing set
25% of samples

Proposed RLFS method starts here

Lasso method

λ1 λ2 ... λ100
β1 ... ... ... ...
β2 ... ... ... ...
... ... ... ... ...
βp ... ... ... ...

Count non-zero βj,
j = 1,...,p

Rank variables with
highest selection probability

Select top b ∗ n
log(n)

Proposed RLFS ends here
returning the ranked features

Proposed ERRM classifier
starts here using the

obtained reduced features

bootstrap samples
for each tree T

Run the sub-training data
on five models with the

10-fold cross validation.
The best model is selected

in each of the
five regularized models

The testing data is applied
Evaluation metrics are recorded
Rank Aggregation is performed

The final best regularized model
among the five regularized models

in each tree T is selected.

Majority voting is applied
on T = 100

best individual models

Predict output
with test label and

obtain E evaluation metrics

Repeat
100
times

Bootstrap
100
times

Figure 1. The complete workflow depicting the proposed combination of RLFS-ERRM framework
Figure 1. The complete workflow depicting the proposed combination of RLFS-ERRM framework.
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Algorithm 1 Proposed ERRM

Step 1: Obtain new training data xr with most informative features using the proposed RLFS method.
Step 2: Draw bootstrap samples from xr and apply them to each of the regularized methods to be
fitted with 10-fold cross validation.
Step 3: Apply out of bag samples (OOB) not used in bootstrap samples to the above fitted models to
choose the best model using E evaluation metrics.
Step 4: Repeat steps 2 and 3 until getting 100 bootstrap models.
Step 5: Apply testing set xk to each of 100 models to aggregate votes of classification.
Step 6: Predict classification of each sample by the rule of majority voting in the testing set.

2.5. Evaluation Metrics

We evaluated the results of combinations of FS methods with the classifier using accuracy and
geometric mean (Gmean). The metrics are detailed with respect to true positive (TP), true negative
(TN), false negative (FN), and false positive (FP). The equations for accuracy and Gmean are as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

Gmean =
√

Sensitivity× Specificity,

(23)

where the sensitivity and specificity are given by:

Sensitivity =
TP

TP + FN
and Specificity =

TN
TN + FP

. (24)

3. Results

3.1. Simulation Results

The prediction performance of any given model is largely dependent on the type of the features.
The features affecting the classification will help in attaining the best prediction accuracies. In Figure 2,
we see the RLFS method with the top-ranked features based on the b-SIS criterion includes a higher
number of true important features than other existing FS methods, such as IG, Chi2, and MRMR used
for comparison in this study. The proposed RLFS performs consistently better across low, medium,
and highly correlated simulated data, and the positive effect of having more true important variables
was seen in all three simulation scenarios (further explained in detail).

3.1.1. Simulation Scenario (S1): Low Correlation 0.2

The predictors were generated, having a low correlation structure with ρ = 0.2. The proposed
classifier ERRM performs better than the existing classifier on all the FS methods: proposed RLFS,
IG, Chi2, and MRMR. Also, the proposed combination of ERRM classifier with RLFS method,
with the accuracy and Gmean, each of which is 0.8606 and 0.8626 respectively, is relatively better in
comparison to other combinations of FS method and classifier such as RLFS-LASSO, RLFS-ALASSO,
RLFS-ENET, and the other remaining combinations, as observed in Figure 3. The combination of the
FS method IG with proposed ERRM with an accuracy of 0.8476 is also seen performing better than
IG-LASSO, IG-ALASSO, IG-ENET, IG-SCAD, IG-MCP, IG-AB, IG-RF, IG-LR, and IG-SVM. Similarly,
the combination of Chi2-ERRM with an accuracy of 0.8538 is seen better than FS method Chi2 with the
other remaining classifiers. The results are reported in Table 1. The combination of MRMR-ERRM has
an accuracy of 0.8550 and Gmean of 0.8552 is better than the combination of FS method MRMR with
the rest of the nine classifiers.
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Figure 2. True number of features selected among top b-SIS ranked features, and the average of this
taken over 100 iterations for three different scenarios. The first horizontal line in the box shows the first
quartile and the second horizontal dark line which usually represents the median values are shown as
the mean values in this article. The third horizontal line in each of the boxes shows the third quartile.
The red dotted circles indicate the outliers in each of the FS methods.

