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Abstract: The main aim of this paper is to introduce the degenerate truncated forms of multifarious
special polynomials and numbers and is to investigate their various properties and relationships
by using the series manipulation method and diverse special proof techniques. The degenerate
truncated exponential polynomials are first considered and their several properties are given. Then the
degenerate truncated Stirling polynomials of the second kind are defined and their elementary
properties and relations are proved. Also, the degenerate truncated forms of the bivariate Fubini
and Bell polynomials and numbers are introduced and various relations and formulas for these
polynomials and numbers, which cover several summation formulas, addition identities, recurrence
relationships, derivative property and correlations with the degenerate truncated Stirling polynomials
of the second kind, are acquired. Thereafter, the truncated degenerate Bernoulli and Euler polynomials
are considered and multifarious correlations and formulas including summation formulas, derivation
rules and correlations with the degenerate truncated Stirling numbers of the second are derived.
In addition, regarding applications, by introducing the degenerate truncated forms of the classical
Bernstein polynomials, we obtain diverse correlations and formulas. Some interesting surface plots
of these polynomials in the special cases are provided.

Keywords: degenerate exponential function; truncated exponential function; special polynomials;
special numbers; exponential generating function; bell polynomials

MSC: 11B73; 11B68; 33B10

1. Introduction

Special functions possess a lot of importance in numerous fields of physics, mathematics, applied
sciences, engineering and other related research areas including functional analysis, differential
equations, quantum mechanics, mathematical analysis, mathematical physics, and so on [1–36] and
see the references cited therein. For example; Riemann zeta function is closely related with the
Bernoulli numbers and its zeros possess a connection with the distribution of prime numbers [12].
In particular, the family of special polynomials is one of the most useful and applicable family of
special functions. Some of the most considerable polynomials in the theory of special polynomials
are the Fubini polynomials (see [9,15–17,36]), the Bernoulli polynomials (see [2,5–7,11,13,29,31–35]),
the Euler polynomials (see [2,5–7,11,27,29,31–35]), the Bernstein polynomials (see [1,20]) and the
Bell polynomials (see [3,4,18,19,22–25]). Recently, the aforementioned polynomials and their several
extensions have been densely studied and investigated by diverse mathematicians and physicists [1–36]
and see also each of the references cited therein.
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Throughout this paper, the familiar symbols C, R, Z, N and N0 are referred to the set of all complex
numbers, the set of all real numbers, the set of all integers, the set of all natural numbers and the set of
all non-negative integers, respectively.

The truncated exponential polynomials en (x) are the first (n + 1) terms of the Mac Laurin series
for ex ([8]), i.e.,

en (x) =
n

∑
k=0

xk

k!
. (1)

This polynomial has the following integral representation:

en (x) =
n

∑
k=0

xk

k!
(n− k)!
(n− k)!

=
1
n!

∫ ∞

0
eβ (x + β)n dβ. (2)

The classical generating function of the truncated exponential polynomials is as follows ([8])

∞

∑
n=0

en (x) tn =
etx

1− t
. (3)

By means of the aforesaid generating function, one can easily get the following derivative relations:

en+1 =

[
1 +

x
n + 1

(
1− d

dx

)]
en (x) (4)

and
en−1 (x) =

d
dx

en (x) . (5)

For more detailed information about the truncated exponential polynomials, see [8] and the
references cited therein.

The traditional Pochhammer symbol (x)n (sometimes called the descending factorial, falling
sequential product, falling factorial, or lower factorial) is defined by (see [2,3,5,10,11,17,20–23,25,26,34])

(x)n =

{
x(x− 1)(x− 2) · · · (x− (n− 1)), n ∈ N
1 n = 0.

(6)

The λ-extension of the usual Pochhammer symbol (x)n,λ is given by (see [5,10,11,17,20–23,25,26])

(x)n,λ =

{
x(x− λ)(x− 2λ) · · · (x− (n− 1)λ), n ∈ N
1 n = 0.

(7)

Please note that (x)n,1 := (x)n.
The ∆λ difference operator of a function is defined by (see [11])

∆λ f (x) =
1
λ
( f (x + λ)− f (x)), α 6= 0. (8)

The following difference rule holds true ([11]):

∆k
λ (x)n,λ =

n!
(n− k)!

(x)n−k,λ , 0 ≤ k ≤ n, (9)

where the notation ∆k
λ denotes the k times applying the ∆λ difference operators.

Let λ ∈ R/ {0}. The degenerate exponential function ex
λ (t) is defined by ([5,10,11,14,17,20–23,25,26])

ex
λ (t) = (1 + λt)

x
λ and e1

λ (t) = eλ (t) . (10)
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It is readily seen that limλ→0 ex
λ (t) = ext. From (10), we obtain the following relation

ex
λ (t) =

∞

∑
n=0

(x)n,λ
tn

n!
, (11)

which satisfies the following difference rule

∆λex
λ (t) = tex

λ (t) . (12)

By Equation (11), we can write

eλ (t) =
∞

∑
n=0

(1)n,λ
tn

n!
= 1 + (1)1,λ

t
1!

+ (1)2,λ
t2

2!
+ (1)3,λ

t3

3!
+ · · · .

While the truncated exponential polynomials en (x) (1) are the first (n + 1) terms of the Mac
Laurin series for usual exponential function ex, the degenerate truncated exponential polynomials are
introduced as the first (n + 1) terms of the Mac Laurin series expansion of the degenerate exponential
function eλ (t) in (11) will be given in the next section.

The generating function is a key tool for a family of special polynomials if they have to derive their
properties and relations. It is also used in other fields, for example, a study of false positive/negative
effects on network robustness [37] and in statistics as moment generating function [10].

Carlitz [5] introduced and studied the degenerate Bernoulli polynomials by means of the
degenerate exponential functions as follows:

∞

∑
n=0

Bn,λ (x)
tn

n!
=

t
eλ (t)− 1

ex
λ (t) .

Then Howard [14] provided several explicit formulas for the degenerate Bernoulli polynomials
and gave a new proof of the degenerate Staudt-Clausen theorem. In the recent years, the degenerate
forms for the specials polynomials have been heavily considered and developed by many
mathematicians [5,10,11,14,17,20–23,25,26] and see also each of the references cited therein.
Duran et al. [10] considered three extensions of the Stirling polynomials of the second kind by means
of the degenerate exponential functions and then showed that these polynomials appear in the
expressions of the probability distributions of proper random variables such as degenerate Poisson
distribution, degenerate zero-truncated Poisson distribution and degenerate r-truncated Poisson
distribution. Duran et al. [11] introduced the Gould–Hopper-based fully degenerate poly-Bernoulli
polynomials with a q-parameter and developed their properties and relations. Kim et al. [17] defined
a new class of degenerate Fubini numbers and polynomials and investigated diverse properties of
these polynomials and numbers. Kim et al. [20] introduced the degenerate Bernstein polynomials and
acquired their exponential generating function, recurrence relations, symmetric identities, and some
connected formulas with generalized falling factorial polynomials, higher-order degenerate Bernoulli
polynomials and degenerate Stirling numbers of the second kind. Kim et al. [21] the degenerate
λ-Stirling polynomials of the second kind and provided some applications for these polynomials.
Kim et al. [22] defined the degenerate Bell numbers and polynomials and examined various novel
relations and formulas. Kim et al. [23] studied the degenerate r-Stirling numbers of the second kind and
the degenerate r-Bell polynomials investigated several properties, recurrence relations and formulas
by means of umbral calculus. Kim et al. [25] considered the partially degenerate Bell polynomials
numbers and developed their properties and identities. Kim et al. [26] defined the degenerate Stirling
polynomials of the second kind and gave some new identities for these polynomials.

In the family of special polynomials, in the recent years, the truncated forms for polynomials have
been worked and investigated by various mathematicians [8,9,13,27,33] and see also the references
cited therein. Dattoli et al. [8] introduced the higher-order truncated polynomials which plays a role of
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crucial importance in the evaluation of integrals involving products of special functions and discussed
them within the more general context of the Appell family and the Laguerre family. Duran et al. [9]
considered the two-variable truncated Fubini polynomials and numbers and then investigated
multifarious relations and formulas including summation formulas, recurrence relations, derivative
property and correlations with the truncated Stirling numbers of the second kind, Apostol-type
Stirling numbers of the second kind, the truncated Bernoulli polynomials and truncated Euler
polynomials. Hassen et al. [13] defined the truncated Bernoulli polynomials and derived several
properties. Komatsu et al. [27] considered the truncated Euler polynomials and presented their some
properties and relations with the truncated Bernoulli polynomials. Srivastava et al. [33] examined the
truncated-exponential-based Apostol-type polynomials and derived their various properties covering
some implicit summation formulas and symmetric identities.

The rest of this paper is structured as follows: Section 2 provides the definition of the degenerate
truncated exponential polynomials and then proves their properties. In Section 3, the degenerate
truncated Stirling polynomials of the second kind are introduced and their elementary properties
and relations are examined properly. The Section 4 deals with the degenerate forms of the bivariate
truncated Fubini polynomials and numbers and then investigates several relations and formulas
for these polynomials and numbers, which covers several summation formulas, addition identities,
recurrence relationships, derivative property and correlations with the degenerate truncated Stirling
polynomials of the second kind. The truncated degenerate Bernoulli and Euler polynomials are
introduced and multifarious correlations and formulas including summation formulas, derivation
rules and correlations with the degenerate truncated Stirling numbers of the second kind are derived
in the Section 5. Section 6 includes the definition of the degenerate truncated forms of the bivariate
Bell polynomials and numbers and also diverse identities and correlations, which includes addition
formulas, summation formulas, recurrence relationships, difference operator property and derivative
rules are acquired. Section 7 first supplies the degenerate truncated forms of the classical Bernstein
polynomials and then investigates diverse correlations and formulas including several polynomials
such as the degenerate truncated Bernstein polynomials, the bivariate Detr-Fubini polynomials, the
bivariate Detr-Bell polynomials, the Detr-Bernoulli polynomials, the Detr-Stirling polynomials of
the second kind and the Detr-Euler polynomials. The last section of this paper analyzes the results
obtained in this paper.

2. The Truncated Degenerate Exponential Polynomials

In this section, we consider the degenerate truncated exponential polynomials and then investigate
their properties.

We consider the degenerate form of the truncated exponential polynomials, therefore we give the
following definition.

Definition 1. The degenerate truncated exponential polynomials are introduced as the first (n + 1) terms of
the Taylor series expansion of eλ (t) in (11) at t = 0:

en,λ (t) =
n

∑
k=0

(1)k,λ
tk

k!
. (13)

We choose to call the Detr-exponential polynomials as well as the degenerate truncated
exponential polynomials.

We now examine a special case of the aforementioned polynomials as follows.

Remark 1. When λ→ 0, the Detr-exponential polynomials en,λ (t) (13) reduces to the truncated exponential
polynomials en (t) in (1).
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The classical exponential generating function of the Detr-exponential polynomials are given by
the following proposition.

Proposition 1. For |z| < 1, we have

∞

∑
n=0

en,λ (t) zn =
eλ (zt)
1− z

. (14)

Proof. To find the generating function of the Detr-exponential polynomials, for |z| < 1, we consider

∞

∑
n=0

en,λ (t) zn =
∞

∑
n=0

n

∑
k=0

(1)k,λ
tk

k!
zn

=
∞

∑
n=0

(1)n,λ
(zt)n

n!

n

∑
k=0

zn

=
eλ (zt)
1− z

,

which implies the assertion (14).

We now give the following proposition.

Proposition 2. The following difference operator rule holds true:

∆λ,en,λ (t) = ten−1,λ (t) . (15)

Proof. By means of (14), we observe

∞

∑
n=0

∆λen,λ (t) zn =
1

1− z
∆λeλ (zt)

=
1

1− z

∞

∑
n=0

∆λ (1)n,λ
(zt)n

n!