All the classifiers with the features obtained from the RLFS method achieved the best accuracies
in comparison to other FS methods, as seen in Figure 3. The combination of RLFS with SVM showed
the second-best performance by attaining an accuracy of 0.8582, as seen in Table 1. The ENET method
showed the best performance among all the regularized regression models with all the FS methods,
and the best accuracy was obtained with the proposed RLFS method.

The proposed combination of RLFS-ERRM has better performance than the other existing
combinations of the FS and classifier without the proposed FS method RLFS and classifier ERRM
itself. For example, the existing FS methods IG, Chi2, and MRMR with the eight existing individual
classifiers’ performances are lower than the proposed RLFS-ERRM combination, as shown in Table 1.
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Figure 3. Comparison of accuracies of proposed combination of ensemble of regularized regression
models (ERRM) with resampling-based lasso feature selection (RLFS) and other classifiers with feature
selection methods when correlation = 0.2.

3.1.2. Simulation Scenario (S2): Intermediate Correlation 0.5

The predictor variables were generated using a medium correlation structure with ρ = 0.5.
The proposed combination of the RLFS method and ERRM classifier, with the accuracy and Gmean,
each of which is 0.9256 and 0.9266, respectively, attained relatively better performance compared to
other combinations of the FS method and classifier such as RLFS-LASSO, RLFS-ALASSO, RLFS-ENET
and the other remaining combinations. The results are shown in Table 1. From Figure 4, we see that
the proposed ensemble classifier ERRM with other FS methods such as IG, Chi2, and MRMR performs
best compared to the other nine individual classifiers.

The SVM and ENET classifiers with the RLFS method attained accuracies that are almost similar
to the proposed combination of ERRM-RLFS. However, when Gmean is considered, the ERRM-RLFS
outperforms the SVM combinations. The average SD of the proposed combination of the ERRM-RLFS
is smaller than other combinations of the FS method and classifier. The accuracies of SVM and ENET
classifiers with the IG method were 0.9128 and 0.9150 lower compared to the ERRM classifier with
the IG method which had an accuracy of 0.9184. Similarly, the ERRM with the Chi2 method showed
relatively better performance than the competitive classifiers ENET and SVM. Further, the ERRM
classifier with the MRMR method having an accuracy of 0.9174 showed better performance than ENET,
SVM, and other top-performing individual classifiers.
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Figure 4. Boxplot showing the accuracies of classifiers with FS methods when correlation = 0.5.

While the SVM and ENET classifiers showed promising performance on the RLFS that had a
good number of important features, they failed to show the same consistency on the other FS methods.
On the other hand, the ensemble ERRM showed robust behavior, with being able to withstand the
noise that helps in attaining better prediction accuracies and Gmean, not only with the RLFS method
but also with other FS methods, such as IG, Chi2, and MRMR, as seen in Table 1.

Similar results are also found in the Simulation Scenario (S3): which has the highly correlated
data with ρ set to 0.8. The results for this scenario are described in the Appendix A.

3.2. Experimental Results

Figure 5 shows the box plot of average accuracies taken over 100 iterations for all the combinations
of FS and classifiers in experimental data. Each of the sub-figures in the figure shows the classifiers
with the corresponding FS methods. As seen in Table 2, the performance of all the individual classifiers
when applied on the RLFS method—the accuracy and Gmean—are relatively much better than the
accuracies of the individual classifiers when applied on the IG, Chi2, and MRMR methods.
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Table 1. Classification performance of proposed RLFS with ERRM compared to other combinations of
feature selection methods with classifiers over 100 iterations.

Proposed RLFS IG Chi2 MRMR

Correlation Classifier Acc
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Proposed ERRM
0.8606
(0.049)

0.8626
(0.073)

0.8476
(0.052)

0.8483
(0.079)

0.8538
(0.053)

0.8551
(0.071)

0.8550
(0.049)

0.8552
(0.075)

LASSO
0.8486
(0.052)

0.8504
(0.075)

0.8316
(.054)

0.8335
(0.083)

0.8310
(0.052)

0.8323
(0.071)

0.8388
(0.051)

0.8393
(0.077)

ALASSO
0.8402
(0.054)

0.8416
(0.077)

0.8198
(0.051)

0.8217
(0.079)

0.8160
(0.053)

0.8171
(0.075)

0.8304
(0.051)

0.8313
(0.079)

ENET
0.8564
(0.048)

0.8584
(0.072)

0.8424
(0.054)

0.8441
(0.081)

0.8494
(0.046)

0.8509
(0.067)

0.8508
(0.052)