=
1

1− z

∞

∑
n=1

(1)n−1,λ
(zt)n

(n− 1)!

=
zt

1− z

∞

∑
n=0

(1)n,λ
(zt)n

n!

=
∞

∑
n=0

ten,λ (t) zn+1,

which gives the claimed result (15) by comparing the coefficients of the first and the last series with
respect to z.

We provide the following recurrence formula.

Proposition 3. The following recurrence relation

en+1,λ (t) = (n + 1)
n

∑
k=0

(
(1)k+1,λ

tk+1

k!
+ ek,λ (t)

)
(16)

is valid for n ∈ N0.
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Proof. By Equation (14), we observe that

∞

∑
n=0

en,λ (t)
d
dz

zn =
d
dz

(
eλ (zt)
1− z

)

=
(1− z) d

dz eλ (zt) + eλ (zt)

(1− z)2

=
1

(1− z)2

(
(1− z)

∞

∑
n=0

(1)n,λ tn
d
dt zn

n!
+ eλ (zt)

)

=
∞

∑
n=0

zn
∞

∑
n=0

(1)n+1,λ tn+1 zn

n!
+

∞

∑
n=0

zn
∞

∑
n=0

en,λ (t) zn

=
∞

∑
n=0

n

∑
k=0

(1)k+1,λ
tk+1

k!
zn +

∞

∑
n=0

n

∑
k=0

ek,λ (t) zn,

which gives

en+1,λ (t) =
n

∑
k=0

(1)k+1,λ
tk+1

k!
+

n

∑
k=0

ek,λ (t) ,

which means the asserted result (16).

3. Degenerate Truncated Stirling Polynomials of the Second Kind

In this section, we introduce the degenerate truncated Stirling polynomials of the second kind
and analyze their elementary properties and relations.

The Stirling polynomials S2 (n, k : x) and numbers S2 (n, k) of the second kind are given by the
following exponential generating functions ([9–11,18,21,23,24,26,34]):

∞

∑
n=0

S2 (n, k : x)
tn

n!
=

(
et − 1

)k

k!
etx and

∞

∑
n=0

S2 (n, k)
tn

n!
=

(
et − 1

)k

k!
. (17)

In combinatorics, Stirling number of second kind S2 (n, k) counts number of ways in which n
distinguishable objects can be partitioned into k indistinguishable subsets when each subset must
contain at least one object. The Stirling numbers of the second kind can also be derived by the following
recurrence relation for a fixed non-negative integer ζ([9–11,18,21,23,24,26,34]):

xζ =
ζ

∑
µ=0

S2 (ζ, µ) (x)µ , (18)

where the notation (x)µ is mentioned in (6).
Let k ∈ N0 and α ∈ C. The Apostol-type Stirling polynomials Sα

2 (n, k : x) and numbers Sα
2 (n, k)

of the second kind is defined as follows ([28]):

∞

∑
n=0

Sα
2 (n, k : x)

tn

n!
=

(
αet − 1

)k

k!
etx and

∞

∑
n=0

Sα
2 (n, k)

tn

n!
=

(
αet − 1

)k

k!
. (19)

Here is the definition of the degenerate truncated Apostol-type Stirling polynomials of the second
kind which we choose to call the Apostol-type Detr-Stirling polynomials of the second kind as follows.



Mathematics 2020, 8, 144 7 of 43

Definition 2. Let x be an independent variable. The degenerate truncated Apostol-type Stirling polynomials
and numbers of the second kind are introduced by the following generating functions:

∞

∑
n=0

Sα
2,m;λ (n, k : x)

tn

n!
=

(αeλ (t)− 1− em−1,λ (t))
k

k!
ex

λ (t) (20)

and
∞

∑
n=0

Sα
2,m;λ (n, k)

tn

n!
=

(αeλ (t)− 1− em−1,λ (t))
k

k!
(21)

Diverse special circumstances of Sα
2,m;λ (n, k : x) and Sα

2,m;λ (n, k) are discussed below:

Remark 2. In the case α = 0 in (20), we attain the Detr-Stirling polynomials and numbers of the second kind
S2,m;λ (n, k) and S2,m;λ (n, k), which are also new generalizations of the usual Stirling polynomials and numbers
of the second kind in (17), as follows:

∞

∑
n=0

S2,m;λ (n, k : x)
tn

n!
=

(eλ (t)− 1− em−1,λ (t))
k

k!
ex

λ (t) (22)

and
∞

∑
n=0

S2,m;λ (n, k)
tn

n!
=

(eλ (t)− 1− em−1,λ (t))
k

k!
(23)

Remark 3. When λ approaches to zero, the Apostol-type Detr-Stirling polynomials of the second kind
Sα

2,m;λ (n, k : x) become the truncated Apostol-type Stirling polynomials of the second kind Sα
2,m (n, k : x)

given by the following series expansion ([10,21]):

∞

∑
n=0

Sα
2,m (n, k : x)

tn

n!
=

(
αet − 1−∑m−1

j=0
tj

j!

)k

k!
ext. (24)

Remark 4. Substituting λ→ m = 0 in (20), we get the degenerate Apostol-type Stirling polynomials of the
second kind S2,λ (n, k) defined by ([10,21,23]):

∞

∑
n=0

Sα
2,λ (n, k : x)

tn

n!
=

(αeλ (t)− 1)k

k!
ex

λ (t) . (25)

Remark 5. Letting λ→ m = α = 0 in (20), we obtain the degenerate Stirling polynomials of the second kind
S2,λ (n, k) provided by ([10,21,23]):

∞

∑
n=0

S2,λ (n, k : x)
tn

n!
=

(eλ (t)− 1)k

k!
ex

λ (t) . (26)

Remark 6. Upon setting λ→ m = α = 0 in (20), the truncated Stirling numbers of the second kind S2,m (n, k)
reduce to the classical Stirling numbers of the second kind by (17).
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We now ready to derive some properties of the Sα
2,m;λ (n, k : x). By means of (20) and (21), we

observe that

∞

∑
n=0

Sα
2,m;λ (n, k : x)

tn

n!
=

(αeλ (t)− 1− em−1,λ (t))
k

k!
ex

λ (t)

=
∞

∑
n=0

Sα
2,m;λ (n, k)

tn

n!

∞

∑
n=0

(x)n,λ
tn

n!

=
∞

∑
n=0

n

∑
l=0

(
n
l

)
Sα

2,m;λ (l, k) (x)n−l,λ
tn

n!
.

Henceforth, we state the following relation.

Proposition 4. The following relation holds true:

Sα
2,m;λ (n, k : x) =

n

∑
l=0

(
n
l

)
Sα

2,m;λ (l, k) (x)n−l,λ .

By Equation (20), we get

∞

∑
n=0

Sα
2,m;λ (n, k : x + y)

tn

n!
=

(αeλ (t)− 1− em−1,λ (t))
k

k!
ex

λ (t) ey
λ (t)

=
∞

∑
n=0

Sα
2,m;λ (n, k : x)

tn

n!

∞

∑
n=0

(y)n,λ
tn

n!

=
∞

∑
n=0

n

∑
u=0

(
n
u

)
Sα

2,m;λ (u, k : x) (y)n−u,λ
tn

n!
,

which yields the following result.

Proposition 5. The following summation formula holds true:

Sα
2,m;λ (n, k : x + y) =

n

∑
u=0

(
n
u

)
Sα

2,m;λ (u, k : x) (y)n−u,λ .

The Apostol-type Detr-Stirling polynomials of the second kind satisfy the following correlation.

Proposition 6. The following relation

S2,m (n, k + l) =
r!k!

(k + r)!

n

∑
u=0

(
n
u

)
Sα

2,m;λ (u, k : x) Sα
2,m;λ (n− u, r : y) (27)

is valid for non-negative integers m and n.
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Proof. In view of Equations (17) and (20), we have

∞

∑
n=0

Sα
2,m;λ (n, k + r : x + y)

tn

n!
=

(αeλ (t)− 1− em−1,λ (t))
k+r

(k + r)!
ex+y

λ (t)

=
r!k!

(k + r)!
(αeλ (t)− 1− em−1,λ (t))

k

k!
ex

λ (t)
(αeλ (t)− 1− em−1,λ (t))

r

r!
ey

λ (t)

=
r!k!

(k + r)!

∞

∑
n=0

Sα
2,m;λ (n, k : x)

tn

n!

∞

∑
n=0

Sα
2,m;λ (n, r : y)

tn

n!

=
r!k!

(k + r)!

∞

∑
n=0

n

∑
u=0

(
n
u

)
Sα

2,m;λ (u, k : x) Sα
2,m;λ (n− u, r : y)

tn

n!
,

which means the asserted result (27).

We now provide the following relationship.

Proposition 7. The following relation

S2,1;λ (n, k : x) = 2kS1/2
2,λ (n, k : x) (28)

holds true for non-negative integers m and n.

Proof. In view of (22) and (25), we have

∞

∑
n=0

S2,1;λ (n, k : x)
tn

n!
=

(eλ (t)− 1− 1)k

k!
ex

λ (t)

=
2k
(

1
2 eλ (t)− 1

)k

k!
ex

λ (t)

= 2k
∞

∑
n=0

S1/2
2,λ (n, k : x)

tn

n!
,

which presents the desired result (28).

We give the following proposition below.

Proposition 8. The following series representation

Sα
2,m+1;λ (n, k : x) =

k

∑
l=0

n! (1)l
m,λ

(m!)l (n−ml)!l!
Sα

2,m;λ (n−ml, k− l : x) (29)

is valid for non-negative integers m and n.
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Proof. From Equation (20), we see that

∞

∑
n=0

Sα
2,m+1;λ (n, k : x)

tn

n!
=

(αeλ (t)− 1− em,λ (t))
k

k!
ex

λ (t)

=

(
αeλ (t)− 1− em−1,λ (t)− (1)m,λ

tm

m!

)k

k!
ex

λ (t)

=
ex

λ (t)
k!

k

∑
l=0

(
k
l

)
(αeλ (t)− 1− em−1,λ (t))

k−l (1)l
m,λ

tml

(m!)l

=
k

∑
l=0

(1)l
m,λ

l!
tml

(m!)l
(αeλ (t)− 1− em−1,λ (t))

k−l

(k− l)!
ex

λ (t)

=
k

∑
l=0

(1)l
m,λ

l!
tml

(m!)l

∞

∑
n=0

Sα
2,m;λ (n, k− l : x)

tn

n!

=
∞

∑
n=0

k

∑
l=0

(1)l
m,λ

l!
Sα

2,m;λ (n, k− l : x)

(m!)l
tn+ml

n!
,

which implies the asserted result (29).

4. The Truncated Degenerate Fubini Polynomials

In this section, we perform to introduce and analyze the degenerate forms of the bivariate
truncated Fubini polynomials and numbers. We then investigate many relations and formulas for these
polynomials and numbers, which covers several summation formulas, addition identities, recurrence
relationships and derivative property. We also give some formulas associated with the Apostol-type
Detr-Stirling polynomials of the second kind and the Detr-Stirling polynomials of the second kind.

We first remember the usual two variables Fubini polynomials by the following generating
function ([9,15,16,36]):

∞

∑
n=0

Fn (x, y)
tn

n!
=

ext

1− y (et − 1)
. (30)

When x = 0 in (30), the two variables Fubini polynomials Fn (x, y) reduce to the usual Fubini
polynomials given by ([9,15–17,36]):

∞

∑
n=0

Fn (y)
tn

n!
=

1
1− y (et − 1)

. (31)

For n ∈ N0, it is not difficult to investigate the following correlations ([9,16,17,36]):

Fn (y) =
n

∑
µ=0

S2 (n, µ) µ!yµ. (32)

Substituting y by 1 in (31), we have the familiar Fubini numbers Fn (1) := Fn ([9,16,17,36]) below:

∞

∑
n=0

Fn
tn

n!
=

1
2− et . (33)

For non-negative integer m, the bivariate truncated Fubini polynomials are defined via the
following exponential generating function [9]:

∞

∑
n=0

Fm,n (x, y)
tn

n!
=

tm

m! e
xt

1− y
(

et − 1−∑m−1
j=0

tj

j!

) . (34)
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In the case x = 0 in (34), we then get a new type of the Fubini polynomials which we call the
truncated Fubini polynomials ([9]) given by

∞

∑
n=0

Fm,n (y)
tn

n!
=

tm

m!

1− y
(

et − 1−∑m−1
j=0

tj

j!

) . (35)

Upon setting x = 0 and y = 1 in (34), we then attain the truncated Fubini numbers Fm,n ([9]) given
by the following Mac Laurin series expansion at t = 0:

∞

∑
n=0

Fm,n
tn

n!
=

tm

m!

2 + ∑∞
j=m

tj

j!

. (36)

For detailed information about the applications of the familiar Fubini polynomials and
numbers [9,15–17,36] and see also the references cited therein.

We now define the degenerate form of the bivariate truncated Fubini polynomials by means of
the Detr-exponential polynomials en,λ (t) (13) as follows.

Definition 3. Let x and y be two independent variables and m ∈ N0, The bivariate degenerate truncated Fubini
polynomials are defined via the following exponential generating function:

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
=

(1)m,λ
tm

m! e
x
λ (t)

1− y (eλ (t)− 1− em−1,λ (t))
, (37)

where em−1,λ (t) = ∑m−1
k=0 (1)k,λ

tk

k! by (13).

We choose to call the bivariate Detr-Fubini polynomials in addition to the bivariate degenerate
truncated Fubini polynomials.

In the case x = 0 in (37), we then get a new type of the Fubini polynomials which we call the
Detr-Fubini polynomials given by

∞

∑
n=0

Fm,n;λ (y)
tn

n!
=

(1)m,λ
tm

m!
1− y (eλ (t)− 1− em−1,λ (t))

. (38)

Upon setting x = 0 and y = 1 in (37), we then attain the Detr-Fubini numbers Fm,n,λ defined by
the following Taylor series expansion about t = 0:

∞

∑
n=0

Fm,n;λ
tn

n!
=

(1)m,λ
tm

m!

2−∑∞
j=m (1)j,λ

tj

j!

. (39)

The bivariate Detr-Fubini polynomials Fm,n;λ (x, y) includes extensions of the several known
polynomials and numbers that we discuss below.

Remark 7. In (37), upon setting λ → 0; λ → 0 and m = 0; λ → 0 and x = m = 0; λ → 0, y = 1 and
x = m = 0 in the different special cases, the polynomials Fm,n;λ (x, y) reduce to the two variables truncated
Fubini polynomials Fm,n (x, y) by (34); the two variables Fubini polynomials Fn (x, y) by (30); the usual Fubini
polynomials Fn (y) by (31); the familiar Fubini numbers Fn by (33), respectively.

We now ready to examine the relations and properties for the bivariate Detr-Fubini polynomials
Fm,n;λ (x, y) and so, we first give the following theorem below.
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Theorem 1. The following summation formula

Fm,n;λ (x, y) =
n

∑
k=0

(
n
k

)
Fm,k;λ (y) (x)n−k,λ (40)

holds true for non-negative integers m and n.

Proof. By (37), using the Cauchy product rule, we observe that

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
=

(1)m,λ
tm

m! e
x
λ (t)

1− y (eλ (t)− 1− em−1,λ (t))

=
∞

∑
n=0

Fm,n;λ (y)
tn

n!

∞

∑
n=0

(x)n,λ
tn

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
Fm,k;λ (y) (x)n−k,λ

tn

n!
,

which provides the asserted result (40).

We now provide two addition formulas for the bivariate Detr-Fubini polynomials as follows.

Theorem 2. The following addition formulas

Fm,n;λ (x + z, y) =
n

∑
k=0

(
n
k

)
Fm,k;λ (x, y) (z)n−k,λ (41)

and

Fm,n;λ (x + z, y) =
n

∑
k=0

(
n
k

)
Fm,k;λ (y) (x + z)n−k,λ (42)

are valid for non-negative integers m and n.

Proof. In view of (37), we get

∞

∑
n=0

Fm,n;λ (x + z, y)
tn

n!
=

(1)m,λ
tm

m! e
x+z
λ (t)

1− y (eλ (t)− 1− em−1,λ (t))

=
(1)m,λ

tm

m! e
x
λ (t)

1− y (eλ (t)− 1− em−1,λ (t))
ez

λ (t)

=
∞

∑
n=0

Fm,n (x, y)
tn

n!

∞

∑
n=0

zn tn

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
Fm,k;λ (x, y) (z)n−k,λ

tn

n!

and

∞

∑
n=0

Fm,n;λ (x + z, y)
tn

n!
=

(1)m,λ
tm

m! e
x+z
λ (t)

1− y (eλ (t)− 1− em−1,λ (t))

=
∞

∑
n=0

Fm,n;λ (y)
tn

n!

∞

∑
n=0

(x + z)n,λ
tn

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
Fm,k;λ (y) (x + z)n−k,λ

tn

n!
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which yields the assertions in (41) and (42).

A relation between Fm,n;λ (x, y) and S2,m (n, k) is given by the following theorem.

Theorem 3. The bivariate Detr-Fubini polynomials are given by

Fm,n+m;λ (x, y) =
n

∑
k=0

(
n + m

n

)
ykk!S2,m;λ (n, k : x) (43)

in terms of the Detr-Stirling polynomials of the second kind for a complex number y in conjunction with |y| < 1
and n, m ∈ N0.

Proof. By means of (22) and (37), we see that

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
=

(1)m,λ
tm

m!
1− y (eλ (t)− 1− em−1,λ (t))

ex
λ (t)

= (1)m,λ
tm

m!

∞

∑
k=0

k!yk (eλ (t)− 1− em−1,λ (t))
k

k!
ex

λ (t)

=
tm

m!

∞

∑
k=0

k!yk
∞

∑
n=0

S2,m;λ (n, k : x)
tn

n!

=
∞

∑
n=0

n

∑
k=0

ykk!S2,m;λ (n, k : x)
tn+m

m!n!
,

which implies the desired result (43).

We now state the following theorem.

Theorem 4. Let n ∈ N0. The following identity

F1,n+1;λ (x, y) = (n + 1)
n

∑
k=0

k! (2y)k S1/2
2,λ (n, k : x) (44)

holds true for y ∈ C with |y| < 1.

Proof. By (25) and (37), we observe that

∞

∑
n=0

F1,n;λ (x, y)
tn

n!
=

t
1− y (eλ (t)− 2)

ex
λ (t)

= t
∞

∑
k=0

yk (et − 2
)k ex

λ (t)

= t
∞

∑
k=0

k! (2y)k

(
1
2 et − 1

)
k!

k

ex
λ (t)

=
∞

∑
k=0

k! (2y)k
∞

∑
n=0

S1/2
2,λ (n, k : x)

tn+1

n!

=
∞

∑
n=0

∞

∑
k=0

k! (2y)k S1/2
2,λ (n, k : x)

tn+1

n!
,

which provides the asserted result (44).

We now provide difference property for the polynomials Fm,n;λ (x, y) as follows.
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Theorem 5. The following operator formula

∆λFm,n;λ (x, y) = nFm,n−1;λ (x, y) (45)

holds true for m, n ∈ N0.

Proof. By applying the difference operator ∆λ (12) to both sides of Formula (37), we attain

∆λ

(
∞

∑
n=0

Fm,n;λ (x, y)
tn

n!

)
= ∆λ

(
(1)m,λ

tm

m! e
x
λ (t)

1− y (eλ (t)− 1− em−1,λ (t))

)

and we then have

∞

∑
n=0

∆λFm,n;λ (x, y)
tn

n!
=

(1)m,λ
tm

m!
1− y (eλ (t)− 1− em−1,λ (t))

∆λex
λ (t)

=
(1)m,λ

tm

m! e
x
λ (t)

1− y (eλ (t)− 1− em−1,λ (t))
t

=
∞

∑
n=0

Fm,n;λ (x, y)
tn+1

n!
,

which implies the claimed difference formula in (45).

A derivative formula for the bivariate Detr-Fubini polynomials is as follows.

Theorem 6. The following formula

∂

∂x
Fm,n;λ (x, y) = n!

∞

∑
u=1

Fm,n−u;λ (x, y)
(−1)u+1

(n− u)!u
λu−1 (46)

holds true for m, n ∈ N0.

Proof. By applying the derivative operator ∂
∂x with respect to x to both sides of Formula (37), we then

derive

∞

∑
n=0

∂

∂x
Fm,n;λ (x, y)

tn

n!
=

(1)m,λ
tm

m!
1− y (eλ (t)− 1− em−1,λ (t))

∂

∂x
(1 + λt)

x
λ

=
(1)m,λ

tm

m!
1− y (eλ (t)− 1− em−1,λ (t))

(1 + λt)
x
λ ln (1 + λt)

1
λ

=
∞

∑
n=0

Fm,n;λ (x, y)
tn

n!

∞

∑
u=1

(−1)u+1

u
λu−1tu

=
∞

∑
n=0

∞

∑
u=1

Fm,n;λ (x, y)
(−1)u+1

u
λu−1 tn+u

n!

which gives the assertion in (46).

A recurrence relation for the bivariate Detr-Fubini polynomials is stated by the following theorem.

Theorem 7. The following equalities

Fm,n;λ (x, y) = 0 for n = 0, 1, 2, · · · , m− 1
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and

Fm,n+m (x, y) =
y

1 + y

n

∑
j=0

(
n + m

j

)
(1)n+m−j,λ Fm,j;λ (x, y) + (1)m,λ

(
n + m

m

)
(x)n,λ

1 + y
(47)

is valid for m, n ∈ N0.

Proof. By using the Definition 3, we can write

(1)m,λ
tm

m!
ex

λ (t) =

(
1− y

(
∞

∑
j=m

(1)j,λ
tj

j!
− 1

))
∞

∑
n=0

Fm,n;λ (x, y)
tn

n!

=
∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
− y

[
∞

∑
j=m

(1)j,λ
tj

j!

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
−

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!

]

=
∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
− y

[
∞

∑
j=0

(1)j+m,λ
tj+m

(j + m)!

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
−

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!

]
.

By virtue of the following equality

∞

∑
j=0

(1)j+m,λ
tj+m

(j + m)!

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
=

∞

∑
n=0

n

∑
j=0

(
n + m

j

)
(1)n+m−j,λ Fm,j;λ (x, y)

tn+m

(n + m)!
,

we investigate

∞

∑
n=0

(x)n,λ (1)m,λ
tn+m

n!m!
=

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!

−y
∞

∑
n=0

n

∑
j=0

(
n + m

j

)
(1)n+m−j,λ Fm,j;λ (x, y)

tn+m

(n + m)!
+ y

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
.

Therefore, we conclude that

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
=

1
1 + y

×
∞

∑
n=0

(
y

n

∑
j=0

(
n + m

j

)
(1)n+m−j,λ

Fm,j;λ (x, y)
(n + m)!

+ (1)m,λ
(x)n,λ

n!m!

)
tn+m.

Combining the coefficients of both sides of the last equality, the assertion in (47) is
acquired accurately.

By means of the Theorem 7, we can compute the n-th bivariate Detr-Fubini polynomials, some of
which are determined as follows.