0.8508
(0.077)

SCAD
0.8440
(0.054)

0.8457
(0.080)

0.8264
(0.057)

0.8283
(0.086)

0.8226
(0.061)

0.8239
(0.077)

0.8330
(0.056)

0.8336
(0.081)

0.2 MCP
0.8078
(0.049)

0.8095
(0.081)

0.8050
(0.062)

0.8074
(0.088)

0.7936
(0.060)

0.7952
(0.085)

0.8110
(0.060)

0.8126
(0.082)

AB
0.8390
(0.051)

0.8224
(0.077)

0.8314
(0.060)

0.8328
(0.080)

0.8422
(0.054)

0.8435
(0.075)

0.8432
(0.054)

0.8437
(0.075)

RF
0.8432
(0.057)

0.8467
(0.084)

0.8414
(0.052)

0.8435
(0.078)

0.8498
(0.053)

0.8520
(0.075)

0.8522
(0.051)

0.8534
(0.077)

LR
0.8474
(0.050)

0.8489
(0.076)

0.8330
(0.053)

0.8346
(0.080)

0.8370
(0.054)

0.8380
(0.073)

0.8394
(0.051)

0.8394
(0.080)

SVM
0.8582
(0.049)

0.8595
(0.070)

0.8312
(0.052)

0.8320
(0.083)

0.8404
(0.054)

0.8416
(0.074)

0.8388
(0.049)

0.8378
(0.084)

Proposed ERRM
0.9256
(0.037)

0.9266
(0.053)

0.9184
(0.039)

0.9195
(0.059)

0.9160
(0.038)

0.9165
(0.056)

0.9174
(0.042)

0.9176
(0.056)

LASSO
0.9146
(0.037)

0.9155
(0.053)

0.9034
(0.045)

0.9046
(0.061)

0.9020
(0.043)

0.9029
(0.063)

0.9066
(0.045)

0.9065
(0.062)

ALASSO
0.9056
(0.039)

0.9062
(0.056)

0.8956
(0.044)

0.8966
(0.065)

0.8948
(0.046)

0.8954
(0.065)

0.8984
(0.046)

0.8982
(0.062)

ENET
0.9244
(0.038)

0.9253
(0.052)

0.9150
(0.044)

0.9163
(0.061)

0.9122
(0.039)

0.9130
(0.060)

0.9158
(0.043)

0.9155
(0.058)

SCAD
0.9102
(0.041)

0.9110
(0.060)

0.8974
(0.046)

0.8986
(0.063)

0.8964
(0.045)

0.8972
(0.065)

0.9090
(0.045)

0.9090
(0.059)

0.5 MCP
0.8850
(0.047)

0.8855
(0.066)

0.8798
(0.050)

0.8813
(0.068)

0.8772
(0.045)

0.8782
(0.065)

0.8738
(0.049)

0.8738
(0.070)

AB
0.9158
(0.035)

0.9166
(0.050)

0.9014
(0.046)

0.9027
(0.065)

0.9102
(0.040)

0.9112
(0.060)

0.9072
(0.047)

0.9075
(0.062)

RF
0.9148
(0.039)

0.9166
(0.055)

0.9186
(0.041)

0.9199
(0.059)

0.9154
(0.042)

0.9167
(0.060)

0.9116
(0.043)

0.9127
(0.060)

LR
0.9124
(0.037)

0.9127
(0.054)

0.9054
(0.043)

0.9063
(0.061)

0.9018
(0.045)

0.9024
(0.063)

0.9092
(0.043)

0.9084
(0.060)

SVM
0.9256
(0.038)

0.9261
(0.054)

0.9128
(0.038)

0.9135
(0.056)

0.9080
(0.043)

0.9099
(0.061)

0.9126
(0.045)

0.9120
(0.062)

When we look at the performances of all the classifiers with the IG method in comparison to other
FS methods, there is much variation in the accuracies, as seen in Figure 5. The SVM classifier, which
attained the accuracy of 0.7026 with the RLFS method, dropped to 0.6422 with the IG method.

The proposed combination of the ERRM classifier with the RLFS method achieved the highest
average accuracy of 0.7161, and the Gmean of 0.7127 outperformed the rest of the combinations
of classifier with the FS method. The RLFS method is also a top-performing FS method on all
individual classifiers. However, among the other FS methods, the MRMR method, when applied
to all the individual classifiers, showed relatively much better performance than the application
of IG and Chi2 methods to the individual classifiers. The second best-performing method is the
ENET-RLFS combination, which had an accuracy of 0.7138. The SVM-IG combination showed the
lowest performance with an accuracy of 0.6422 among all the combinations of the classifier with FS
methods, as shown in Table 2.
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Figure 5. Boxplot showing the accuracies of classifiers with FS methods in experimental data
SMK-CAN-187.