Example 1. Choosing m = 1, then we have F1,0;λ (x, y) = 0. By using the recurrence Formula (47), we obtain

F1,n+1;λ (x, y) =
y

y + 1

n

∑
j=0

(
n + 1

j

)
(1)n+1−j,λ F1,j;λ (x, y) + (n + 1)

(x)n,λ

y + 1
.
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Thus, we subsequently acquire

F1,1;λ (x, y) =
1

y + 1
,

F1,2;λ (x, y) =
2y

(y + 1)2 +
2x

y + 1
,

F1,3;λ (x, y) =
6y2

(y + 1)3 +
3y

(y + 1)2

(
(1)2,λ + 2x

)
+

3 (x)2,λ

y + 1
,

F1,4;λ (x, y) =
24y3

(y + 1)4 +
12y2

(y + 1)3

(
2 (1)2,λ + 2x

)
,

+
4y

(y + 1)2

(
(1)3,λ + 3x (1)2,λ + 3 (x)2,λ

)
+

4 (x)3,λ

y + 1
.

which implies the following Detr-Fubini polynomials by choosing x = 0:

F1,1;λ (y) =
1

y + 1
,

F1,2;λ (y) =
2y

(y + 1)2 ,

F1,3;λ (y) =
6y2

(y + 1)3 +
3y (1)2,λ

(y + 1)2 ,

F1,4;λ (y) =
24y3

(y + 1)4 +
24y2 (1)2,λ

(y + 1)3 +
4y (1)3,λ

(y + 1)2 .

Moreover, upon letting λ = 2 for the polynomials F1,3;λ (x, y), we then obtain

F1,3;2 (x, y) =
6y2

(y + 1)3 +
3y (−1 + 2x)

(y + 1)2 +
3
(
x2 − x

)
y + 1

which possess the following quirky surface plot in Figure 1.

On Degenerate Truncated Special Polynomials 15

Thus we subsequently acquire

F1;1;� (x; y) =
1

y + 1
;

F1;2;� (x; y) =
2y

(y + 1)
2 +

2x

y + 1
;

F1;3;� (x; y) =
6y2

(y + 1)
3 +

3y

(y + 1)
2

�
(1)2;� + 2x

�
+
3 (x)2;�
y + 1

;

F1;4;� (x; y) =
24y3

(y + 1)
4 +

12y2

(y + 1)
3

�
2 (1)2;� + 2x

�
;

+
4y

(y + 1)
2

�
(1)3;� + 3x (1)2;� + 3 (x)2;�

�
+
4 (x)3;�
y + 1

:

which implies the following Detr-Fubini polynomials by choosing x = 0:

F1;1;� (y) =
1

y + 1
;

F1;2;� (y) =
2y

(y + 1)
2 ;

F1;3;� (y) =
6y2

(y + 1)
3 +

3y (1)2;�

(y + 1)
2 ;

F1;4;� (y) =
24y3

(y + 1)
4 +

24y2 (1)2;�

(y + 1)
3 +

4y (1)3;�

(y + 1)
2 :

Moreover, upon letting � = 2 for the polynomials F1;3;� (x; y), we then obtain

F1;3;2 (x; y) =
6y2

(y + 1)
3 +

3y (�1 + 2x)
(y + 1)

2 +
3
�
x2 � x

�
y + 1

which possess the following quirky surface plot:

­2
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Surface plot of F1;3;2 (x; y)

Figure 1. Surface Plot of F1,3;2 (x, y).
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Example 2. By letting m = 2 in (47), we obtain the following recurrence relation

F2,n+2;λ (x, y) =
y

y + 1

n

∑
j=0

(
n + 2

j

)
(1)n+2−j,λ F2,j;λ (x, y) + (1)2,λ

(n + 2) (n + 1)
2

(x)n,λ

y + 1
.

The last formula reveals the following polynomials

F2,0;λ (x, y) = F2,1;λ (x, y) = 0,

F2,2;λ (x, y) =
(1)2,λ

y + 1
,

F2,3;λ (x, y) =
3x (1)2,λ

y + 1
,

F2,4;λ (x, y) =
6y

(y + 1)2

(
(1)2,λ

)2
+

6 (1)2,λ (x)2,λ

y + 1
,

which gives the following Detr-Fubini polynomials by taking x = 0:

F2,0;λ (y) = F2,1;λ (y) = 0,

F2,2;λ (y) =
(1)2,λ

y + 1
,

F2,3;λ (y) =
3x (1)2,λ

y + 1
,

F2,4;λ (y) =
6y (1)2,λ (1)2,λ

(y + 1)2 .

By applying similar method used above, the others can be derived conveniently.
If we choose λ = 3 for F2,4;λ (x, y), we then get

F2,4;λ (x, y) =
2y

(y + 1)2 −
12
(

x2 − 3x
)

y + 1

which has the following interesting surface plot in Figure 2.
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Example 2. By letting m = 2 in (4.18), we obtain the following recurrence relation

F2;n+2;� (x; y) =
y

y + 1

nX
j=0

�
n+ 2

j

�
(1)n+2�j;� F2;j;� (x; y) + (1)2;�

(n+ 2) (n+ 1)

2

(x)n;�
y + 1

.

The last formula reveals the following polynomials

F2;0;� (x; y) = F2;1;� (x; y) = 0;

F2;2;� (x; y) =
(1)2;�
y + 1

;

F2;3;� (x; y) =
3x (1)2;�
y + 1

;

F2;4;� (x; y) =
6y

(y + 1)
2

�
(1)2;�

�2
+
6 (1)2;� (x)2;�

y + 1
,

which gives the following Detr-Fubini polynomials by taking x = 0:

F2;0;� (y) = F2;1;� (y) = 0;

F2;2;� (y) =
(1)2;�
y + 1

;

F2;3;� (y) =
3x (1)2;�
y + 1

;

F2;4;� (y) =
6y (1)2;� (1)2;�

(y + 1)
2 .

By applying similar method used above, the others can be derived conveniently.
If we choose � = 3 for F2;4;� (x; y), we then get

F2;4;� (x; y) =
2y

(y + 1)
2 �

12
�
x2 � 3x

�
y + 1

which has the following interesting surface plot:
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Figure 2. Surface Plot of F2,4;3 (x, y).

Here is a correlation between the bivariate Detr-Fubini polynomials and the degenerate Stirling
numbers of the second kind.
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Theorem 8. For non-negative integer n and m, we have

Fm,n;λ (x, y) =
n

∑
l=0

l

∑
k=0

(
n
l

)
Fm,n−l;λ (y) S2;λ (l, k) (x)k . (48)

Proof. By using the formula ([26])

(x)n,λ =
n

∑
k=0

S2;λ (n, k) (x)k

in conjunction with the Theorem 1, we derive

Fm,n;λ (x, y) =
n

∑
l=0

(
n
l

)
Fm,n−l;λ (y) (x)l,λ

=
n

∑
l=0

(
n
l

)
Fm,n−l;λ (y)

l

∑
k=0

S2;λ (l, k) (x)k ,

which completes the proof of this theorem.

Let n be a positive integer. The rising factorial for a number x is given by (x)(n) =

x (x + 1) (x + 2) · · · (x + n− 1) ([9,27]). We note that the negative binomial expansion is given by
the following series:

(x + a)−n =
∞

∑
k=0

(−1)k
(

n + k− 1
k

)
xka−n−k (49)

for negative integer −n and |x| < a, [9,27].
Here, we give the following theorem.

Theorem 9. The following relationship

Fm,n;λ (x, y) =
n

∑
k=0

n

∑
u=0

(
n
u

)
Fm,n−u; (y) S2;λ (u, k : −k) (x)(k) (50)

holds true for non-negative integers n and m.

Proof. By means of the Definition 3 and in terms of Equations (26) and (49), we attain

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
=

(1)m,λ
tm

m!
1− y (eλ (t)− 1− em−1,λ (t))

(
e−1

λ (t)− 1 + 1
)x

=
(1)m,λ

tm

m!
1− y (eλ (t)− 1− em−1,λ (t))

∞

∑
k=0

(
x + k− 1

k

)(
1− e−1

λ (t)
)k

=
(1)m,λ

tm

m!
1− y (eλ (t)− 1− em−1,λ (t))

∞

∑
k=0

(
x + k− 1

k

)
(eλ (t)− 1)k

k!
e−k

λ (t) k!

=
∞

∑
k=0

(x)(k)
∞

∑
n=0

Fm,n;λ (y)
tn

n!

∞

∑
n=0

S2;λ (n, k : −k)
tn

n!

=
∞

∑
k=0

(x)(k)
∞

∑
n=0

(
n

∑
u=0

(
n
u

)
Fm,n−u;λ (y) S2;λ (u, k : −k)

)
tn

n!
,

which gives the asserted result (50).

We give the following theorem.
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Theorem 10. The following recurrence relationship

Fm+1,n;λ (x, y) = n
1−mλ

m + 1
Fm,n−1;λ (x, y)− y

n

∑
k=0

(
n
k

)
Fm,n−k;λ (y) Fm+1,k;λ (x, y) (51)

holds true for n, m ∈ N0.

Proof. With the help of the Definition 3, we see that

(1)m+1,λ
tm+1

(m + 1)!
ex

λ (t) = (1− y (eλ (t)− 1− em,λ (t)))
∞

∑
n=0

Fm+1,n;λ (x, y)
tn

n!

= (1− y (eλ (t)− 1− em−1,λ (t)))
∞

∑
n=0

Fm+1,n;λ (x, y)
tn

n!

+y (1)m,λ
tm

m!

∞

∑
n=0

Fm+1,n;λ (x, y)
tn

n!
.

Thus, we get

(1)m+1,λ
tm+1

(m+1)!

(1− y (eλ (t)− 1− em−1,λ (t)))
ex

λ (t) =
∞

∑
n=0

Fm+1,n;λ (x, y)
tn

n!

+y
(1)m,λ

tm

m!

(1− y (eλ (t)− 1− em−1,λ (t)))

∞

∑
n=0

Fm+1,n;λ (x, y)
tn

n!

and then

1−mλ

m + 1

∞

∑
n=0

Fm,n;λ (x, y)
tn+1

n!
=

∞

∑
n=0

Fm+1,n;λ (x, y)
tn

n!

+y
∞

∑
n=0

Fm,n;λ (y)
tn

n!

∞

∑
n=0

Fm+1,n;λ (x, y)
tn

n!
,

which implies the claimed Formula (51).

A linear combination of the bivariate Detr-Fubini polynomials for different x and y values is
given by the following theorem.

Theorem 11. Let n, m ∈ N0 and y1 6= y2. The following relationship holds true:

n+m

∑
k=0

n!m!
(n + m− k)!k!

Fm,n+m−k (x1, y1) Fm,k (x2, y2) (52)

= (1)m,λ
y2Fm,n;λ (x1 + x2, y2)− y1Fm,n;λ (x1 + x2, y1)

y2 − y1
.

Proof. By Definition 3, we first consider the following product

(1)m,λ
tm

m! e
x1
λ (t)

1− y1 (eλ (t)− 1− em−1,λ (t))
(1)m,λ

tm

m! e
x2
λ (t)

1− y2 (eλ (t)− 1− em−1,λ (t))

=
y2

y2 − y1

(
(1)m,λ

)2 t2m

(m!)2 ex1+x2
λ (t)

1− y2 (eλ (t)− 1− em−1,λ (t))
− y1

y2 − y1

(
(1)m,λ

)2 t2m

(m!)2 ex1+x2
λ (t)

1− y1 (eλ (t)− 1− em−1,λ (t))
,
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which yields

∞

∑
n=0

n

∑
l=0

(
n
l

)
Fm,n−l;λ (x1, y1) Fm,l;λ (x2, y2)

tn

n!

=
(1)m,λ y2

y2 − y1

∞

∑
n=0

Fm,n;λ (x1 + x2, y2)
tn+m

n!m!
−

(1)m,λ y1

y2 − y1

∞

∑
n=0

Fm,n;λ (x1 + x2, y1)
tn+m

n!m!
.

Thus, we get

∞

∑
n=0

(
n

∑
l=0

(
n
l

)
Fm,n−l;λ (x1, y1) Fm,l;λ (x2, y2)

)
tn

n!

=
∞

∑
n=0

(
(1)m,λ y2

y2 − y1
Fm,n;λ (x1 + x2, y2)−

(1)m,λ y1

y2 − y1
Fm,n;λ (x1 + x2, y1)

)
tn+m

n!m!
,

which implies the assertion in (52).

5. The Truncated Degenerate Bernoulli and Euler Polynomials

In this section, we introduce the truncated degenerate Bernoulli and Euler polynomials and
investigated multifarious correlations and formulas including summation formulas, derivation rules
and correlations with the degenerate truncated Stirling numbers of the second kind.

The classical Bernoulli Bn (x) and Euler En (x) polynomials ([6,13,27,35]) and the Apostol-type
Bernoulli Bn (x : α) and the Apostol-type Euler En (x : α) polynomials ([2,7,31,33,34]) are given
as follows:

∞
∑

n=0
Bn (x) tn

n! =
t

et−1 ext
∞
∑

n=0
Bn (x : α) tn

n! =
t

αet−1 ext

(|t| < 2π) (|t| < 2π when α = 1; |t| < |log α| when α 6= 1)

and
∞
∑

n=0
En (x) tn

n! =
2

et+1 ext
∞
∑

n=0
En (x : α) tn

n! =
2

αet+1 ext

(|t| < π) (|t| < π when α = 1; |t| < |log (−α)| when α 6= 1) .

The usual degenerate Bernoulli Bn,λ (x) and Euler En,λ (x) polynomials ([5,11,14,32]) and
Apostol-type degenerate Bernoulli Bn,λ (x : α) and Euler En,λ (x : α) polynomials are given as follows
([32]):

∞

∑
n=0

Bn,λ (x)
tn

n!
=

t
eλ (t)− 1

ex
λ (t) and

∞

∑
n=0

Bn,λ (x : α)
tn

n!
=

t
αeλ (t)− 1

ex
λ (t)

∞

∑
n=0

En,λ (x)
tn

n!
=

2
eλ (t) + 1

ex
λ (t) and

∞

∑
n=0

En,λ (x : α)
tn

n!
=

2
αeλ (t) + 1

ex
λ (t) .

The truncated Bernoulli polynomials Bm,n (x) and the truncated Euler polynomials Em,n (x) are
defined by the following exponential generating functions ([9,13,27]):

∞

∑
n=0

Bm,n (x)
tn

n!
=

tm+1

(m+1)!

et − 1− em−1 (t)
ext (53)

and
∞

∑
n=0

Em,n (x)
tn

n!
=

2 tm

m!
et + 1− em−1 (t)

ext. (54)

Several degenerate and truncated forms of the Bernoulli and Euler polynomials have been recently
studied and investigated by many mathematicians, [5,9,11,13,14,27,32].
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We now introduce the degenerate forms of the truncated Bernoulli and the truncated Euler
polynomials by means of the degenerate exponential function in (11) as follows.

Definition 4. Let x be an independent variable. The degenerate truncated Bernoulli and the degenerate
truncated Euler polynomials are defined by the following exponential generating functions:

∞

∑
n=0

Bm,n,λ (x)
tn

n!
=

(1)m+1,λ
tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)
ex

λ (t) (55)

and
∞

∑
n=0

Em,n,λ (x)
tn

n!
=

2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)
ex

λ (t) . (56)

We choose to call the Detr-Bernoulli and Detr-Euler polynomials besides the degenerate truncated
Bernoulli and the degenerate truncated Euler polynomials, respectively.

When x = 0 in Definition 4, the Detr-Bernoulli polynomials Bm,n,λ (x) and Detr-Euler polynomials
Em,n,λ (x) reduce to the corresponding numbers called the Detr-Bernoulli numbers denoted by Bm,n,λ
and the Detr-Euler numbers denoted by Em,n,λ:

∞

∑
n=0

Bm,n,λ
tn

n!
=

(1)m+1,λ
tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)
(57)

and
∞

∑
n=0

Em,n,λ
tn

n!
=

2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)
. (58)

We now perform to derive some properties of the aforementioned polynomials and we first give
the following correlations.

Theorem 12. Each of the following summation formulas

Bm,n,λ (x) =
n

∑
k=0

(
n
k

)
(x)k,λ Bm,n−k,λ (59)

and

Em,n,λ (x) =
n

∑
k=0

(
n
k

)
(x)k,λ Em,n−k,λ (60)

hold true.

Proof. In view of the Definition 4 and using Formulas (57) and (58), we get

∞

∑
n=0

Bm,n,λ (x)
tn

n!
=

(1)m+1,λ
tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)
ex

λ (t)

=
∞

∑
n=0

Bm,n,λ
tn

n!

∞

∑
n=0

(x)n,λ
tn

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
(x)k,λ Bm,n−k,λ

tn

n!
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and

∞

∑
n=0

Em,n,λ (x)
tn

n!
=

2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)
ex

λ (t)

=
∞

∑
n=0

Em,n,λ
tn

n!

∞

∑
n=0

(x)n,λ
tn

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
(x)k,λ Em,n−k,λ

tn

n!
,

which completes the proof of the Theorem 12.

Two addition formulas for the Detr-Bernoulli polynomials and Detr-Euler polynomials are
presented in the following theorem.

Theorem 13. The following relationships

Bm,n,λ (x1 + x2) =
n

∑
l=0

(
n
l

)
(x2)n−l,λ Bm,l,λ (x1) (61)

and

Em,n,λ (x1 + x2) =
n

∑
l=0

(
n
l

)
(x2)n−l,λ Em,l,λ (x1) (62)

are valid.

Proof. In terms of the Definition 4 and using Formulas (57) and (58), we get

∞

∑
n=0

Bm,n,λ (x1 + x2)
tn

n!
=

(1)m+1,λ
tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)
ex1+x2

λ (t)

=
∞

∑
n=0

Bm,n,λ (x1)
tn

n!

∞

∑
n=0

(x2)n,λ
tn

n!

=
∞

∑
n=0

n

∑
l=0

(
n
l

)
(x2)n−l,λ Bm,l,λ (x1)

tn

n!

and

∞

∑
n=0

Em,n,λ (x1 + x2)
tn

n!
=

2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)
ex1+x2

λ (t)

=
∞

∑
n=0

Em,n,λ (x1)
tn

n!

∞

∑
n=0

(x2)n,λ
tn

n!

=
∞

∑
n=0

n

∑
l=0

(
n
l

)
(x2)n−l,λ Em,l,λ (x1)

tn

n!
,

which implies Formulas (61) and (62).

The immediate special cases of the Theorem 13 is debated below.

Corollary 1. The following explicit relations

Bm,n,λ (x + 1) =
n

∑
l=0

(
n
l

)
(1)n−l,λ Bm,l,λ (x) (63)
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and

Em,n,λ (x + 1) =
n

∑
l=0

(
n
l

)
(1)n−l,λ Em,l,λ (x) (64)

hold true.

We now provide difference operator properties for the polynomials Bm,n,λ (x) and Em,n,λ (x)
as follows.

Theorem 14. The difference operator formulas for the Detr-Bernoulli and Detr-Euler polynomials

∆λBm,n,λ (x) = nBm,n−1,λ (x) and ∆λEm,n,λ (x) = nEm,n−1,λ (x) (65)

hold true for m, n ∈ N0.

Proof. By applying difference operator ∆λ (12) to both sides of Formulas (55) and (56), respectively,
we attain

∞

∑
n=0

∆λBm,n,λ (x)
tn

n!
=

(1)m+1,λ
tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)
∆λex

λ (t)

=
(1)m+1,λ

tm+1

(m+1)! e
x
λ (t)

eλ (t)− 1− em−1,λ (t)
t

=
∞

∑
n=0

Bm,n,λ (x)
tn+1

n!
,

and

∞

∑
n=0

∆λEm,n,λ (x)
tn

n!
=

(1)m,λ
tm

m!
eλ (t) + 1− em−1,λ (t)

∆λex
λ (t)

=
(1)m,λ

tm

m! e
x
λ (t)

eλ (t) + 1− em−1,λ (t)
t

=
∞

∑
n=0

Em,n,λ (x)
tn+1

n!
,

which gives the claimed difference properties in (65).

The Detr-Bernoulli polynomials and the Detr-Euler polynomials satisfy the following derivative
properties.

Theorem 15. We have

d
dx

Bm,n;λ (x) = n!
∞

∑
u=1

Bm,n−u;λ (x)
(−1)u+1

(n− u)!u
λu−1 (66)

and
d

dx
Em,n;λ (x) = n!

∞

∑
u=1

Em,n−u;λ (x)
(−1)u+1

(n− u)!u
λu−1. (67)

Proof. By using the similar proof method in Theorem 6, the proof of (66) and (67) can be readily done.
We, consequently, choose to omit details involved.

A recurrence relation for the Detr-Bernoulli polynomials is given by the following theorem.



Mathematics 2020, 8, 144 24 of 43

Theorem 16. The following recurrence relationship

Bm+1,n,λ (x) = n
1− (m + 1) λ

m + 2
Bm,n−1;λ (x) +

n

∑
k=0

(
n
k

)
Bm,n−k;λBm+1,k;λ (x) (68)

holds true for n, m ∈ N0.

Proof. By means of the Definition 4, we see that

(1)m+2,λ
tm+2

(m + 2)!
ex

λ (t) = (eλ (t)− 1− em,λ (t))
∞

∑
n=0

Bm+1,n,λ (x)
tn

n!

= (eλ (t)− 1− em−1,λ (t))
∞

∑
n=0

Bm+1,n,λ (x)
tn

n!

(1)m,λ
tm

m!

∞

∑
n=0

Bm+1,n,λ (x)
tn

n!

Thus, we get

(1)m+2,λ
tm+2

(m+2)!

eλ (t)− 1− em−1,λ (t)
ex

λ (t) =
∞

∑
n=0

Bm+1,n,λ (x)
tn

n!

−
(1)m,λ

tm

m!
eλ (t)− 1− em−1,λ (t)

∞

∑
n=0

Bm+1,n,λ (x)
tn

n!

and then

1− (m + 1) λ

m + 2

∞

∑
n=0

Bm,n,λ (x)
tn+1

n!
=

∞

∑
n=0

Bm+1,n,λ (x)
tn

n!

−
∞

∑
n=0

Bm,n,λ
tn

n!

∞

∑
n=0

Bm+1,n,λ (x)
tn

n!
.

which implies the claimed Formula (51).

A summation identity for the Detr-Euler polynomials is presented in the following theorem.

Theorem 17. The following recurrence formula

Em+1,n,λ (x) = n
1−mλ

m + 1
Em,n−1;λ (x) +

n

∑
k=0

(
n
k

)
Em,n−k;λEm+1,k;λ (x) (69)

is valid for n, m ∈ N0.

Proof. From Definition 3, we can write

2
tm+1

(m + 1)!
(1)m+1,λ ex

λ (t) = (eλ (t) + 1− em,λ (t))
∞

∑
n=0

Em+1,n,λ (x)
tn

n!

= (eλ (t) + 1− em−1,λ (t))
∞

∑
n=0

Em+1,n,λ (x)
tn

n!

(1)m,λ
tm

m!

∞

∑
n=0

Em+1,n,λ (x)
tn

n!
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Hence, we observe that

tm+1

(m+1)! (1)m+1,λ

eλ (t) + 1− em−1,λ (t)
ex

λ (t) =
∞

∑
n=0

Em+1,n,λ (x)
tn

n!

−
(1)m,λ

tm

m!
eλ (t)− 1− em−1,λ (t)

∞

∑
n=0

Em+1,n,λ (x)
tn

n!

and

1−mλ

m + 1

∞

∑
n=0

Em,n,λ (x)
tn+1

n!
=

∞

∑
n=0

Em+1,n,λ (x)
tn

n!

−
∞

∑
n=0

Em,n,λ
tn

n!

∞

∑
n=0

Em+1,n,λ (x)
tn

n!
.

which means the asserted result (69).

We give the following theorem.