Table 2. Average values taken over 100 iterations in experimental data: SMK-CAN-187.

Proposed RLFS IG Chi2 MRMR

Classifier Accuracy
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Proposed ERRM
0.7161
(0.053)

0.7127
(0.082)

0.6789
(0.056)

0.6791
(0.091)

0.6807
(0.056)

0.6808
(0.091)

0.7035
(0.056)

0.7024
(0.087)

LASSO
0.7073
(0.064)

0.7058
(0.087)

0.6726
(.060)

0.6725
(0.095)

0.6680
(0.057)

0.6680
(0.090)

06859
(0.061)

0.6871
(0.097)

ALASSO
0.6878
(0.065)

0.6869
(0.091)

0.6715
(0.060)

0.6714
(0.094)

0.6696
(0.064)

0.6698
(0.092)

0.6800
(0.059)

0.6803
(0.092)

ENET
0.7138
(0.061)

0.7116
(0.085)

0.6733
(0.057)

0.6722
(0.093)

0.6733
(0.052)

0.6726
(0.090)

0.6998
(0.061)

0.6992
(0.095)

SCAD
0.7114
(0.054)

0.7098
(0.083)

0.6735
(0.056)

0.6732
(0.090)

0.6670
(0.058)

0.6669
(0.091)

0.6894
(0.059)

0.6901
(0.091)

MCP
0.6880
(0.010)

0.6870
(0.082)

0.6673
(0.057)

0.6663
(0.089)

0.6647
(0.059)

0.6639
(0.092)

0.6866
(0.057)

0.6874
(0.089)

AB
0.6991
(0.064)

0.6958
(0.087)

0.6673
(0.054)

0.6634
(0.086)

0.6605
(0.058)

0.6583
(0.094)

0.6929
(0.050)

0.6897
(0.083)

RF
0.6975
(0.056)

0.6933
(0.089)

0.6729
(0.045)

0.6691
(0.078)

0.6738
(0.054)

0.6703
(0.090)

0.6942
(0.055)

0.6902
(0.088)

LR
0.7001
(0.065)

0.6987
(0.089)

0.6761
(0.058)

0.6662
(0.097)

0.6770
(0.059)

0.6769
(0.094)

0.7008
(0.058)

0.7000
(0.086)

SVM
0.7026
(0.058)

0.7014
(0.086)

0.6422
(0.059)

0.6430
(0.099)

0.6459
(0.066)

0.6477
(0.105)

0.6668
(0.058)

0.6658
(0.092)
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For assessing the importance of bootstrapping and FS screening of the proposed framework, we
measured the performance of ERRM without FS screening. The results in Table 3 shows the results of
ensembles method with and without bootstrapping procedure. We see that having the bootstrapping
approach which is random sampling with replacement is a better approach in the ensembles.

Table 3. Comparison of proposed ERRM with and without bootstrapping.

Bootstrapping Accuracy (SD) Gmean (SD)

ERRM without feature selection (FS) screening Yes 0.7129 (0.053) 0.7093 (0.091)

ERRM without FS screening No 0.6947 (0.057) 0.6944 (0.089)

The performance of the regularized regression models used in the proposed ensembles algorithm
is tested with the FS screening method and without the FS screening method. In the former approach,
the regularized regression models were built and tested using the proposed RLFS screening method
with the selected amount of significant features, whereas in the latter approach, the regularized models
used all the features for building the model. The performances of the penalized models with the FS
screening showed better accuracies and Gmean than without FS screening, as reported in Table 4.

Table 4. Comparison of regularized regression models used in the ERRM with and without FS
screening.