Theorem 18. The following formula including the Detr-Bernoulli polynomials

(1)m+1,λ

(m + 1)!
(x)n,λ =

n+1

∑
k=0

n! (1)k+m,λ Bm,n+1−k,λ (x)
(k + m)! (n + 1− k)!

− n!Bm,n+m+1,λ (x)
(n + m + 1)!

(70)

is valid for n, m ∈ N0.

Proof. From Definition 3, we obtain

(1)m+1,λ
tm+1

(m + 1)!
ex

λ (t) = (eλ (t)− 1− em−1,λ (t))
∞

∑
n=0

Bm,n,λ (x)
tn

n!

=
∞

∑
n=m

(1)n,λ
tn

n!

∞

∑
n=0

Bm,n,λ (x)
tn

n!
−

∞

∑
n=0

Bm,n,λ (x)
tn

n!
,

which yields to the following equality:

∞

∑
n=0

(x)n,λ
(1)m+1,λ

(m + 1)!
tn+m+1

n!
=

∞

∑
n=0

(1)n+m,λ
tn+m

(n + m)!

∞

∑
n=0

Bm,n,λ (x)
tn

n!

−
∞

∑
n=0

Bm,n,λ (x)
tn

n!

=
∞

∑
n=0

(
n

∑
k=0

(1)k+m,λ

(k + m)! (n− k)!
Bm,n−k,λ (x)

)
tn+m

−
∞

∑
n=0

Bm,n,λ (x)
tn

n!
.

Thus, we complete the proof just comparing the coefficients of the both sides of the
last equality.

We note that Formula (70) is an extension of the well-known formula for the familiar Bernoulli
polynomials given by ([6]):

xn =
1

n + 1

n

∑
l=0

(
n + 1

l

)
Bk (x) .

We provide an identity for Detr-Euler polynomials as follows.
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Theorem 19. The following identity

2
(1)m,λ

m!
(x)n,λ =

n!
2

n

∑
k=0

(1)k+m,λ

(k + m)! (n− k)!
Em,n−k,λ (x) +

n!
2

Em,n+m,λ (x)
(n + m)!

(71)

is true for n, m ∈ N0.

Proof. From Definition 3, we obtain∑∞
n=0 Em,n,λ (x) tn

n! =
2 tm

m! (1)m,λ
eλ(t)+1−em−1,λ(t)

ex
λ (t)

2
tm

m!
(1)m,λ ex

λ (t) = (eλ (t) + 1− em−1,λ (t))
∞

∑
n=0

Em,n,λ (x)
tn

n!

=
∞

∑
n=m

(1)n,λ
tn

n!

∞

∑
n=0

Em,n,λ (x)
tn

n!
+

∞

∑
n=0

Em,n,λ (x)
tn

n!
,

which yields to the following equality:

∞

∑
n=0

2 (x)n,λ
(1)m,λ

m!
tn+m

n!
=

∞

∑
n=0

(1)n+m,λ
tn+m

(n + m)!

∞

∑
n=0

Em,n,λ (x)
tn

n!

+
∞

∑
n=0

Em,n,λ (x)
tn

n!

=
∞

∑
n=0

(
n

∑
k=0

(1)k+m,λ

(k + m)! (n− k)!
Em,n−k,λ (x)

)
tn+m

+
∞

∑
n=0

Em,n,λ (x)
tn

n!
.

Thus, we complete the proof just comparing the coefficients of the both sides of the
last equality.

We notice that the identity (71) is a generalization of the well-known identity for the usual Euler
polynomials stated below ([6]):

xn =
1
2

n

∑
l=0

(
n
l

)
Ek (x) + En (x) .

Here, we give the following theorem including the Detr-Bernoulli polynomials and numbers as
well as the degenerate Stirling polynomials of the second kind.

Theorem 20. The following correlation

Bm,n,λ (x) =
n

∑
l=0

n

∑
u=0

(
n
u

)
Bm,n−u;λS2;λ (u, l : −l) (x)(l) (72)

holds true for non-negative integers n and m.
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Proof. By means of the Definition 4 and using Equations (26) and (57), we attain

∞

∑
n=0

Bm,n,λ (x)
tn

n!
=

(1)m+1,λ
tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)

(
e−1

λ (t)− 1 + 1
)x

=
(1)m+1,λ

tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)

∞

∑
l=0

(
x + l − 1

l

)(
1− e−1

λ (t)
)l

=
(1)m+1,λ

tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)

∞

∑
l=0

(
x + l − 1

l

)
(eλ (t)− 1)l

l!
e−l

λ (t) l!

=
∞

∑
l=0

(x)(l)
∞

∑
n=0

Bm,n,λ
tn

n!

∞

∑
n=0

S2;λ (n, l : −l)
tn

n!

=
∞

∑
l=0

(x)(l)
∞

∑
n=0

(
n

∑
u=0

(
n
u

)
Bm,n−u,λS2;λ (u, l : −l)

)
tn

n!
,

which gives the asserted result (72).

We also provide a relationship involving the Detr-Euler polynomials and numbers in addition to
the degenerate Stirling polynomials of the second kind.

Theorem 21. The following identity

Em,n,λ (x) =
n

∑
k=0

n

∑
l=0

(
n
l

)
Em,n−l,λS2;λ (l, k : −k) (x)(k) (73)

is valid for n, m ∈ N0.

Proof. By the Definition 4 and using Formulas (26) and (58), we attain

∞

∑
n=0

Em,n,λ (x)
tn

n!
=

2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)

(
e−1

λ (t)− 1 + 1
)x

=
2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)

∞

∑
k=0

(
x + k− 1

k

)(
1− e−1

λ (t)
)k

=
2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)

∞

∑
k=0

(
x + k− 1

k

)
(eλ (t)− 1)k

k!
e−k

λ (t) k!

=
∞

∑
k=0

(x)(k)
∞

∑
n=0

Fm,n;λ (y)
tn

n!

∞

∑
n=0

S2;λ (n, k : −k)
tn

n!

=
∞

∑
k=0

(x)(k)
∞

∑
n=0

(
n

∑
l=0

(
n
l

)
Fm,n−l (y) S2;λ (l, k : −k)

)
tn

n!
,

which gives the assertion (73).

Now, we introduce the Detr-Bernoulli polynomials B(r)
m,n,λ (x) of order r and Detr-Euler

polynomials E(r)
m,n,λ (x) of order r by the following exponential generating functions:

∞

∑
n=0

B(r)
m,n,λ (x)

tn

n!
=

 (1)m+1,λ
tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)

r

ex
λ (t) (74)
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and
∞

∑
n=0

E(r)
m,n,λ (x)

tn

n!
=

(
2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)

)r

ex
λ (t) . (75)

Remark 8. Upon letting λ→ m = 0 in (74) and (75), the Detr-Bernoulli polynomials B(r)
m,n,λ (x) of order r

and Detr-Euler polynomials E(r)
m,n,λ (x) reduce to the Bernoulli polynomials B(r)

n (x) of order r and the Euler

polynomials E(r)
n (x) given by ([35]):

∞

∑
n=0

B(r)
n (x)

tn

n!
=

(
t

et − 1

)r
ext and

∞

∑
n=0

E(r)
n (x)

tn

n!
=

(
2

et + 1

)r
ext.

Remark 9. When x = 0, the polynomials in (74) and (75) reduce to the corresponding numbers, which we call
the Detr-Bernoulli and Detr-Euler numbers of order r, respectively, given by

∞

∑
n=0

B(r)
m,n,λ

tn

n!
=

 (1)m+1,λ
tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)

r

(76)

and
∞

∑
n=0

E(r)
m,n,λ

tn

n!
=

(
2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)

)r

. (77)

We first give the following correlations.

Theorem 22. We have

B(r)
m,n,λ (x) =

n

∑
l=0

(
n
l

)
B(r)

m,n−l,λ (x)l,λ

and

E(r)
m,n,λ (x) =

n

∑
l=0

(
n
l

)
E(r)

m,n−l,λ (x)l,λ .

Proof. In view of (74) and (75), we get

∞

∑
n=0

B(r)
m,n,λ (x)

tn

n!
=

 (1)m+1,λ
tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)

r

ex
λ (t)

=
∞

∑
n=0

B(r)
m,n,λ

tn

n!

∞

∑
n=0

(x)n,λ
tn

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
(x)k,λ B(r)

m,n−k,λ
tn

n!

and

∞

∑
n=0

E(r)
m,n,λ (x)

tn

n!
=

(
2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)

)r

ex
λ (t)

=
∞

∑
n=0

E(r)
m,n,λ

tn

n!

∞

∑
n=0

(x)n,λ
tn

n!

=
∞

∑
n=0

n

∑
k=0

(
n
k

)
(x)k,λ E(r)

m,n−k,λ
tn

n!
,

which completes the proof of the Theorem 22.
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Addition properties of the Detr-Bernoulli and Detr-Euler polynomials of order r are given by the
following theorem without proofs.

Theorem 23. We have

B(r1+r2)
m,n,λ (x1 + x2) =

n

∑
u=0

(
n
u

)
B(r1)

m,n−u,λ (x1) B(r2)
m,u,λ (x2)

and

E(r1+r2)
m,n,λ (x1 + x2) =

n

∑
u=0

(
n
u

)
E(r1)

m,n−u,λ (x1) E(r2)
m,u,λ (x2) .

Proof. By using the generating functions in (74) and (75),we can acquire the assertions given by
Theorem 23. The details involved are being omitted here.

A correlation including the Detr-Bernoulli polynomials of order r and the Detr-Stirling
polynomials of the second kind is stated below.

Theorem 24. We have

(x + y)n,λ

(
(1)m+1,λ

)r

r! ((m + 1)!)r =
n!

(n + (m + 1))!
(78)

×
n+(m+1)r

∑
l=0

(
n + (m + 1)

l

)
S2,m;λ (n + (m + 1)− l, r : y) B(r)

m,l,λ (x) .

Proof. By (22) and (74), we investigate

∞

∑
n=0

S2,m;λ (n, r : y)
tn

n!

∞

∑
n=0

B(r)
m,n,λ (x)

tn

n!
=

(eλ (t)− 1− em−1,λ (t))
r

r!
ey

λ (t)

×

(
(1)m+1,λ

)r t(m+1)r

((m+1)!)r

(eλ (t)− 1− em−1,λ (t))
r ex

λ (t)

= ex+y
λ (t)

(
(1)m+1,λ

)r

r!
t(m+1)r

((m + 1)!)r

=
∞

∑
n=0

(x + y)n,λ
tn+(m+1)r

n!

(
(1)m+1,λ

)r

r! ((m + 1)!)r ,

which implies the claimed result (78).

The First Few the Detr-Bernoulli Polynomials and Detr-Euler Polynomials

In this part, we perform to derive the first few Detr-Bernoulli and Detr-Euler numbers and
polynomials by choosing special m values. We first recall that (57) and (58) as given below:

∞

∑
n=0

Bm,n,λ
tn

n!
=

(1)m+1,λ
tm+1

(m+1)!

eλ (t)− 1− em−1,λ (t)

and
∞

∑
n=0

Em,n,λ
tn

n!
=

2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)
,
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which gives the following result for m 6= 0:

Bm,n;λ (x) = 0 for n = 0, 1, 2, · · · , m

and
Em,n;λ (x) = 0 for n = 0, 1, 2, · · · , m− 1.

Upon setting m = 1 in the Mac Laurin series expansions (57) and (58), we attain the first few
Detr-Bernoulli numbers subsequently:

B1,0;λ = 0,

B1,1;λ = 0,

B1,2;λ =
λ− 1

2
,

B1,3;λ =
λ− 1

2
,

B1,4;λ =
λ− 1

2

(
1 +

(1)2,λ

2

)
,

B1,5;λ =
λ− 1

2

(
1 + (1)2,λ +

(1)3,λ

6

)
,

B1,6;λ =
λ− 1

2

1 +
3 (1)2,λ

2
+

(1)3,λ

6
+

(
(1)2,λ

)2

4
+

(1)3,λ (1)2,λ

12
+

(1)4,λ (1)2,λ

48


and we acquire the first few Detr-Euler numbers obviously:

E1,0;λ = 0,

E1,1;λ = 2,

E1,2;λ = −2,

E1,3;λ = 2− (1)2,λ ,

E1,4;λ = −2 + 2 (1)2,λ −
(1)3,λ

3
,

E1,5;λ = 2− 3 (1)2,λ +

(
(1)2,λ

)2

2
+

2 (1)3,λ

3
−

(1)4,λ

12
,

E1,6;λ = −2 + 4 (1)2,λ − 3

(
(1)2,λ

)2

2
+

(1)3,λ (1)2,λ

3
−+ (1)3,λ +

(1)4,λ

6
−

(1)5,λ

60
.

In conjunction with the computations performed above and via (59) and (60) (with m = 1)
given by

B1,n,λ (x) =
n

∑
k=0

(
n
k

)
(x)k,λ B1,n−k,λ

and

E1,n,λ (x) =
n

∑
k=0

(
n
k

)
(x)k,λ E1,n−k,λ,
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we can compute the first few Detr-Bernoulli polynomials:

B1,0;λ (x) = 0,

B1,1;λ (x) = 0,

B1,2;λ (x) =
λ− 1

2
,

B1,3;λ (x) =
λ− 1

2
(1 + 3x) ,

B1,4;λ (x) =
λ− 1

2

(
1 +

(1)2,λ

2
+ 4x + 12x2 + 6 (x)2,λ

)
,

B1,5;λ (x) =
λ− 1

2

(
1 + (1)2,λ +

(1)3,λ

6
+ 1 +

(1)2,λ

2
5x + 10 (x)2,λ + 10 (x)3,λ

)
,

B1,6;λ (x) =
λ− 1

2

1 +
3 (1)2,λ

2
+

(1)3,λ

6
+

(
(1)2,λ

)2

4
+

(1)3,λ (1)2,λ

12
+

(1)4,λ (1)2,λ

48


+

λ− 1
2

((
6 + 6 (1)2,λ + (1)3,λ

)
x + 15

(
1 +

(1)2,λ

2

)
(x)2,λ + 20 (x)3,λ + 15 (x)4,λ

)

and we acquire the first few Detr-Euler polynomials subsequently:

E1,0;λ (x) = 0,

E1,1;λ (x) = 2,

E1,2;λ (x) = −2 + 4x,

E1,3;λ (x) = 2− (1)2,λ − 6x + 6 (x)2,λ ,

E1,4;λ (x) = −2 + 2 (1)2,λ −
(1)3,λ

3
+
(

2− (1)2,λ

)
4x− 12 (x)2,λ + 8 (x)3,λ ,

E1,5;λ (x) = 2− 3 (1)2,λ +

(
(1)2,λ

)2

2
+

2 (1)3,λ

3
−

(1)4,λ

12
+

(
−2 + 2 (1)2,λ −

(1)3,λ

3

)
5x

+
(

2− (1)2,λ

)
10 (x)2,λ − 20 (x)3,λ + 10 (x)4,λ ,

E1,6;λ (x) = −2 + 4 (1)2,λ − 3

(
(1)2,λ

)2

2
+

(1)3,λ (1)2,λ

3
−+ (1)3,λ +

(1)4,λ

6
−

(1)5,λ

60

+

2− 3 (1)2,λ +

(
(1)2,λ

)2

2
+

2 (1)3,λ

3
−

(1)4,λ

12

 6x

+

(
−2 + 2 (1)2,λ −

(1)3,λ

3

)
15 (x)2,λ +

(
2− (1)2,λ

)
20 (x)3,λ − 30 (x)4,λ + 12 (x)5,λ .

The Detr-Bernoulli and the Detr-Euler polynomials have interesting surface plots in the special
values. We would like to show the quirky surface plots of the B1,4;λ (x) and E1,4;λ (x) as given in
Figures 3 and 4.
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and we acquire the �rst few Detr-Euler polynomials subsequently:

E1;0;� (x) = 0;

E1;1;� (x) = 2;

E1;2;� (x) = �2 + 4x;
E1;3;� (x) = 2� (1)2;� � 6x+ 6 (x)2;� ;

E1;4;� (x) = �2 + 2 (1)2;� �
(1)3;�
3

+
�
2� (1)2;�

�
4x� 12 (x)2;� + 8 (x)3;� ;

E1;5;� (x) = 2� 3 (1)2;� +

�
(1)2;�

�2
2

+
2 (1)3;�
3

�
(1)4;�
12

+

�
�2 + 2 (1)2;� �

(1)3;�
3

�
5x

+
�
2� (1)2;�

�
10 (x)2;� � 20 (x)3;� + 10 (x)4;� ;

E1;6;� (x) = �2 + 4 (1)2;� � 3

�
(1)2;�

�2
2

+
(1)3;� (1)2;�

3
�+(1)3;� +

(1)4;�
6

�
(1)5;�
60

+

0B@2� 3 (1)2;� +
�
(1)2;�

�2
2

+
2 (1)3;�
3

�
(1)4;�
12

1CA 6x
+

�
�2 + 2 (1)2;� �

(1)3;�
3

�
15 (x)2;� +

�
2� (1)2;�

�
20 (x)3;� � 30 (x)4;� + 12 (x)5;� .

The Detr-Bernoulli and the Detr-Euler polynomials have interesting surface plots in the special values. We
would like to show the quirky surface plots of the B1;4;� (x) and E1;4;� (x) as follows:
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and Figure 3. Surface plot of B1,4;λ (x).
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6. The Degenerate Truncated Bell Polynomials

In this section, we perform to de�ne and examine the degenerate truncated forms of the bivariate Bell
polynomials and numbers. Then, we develop multifarious identities and correlations for these polynomials
and numbers, which includes addition formulas, summation formulas, recurrence relationships, di¤erence
operator property and derivative rules. Moreover we provide diverse correlations and formulas related to the
Apostol type Detr-Stirling polynomials of the second kind and the Detr-Stirling polynomials of the second
kind.
The classical Bell polynomials Beln (x) (also called exponential polynomials) are de�ned by means of the

following generating function (cf. [3, 4, 19, 24]):
1X
n=0

Beln (x)
tn

n!
= ex(e

t�1). (6.1)

The classical Bell numbers Beln are attained by taking x = 1 in (6.1), that is Beln (1) := Beln and are given
by the following exponential generating function (cf. [3, 4, 19, 24]):

1X
n=0

Beln
tn

n!
= e(e

t�1) . (6.2)

The Bell polynomials introduced by Bell [3] appear as a standard mathematical tool and arise in combina-
torial analysis. Since the �rst consideration of the Bell polynomials, these polynomials have been intensely
investigated and studied by several mathematicians, cf. [3, 4, 18, 19, 22, 23, 24, 25] and see also the references
cited therein.
The usual Bell polynomials and Stirling numbers of the second kind satisfy the following relation (cf.

[3, 4, 19, 24])

Beln (x) =
nX

m=0

S2 (n;m)x
m. (6.3)

The degenerate Bell polynomials are given by the following Taylor series expansion at t = 0 as follows (cf.
[18, 22, 23, 25]):

1X
n=0

Beln;� (x)
tn

n!
= ex(e�(t)�1): (6.4)

Figure 4. Surface plot of E1,3;λ (x).

6. The Degenerate Truncated Bell Polynomials

In this section, we perform to define and examine the degenerate truncated forms of the
bivariate Bell polynomials and numbers. Then, we develop multifarious identities and correlations
for these polynomials and numbers, which includes addition formulas, summation formulas,
recurrence relationships, difference operator property and derivative rules. Moreover we provide
diverse correlations and formulas related to the Apostol-type Detr-Stirling polynomials of the second
kind and the Detr-Stirling polynomials of the second kind.

The classical Bell polynomials Beln (x) (also called exponential polynomials) are defined by means
of the following generating function ([3,4,19,24]):

∞

∑
n=0

Beln (x)
tn

n!
= ex(et−1). (79)

The classical Bell numbers Beln are attained by taking x = 1 in (79), i.e., Beln (1) := Beln and are
given by the following exponential generating function ([3,4,19,24]):

∞

∑
n=0

Beln
tn

n!
= e(et−1) . (80)

The Bell polynomials introduced by Bell [3] appear as a standard mathematical tool and arise in
combinatorial analysis. Since the first consideration of the Bell polynomials, these polynomials have
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been intensely investigated and studied by several mathematicians, [3,4,18,19,22–25] and see also the
references cited therein.

The usual Bell polynomials and Stirling numbers of the second kind satisfy the following
relation ([3,4,19,24])

Beln (x) =
n

∑
m=0

S2 (n, m) xm. (81)

The degenerate Bell polynomials are given by the following Taylor series expansion at t = 0 as
follows ([18,22,23,25]):

∞

∑
n=0

Beln,λ (x)
tn

n!
= ex(eλ(t)−1). (82)

When x = 1 in (82), the polynomials Beln,λ (x) reduce to the degenerate Bell numbers Beln,λ (1) :=
Beln,λ with the following generating function

∞

∑
n=0

Beln,λ
tn

n!
= e(eλ(t)−1). (83)

We note that the degenerate Bell polynomials (81) reduce the classical Bell polynomials (81) in the
following limit case:

lim
λ→0

Beln,λ (x) = Beln (x) .

The degenerate Bell polynomials and the degenerate Stirling numbers of the second kind satisfy
the following correlation ([18,22,23,25])

Beln,λ (x) =
n

∑
m=0

S2,λ (n, m) xm. (84)

Now, we are ready to introduce the bivariate degenerate truncated Bell polynomials, which we
choose to call the Detr-Bell polynomials as given below.

Definition 5. Let x be an independent variable and m ∈ N0. The bivariate degenerate truncated Bell
polynomials Belm,n;λ (x, y) are defined by the following exponential generating function:

∞

∑
n=0

Belm,n;λ (x, y)
tn

n!
= ey(eλ(t)−1−em−1,λ(t))ex

λ (t) . (85)

Upon setting y = 1 and x = 0 in (85), the bivariate truncated degenerate Bell polynomials reduce
to the corresponding numbers Belm,n;λ (0, 1) := Belm,n;λ termed the degenerate truncated Bell numbers,
which we call the Detr-Bell numbers:

∞

∑
n=0

Belm,n;λ
tn

n!
= e(eλ(t)−1−em−1,λ(t)). (86)

We now examine diverse special cases of the bivariate Detr-Bell polynomials as follows.

Remark 10.

1. When x = 0 in (85), the polynomials Belm,n;λ (x, y) in (85) reduce to the degenerate truncated Bell
polynomials Belm,n;λ (y) in (87), which are also new generalizations of the Bell polynomials Beln (x) in
(1), given by

∞

∑
n=0

Belm,n;λ (y)
tn

n!
= ey(eλ(t)−1−em−1,λ(t)). (87)
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2. Upon setting λ→ 0 in (85), we get a new generalization of the usual Bell polynomials, which we call the
bivariate truncated Bell polynomials Belm,n (x, y) (88), shown by

∞

∑
n=0

Belm,n (x, y)
tn

n!
= ey(et−1−em−1(t))ext. (88)

3. In the special case λ→ 0 and x = 0, we acquire a novel extension of the Bell polynomials, which we call
the truncated Bell polynomials Belm,n (y) as follows

∞

∑
n=0

Belm,n;λ (x, y)
tn

n!
= ey(et−1−em−1(t)). (89)

4. Choosing m = 0 in (85), we obtain the bivariate degenerate Bell polynomials given below ([23]):

∞

∑
n=0

Beln;λ (x, y)
tn

n!
= ey(eλ(t)−1)ex

λ (t) . (90)

5. Setting m = x = 0 in (85), we attain the degenerate Bell polynomials in (82) ([18,22,23,25]).
6. When λ→ m = x = 0 in (85), we arrive at the familiar Bell polynomials in (79) ([3,4,19,24]).