FS Screening Accuracy (SD) Gmean (SD)

LASSO Yes 0.7073 (0.064) 0.7058 (0.087)
No 0.6740 (0.061) 0.6752 (0.125)

ALASSO Yes 0.6878 (0.065) 0.6869 (0.091)
No 0.6740 (0.061) 0.6752 (0.125)

ENET Yes 0.7138 (0.061) 0.7116 (0.085)
No 0.6740 (0.061) 0.6752 (0.125)

SCAD Yes 0.7114 (0.054) 0.7098 (0.083)
No 0.6740 (0.061) 0.6752 (0.125)

MCP Yes 0.6880 (0.010) 0.6870 (0.082)
No 0.6740 (0.061) 0.6752 (0.125)

4. Discussion

We investigated the performance of the proposed combination of ERRM with the RLFS method
using simulation studies and a real data application. The RLFS method ranks the features by employing
the lasso method with a resampling approach and the b-SIS criteria to set the threshold for selecting
the optimal number of features, and these features are applied on the ERRM classifier, which uses
bootstrapping and rank aggregation to select the best performing model across the bootstrapped
samples and helps in attaining the best prediction accuracy in a high dimensional setting. The ensemble
framework ERRM was built using five different regularized regression models. The regularized
regression models are known for having the best performances in terms of variable selection and
prediction accuracy on gene expression data.

To show the performance of our proposed framework, we used three different simulation scenarios
with low, medium, and high correlation structures that matched the gene expression data. To further
illustrate our point, we also used SMK-CAN-187 data. Figure 2 shows the boxplots of the average
number of true important features, where the RLFS shows higher detection power than the other FS
methods such as IG, Chi2, and MRMR. From the results of both simulation studies and experimental
data, we showed that all the individual classifiers with the RLFS method performed much better
compared to the IG, Chi2, and MRMR. We also observed that all the individual classifiers showed much
instability with the other three FS methods. This means that the individual classifiers do not work well
with more noise and less true important variables in the model. The SVM and ENET classifiers with
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all the FS methods performed a little better among all the classifiers. However, the performance was
relatively still low in comparison to the proposed ERRM classifier with every FS method. The tree-based
ensemble methods RF and AB with RLFS also attained good accuracies but were not the best compared
to the ERRM classifier.

The proposed ERRM method was assessed with the FS screening and without the FS screening
step along with the bootstrapping option. The ERRM with FS screening and bootstrapping approach
works better than ERRM without the FS screening and bootstrapping technique. Also, the results
from Table 3 show that the ensemble with bootstrapping is a better approach to both the filtered and
unfiltered data. On comparing the performance of the individual regularized regression models used
in the ensembles, the individual models with the proposed RLFS screening step showed comparatively
better accuracy in comparison to the individual regularized regression models without the FS screening.
This means that using the reduced number of significant features with RLFS is a better approach
instead of using all the features from the data.

The importance of FS method was not addressed in any of the ensemble approaches [37–39],
and the classification accuracies achieved by the corresponding proposed methods were much closer
to the accuracies attained by existing approaches. In this paper, we compared the various combination
of FS methods with different classifiers. The ERRM showed better overall performance not only with
the RLFS but also with the other FS methods compared in this study. This means that the ERRM is
robust and works much better on the highly correlated gene expression data. The rule of thumb fpr
attaining the best prediction accuracy is that more the true important variables, better the prediction
accuracy. Henceforth, from the results of simulation and experimental data, we see that the proposed
combination of RLFS-ERRM is better compared to the other existing combinations of FS and classifiers,
as seen in the Tables 1 and 2. The proposed ERRM classifier showed the best performance across all
the FS methods, with the highest performance achieved with the RLFS method. The proposed RLFS
method attained a higher number of significant features compared to other FS methods. However,
the drawback is that with the increase in the correlation structure, there is a decreasing performance
in selecting the significant features, as shown in Figure 2. The ensembles algorithms are known
to be computationally expensive [39] because of the tree-based nature. However, in our proposed
framework, before the ensembles of ERRM, we apply FS methods to remove the irrelevant features
and keep significant features. This filtering step not only helps with improving prediction accuracy
but also with overcoming the drawback of computational time required, as the number of features
processed becomes lower.

5. Conclusions

In this paper, we proposed a combination of the ensembles of regularized regression models
(ERRM) with resampling-based lasso feature selection (RLFS) for attaining better prediction accuracies
in high dimensional data. We conducted extensive simulation studies where we showed the
better performance of RLFS in detecting the significant features than other competitive FS methods.
The ensemble classifier ERRM also showed better average prediction accuracy with the RLFS, IG,
Chi2, and MRMR compared to other classifiers with these FS methods. We also saw an improved
performance in the ensemble method when used with bootstrapping. On comparing the performances
of individual regularized regression models, all the models showed an increase in their accuracies with
the FS screening approach. In both the simulation study and the experimental data SMK-CAN-187,
the better performance was achieved by the proposed combination of RLFS and ERRM compared to
all other combinations of FS and classifiers. The minor drawback in the proposed framework is that,
in the case of highly correlated data, there is smaller number of significant features selected with all
the FS methods. As future work, we plan to focus on improving the detecting power of true important
genes with the new FS method.
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Abbreviations

The following abbreviations are used in this manuscript:

FS feature Selection
RLFS resampling-based lasso feature selection
ERRM ensemble regularized regression models
IG information gain
Chi2 chi-square
MRMR minimum redundancy maximum relevance
ALASSO adaptive lasso
AB adaptive boosting
RF random forests
LR logistic regression
SVM support vector machines
SD standard deviation

Appendix A

The data are generated based on a high correlation data structure with ρ = 0.8. The performance
of the proposed combination of RLFS-ERRM is relatively better than the other combinations of the FS
methods and classifiers. The results for simulation scenario S3 are shown in Figure A1. The average
accuracies and Gmeans for all the FS and classifiers are noted in Table A1. The SVM and ENET
classifiers with all the FS methods showed a little better performance among all individual classifiers.
However, the accuracies and Gmeans attained by the proposed ensemble classifier ERRM with the
FS methods RLFS, IG, and Chi2 were relatively better compared to the individual classifiers with FS
methods. The best performance was achieved by the proposed RLFS-ERRM combination with an
accuracy of 0.9586 and Gmean of 0.9596. The second-best performing combination was MRMR-SVM.
The lowest performance in terms of accuracy and the Gmean was shown by Chi2-MCP. The MCP
classifier has the lowest accuracy with all the FS methods. This explains why the MCP does not
perform well when the predictor variables are highly correlated.
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Figure A1. Boxplot showing the accuracies of Classifiers with FS methods in simulation scenario: S3
(Correlation = 0.8).

Table A1. Average values taken over 100 iterations in simulation scenario: S3 (High correlation: 0.8).

Proposed RLFS IG Chi2 MRMR

Classifier Accuracy
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Accuracy
(SD)

Gmean
(SD)

Proposed ERRM
0.9586
(0.025)

0.9596
(0.039)

0.9556
(0.027)

0.9565
(0.041)

0.9530
(0.034)

0.9544
(0.045)

0.9560
(0.024)

0.9558
(0.037)

LASSO
0.9482
(0.033)

0.9493
(0.050)

0.9442
(.030)

0.9194
(0.045)

0.9428
(0.037)

0.9447
(0.051)

0.9444
(0.032)

0.9442
(0.042)

ALASSO
0.9420
(0.031)

0.9425
(0.051)

0.9376
(0.030)

0.9379
(0.045)

0.9328
(0.041)

0.942
(0.056)

0.9388
(0.033)

0.9389
(0.047)

ENET
0.9576
(0.025)

0.9587
(0.039)

0.9538
(0.029)

0.9546
(0.042)

0.9532
(0.034)

0.9546
(0.045)

0.9566
(0.024)

0.9562
(0.036)

SCAD
0.9464
(0.031)

0.9475
(0.049)

0.9422
(0.030)

0.9428
(0.045)

0.9386
(0.043)

0.9401
(0.055)

0.9414
(0.031)

0.9408
(0.043)

MCP
0.9256
(0.040)

0.9270
(0.062)

0.9262
(0.038)

0.9269
(0.055)

0.9210
(0.041)

0.9221
(0.058)

0.9224
(0.034)

0.9223
(0.048)

AB
0.9454
(0.032)

0.9469
(0.047)

0.9494
(0.030)

0.9501
(0.044)

0.9470
(0.034)

0.9482
(0.046)

0.9480
(0.029)

0.9481
(0.040)

RF
0.9540
(0.030)

0.9557
(0.043)

0.9560
(0.029)

0.9565
(0.043)

0.9542
(0.032)

0.9556
(0.044)

0.9508
(0.027)

0.9510
(0.039)

LR
0.9478
(0.029)

0.9482
(0.045)

0.9462
(0.030)

0.9469
(0.044)

0.9418
(0.038)

0.9432
(0.050)

0.9438
(0.028)

0.9437
(0.041)

SVM
0.9560
(0.027)

0.9568
(0.041)

0.9522
(0.030)

0.9527
(0.043)

0.9520
(0.031)

0.9526
(0.042)

0.9594
(0.026)

0.9587
(0.037)
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