We now investigate some properties and formulas of the bivariate Detr-Bell polynomials
Belm,n;λ (x, y). Hence, we first provide the following theorem.

Theorem 25. For n, m ∈ N0, we have

Belm,n;λ (x, y) =
n

∑
l=0

(
n
l

)
Belm,l;λ (y) (x)n−l,λ . (91)

Proof. By means of (85) and (87), we get

∞

∑
n=0

Belm,n;λ (x, y)
tn

n!
= ey(eλ(t)−1−em−1,λ(t))ex

λ (t)

=
∞

∑
n=0

Belm,n;λ (y)
tn

n!

∞

∑
n=0

(x)n,λ
tn

n!

=
∞

∑
n=0

n

∑
l=0

(
n
l

)
Belm,l;λ (y) (x)n−l,λ

tn

n!
,

which gives the asserted result (91).

An extension of the well-known correlations in (81) and (84) is given below.

Theorem 26. The following relation

Belm,n;λ (x, y) =
n

∑
k=0

ykS2,m;λ (n, k : x) (92)

holds true for n, m ∈ N0.
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Proof. By the Definition 5 and the Formula (22), we get

∞

∑
n=0

Belm,n;λ (x, y)
tn

n!
=

∞

∑
k=0

yk (eλ (t)− 1− em−1,λ (t))
k

k!
ex

λ (t)

=
∞

∑
k=0

yk
∞

∑
n=0

S2,m;λ (n, k : x)
tn

n!

=
∞

∑
n=0

n

∑
k=0

ykS2,m;λ (n, k : x)
tn

n!
,

which gives the claimed result (92).

We now provide an addition formula for Belm,n;λ (x, y) as follows.

Theorem 27. The following summation formula

Belm,n;λ (x1 + x2, y1 + y2) =
n

∑
u=0

(
n
u

)
Belm,n−u;λ (x1, y1) Belm,u;λ (x2, y2) , (93)

is valid for n, m ∈ N0.

Proof. By Definition 5 and the identity (60), we obtain

∞

∑
n=0

Belm,n;λ (x1 + x2, y1 + y2)
tn

n!
= e(y1+y2)(eλ(t)−1−em−1,λ(t))ex1+x2

λ (t)

= ey1(eλ(t)−1−em−1,λ(t))ex1
λ (t) ey2(eλ(t)−1−em−1,λ(t))ex2

λ (t)

=
∞

∑
n=0

Belm,n;λ (x1, y1)
tn

n!

∞

∑
n=0

Belm,n;λ (x2, y2)
tn

n!

=
∞

∑
n=0

n

∑
u=0

(
n
u

)
Belm,n−u;λ (x1, y1) Belm,u;λ (x2, y2)

tn

n!
,

which provides the desired result (93). Henceforth, the proof is completed.

Two immediate consequences of the Theorem 27 are discussed below.

Corollary 2. For n, m ∈ N0, we have

Belm,n;λ (x, y1 + y2) =
n

∑
u=0

(
n
u

)
Belm,n−u;λ (x, y1) Belm,u;λ (y2)

and

Belm,n;λ (x1 + x2, y) =
n

∑
u=0

(
n
u

)
Belm,n−u;λ (x1, y1) (x2)u,λ .

We now provide a correlation as follows.

Theorem 28. The following formula

Belm,n;λ (x, y) =
n

∑
u=0

n

∑
l=0

(
n
u

)
Belm,u;λ (y) S2;λ (n− u, l : −l) (x)(l) (94)

holds true for n, m ∈ N0.
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Proof. By Definition 5 and Equation (26), we get

∞

∑
n=0

Belm,n;λ (x, y)
tn

n!
= ey(eλ(t)−1−em−1,λ(t))

(
e−1

λ (t)− 1 + 1
)x

= ey(eλ(t)−1−em−1,λ(t))
∞

∑
l=0

(
x + l − 1

l

)(
1− e−1

λ (t)
)l

= ey(eλ(t)−1−em−1,λ(t))
∞

∑
l=0

(
x + l − 1

l

)
(eλ (t)− 1)l

l!
e−l

λ (t) l!

=
∞

∑
l=0

(x)(l)
∞

∑
n=0

Belm,n;λ (y)
tn

n!

∞

∑
n=0

S2;λ (n, l : −l)
tn

n!

=
∞

∑
l=0

(x)(l)
∞

∑
n=0

(
n

∑
u=0

(
n
u

)
Belm,u;λ (y) S2;λ (n− u, l : −l)

)
tn

n!
,

which gives the claimed result (94).

We now give a recurrence formula for Belm,n;λ (x, y) as follows.

Theorem 29. The following recurrence formula

Belm,n;λ (x, y) = n!
n−ml

∑
k=0

k

∑
l=0

yk

(
(1)m,λ

)l

l! (m!)l
S2,m;λ (n−ml, k− l : x)

(n−ml)!
(95)

holds true for n, m ∈ N0.

Proof. In view of the Definition 5, we acquire

∞

∑
n=0

Belm+1,n;λ (x, y)
tn

n!
=

∞

∑
k=0

yk (eλ (t)− 1− em,λ (t))
k

k!
ex

λ (t)

=
∞

∑
k=0

yk

(
eλ (t)− 1− em−1,λ (t)− (1)m,λ

tm

m!

)k

k!
ex

λ (t)

=
∞

∑
k=0

yk

k!

k

∑
l=0

(
k
l

)
(eλ (t)− 1− em−1,λ (t))

k−l
(
(1)m,λ

)l tml

(m!)l ex
λ (t)

=
∞

∑
k=0

yk
k

∑
l=0

(eλ (t)− 1− em−1,λ (t))
k−l

(k− l)!
ex

λ (t)
(
(1)m,λ

)l tml

l! (m!)l

=
∞

∑
k=0

yk
k

∑
l=0

(
(1)m,λ

)l tml

l! (m!)l

∞

∑
n=0

S2,m;λ (n, k− l : x)
tn

n!

=
∞

∑
n=0

n

∑
k=0

k

∑
l=0

yk

(
(1)m,λ

)l

l! (m!)l S2,m;λ (n, k− l : x)
tn+ml

n!

which gives the asserted result (95).

We now give a formula for Belm,n;λ (x, y) as follows.

Theorem 30. The following operator formula

∆λBelm,n;λ (x, y) = nBelm,n−1;λ (x, y) (96)
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holds true for n, m ∈ N0.

Proof. In view of the Definition 5, by applying difference operator ∆λ (12) to both sides of Formula (96),
we obtain

∞

∑
n=0

∆λBelm,n;λ (x, y)
tn

n!
= ey(eλ(t)−1−em−1,λ(t))∆λex

λ (t)

= ey(eλ(t)−1−em−1,λ(t))ex
λ (t) t

=
∞

∑
n=0

Belm,n;λ (x, y)
tn+1

n!
,

which gives the assertion in (96).

We now present the following derivation property with respect to x for the bivariate polynomials
Belm,n;λ (x, y).

Theorem 31. The following formula

∂

∂x
Belm,n;λ (x, y) = n!

∞

∑
l=1

Belm,n−l;λ (x, y)
(−1)l+1

(n− l)!l
λl−1 (97)

holds true for m, n ∈ N0.

Proof. By applying derivative operator ∂
∂x with respect to x to both sides of Formula (85), we

then derive

∞

∑
n=0

∂

∂x
Belm,n;λ (x, y)

tn

n!
= ey(eλ(t)−1−em−1,λ(t)) ∂

∂x
(1 + λt)

x
λ

= ey(eλ(t)−1−em−1,λ(t)) (1 + λt)
x
λ ln (1 + λt)

1
λ

=
∞

∑
n=0

Belm,n;λ (x, y)
tn

n!

∞

∑
u=1

(−1)u+1

u
λu−1tu

=
∞

∑
n=0

∞

∑
u=1

Belm,n;λ (x, y)
(−1)u+1

u
λu−1 tn+u

n!

which yields the asserted derivative Formula (97).

Here is another derivation property for the bivariate polynomials Belm,n;λ (x, y).

Theorem 32. The following relation

∂

∂y
Belm,n;λ (x, y) =

n−m

∑
l=0

(1)l+m,λ

(l + m)!
Belm,n−m−l;λ (x, y)

n!
(n− l)!

− Belm,n;λ (x, y) (98)

holds true for m, n ∈ N0.

Proof. By applying derivative operator with respect to y to both sides of the Formula (85), then
we have

∞

∑
n=0

Belm,n;λ (x, y)
tn

n!
= ey(eλ(t)−1−em−1,λ(t))ex

λ (t) .
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∞

∑
n=0

∂

∂y
Belm,n;λ (x, y)

tn

n!
=

∂

∂y
ey(eλ(t)−1−em−1,λ(t))ex

λ (t)

= (eλ (t)− 1− em−1,λ (t)) ey(eλ(t)−1−em−1,λ(t))ex
λ (t)

=

(
∞

∑
n=m

(1)n,λ
tn

n!
− 1

)
ey(eλ(t)−1−em−1,λ(t))ex

λ (t)

=
∞

∑
n=0

(1)n+m,λ
tn+m

(n + m)!

∞

∑
n=0

Belm,n;λ (x, y)
tn

n!
−

∞

∑
n=0

Belm,n;λ (x, y)
tn

n!

=
∞

∑
n=0

n

∑
l=0

(1)l+m,λ

(l + m)!
Belm,n−l;λ (x, y)

tn+m

(n− l)!
−

∞

∑
n=0

Belm,n;λ (x, y)
tn

n!

which yields the asserted derivative Formula (98).

7. Multifarious Connected Formulas

In this section, we first introduce the degenerate truncated Bernstein polynomials. We then
perform to investigate diverse correlations and formulas including several polynomials such as the
degenerate truncated Bernstein polynomials, the bivariate Detr-Fubini polynomials, the bivariate
Detr-Bell polynomials, the Detr-Bernoulli polynomials, the Detr-Stirling polynomials of the second
kind and the Detr-Euler polynomials.

For x ∈ [0, 1], the usual Bernstein polynomials ([1]) are given by the following generating function:

∞

∑
n=0

Bk,n (x)
tn

n!
= e(1−x)t xk

k!
tk. (99)

The degenerate Bernstein polynomials Bk,n (x : λ) for x ∈ [0, 1] are considered by Kim and
Kim [20] by means of the following generating function to be

∞

∑
n=0

Bk,n (x : λ)
tn

n!
= e1−x

λ (t)
(x)k,λ

k!
tk. (100)

We first introduce the degenerate truncated Bernstein polynomials, which we call the
Detr-Bernstein polynomials as follows.

Definition 6. For x ∈ [0, 1] and m ∈ N0, the degenerate truncated Bernstein polynomials are defined by the
following Mac Laurin series expansion at t = 0:

∞

∑
n=0

B
[m]
k,n (x : λ)

tn

n!
= (eλ (t)− em−1,λ (t))

1−x (x)k,λ

k!
tk. (101)

Remark 11. In the limit case λ→ 0 in (101), we attain a new extension of the classical Bernstein polynomials
Bk,n (x), which we call the truncated Bernstein polynomials given by

∞

∑
n=0

B
[m]
k,n (x)

tn

n!
=
(
et − em−1 (t)

)1−x (x)k

k!
tk. (102)

Remark 12. When m = 0, the degenerate truncated Bernstein polynomials B
[m]
k,n (x : λ) reduce to the

degenerate Bernstein polynomials Bk,n (x : λ) in (100).
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We consider that

∞

∑
n=0

B
[m]
k,n (x : λ)

tn

n!
= (eλ (t)− em−1,λ (t))

1−x (x)k,λ

k!
tk

= (eλ (t)− 1− em−1,λ (t) + 1)1−x (x)k,λ

k!
tk

=
∞

∑
l=0

(1− x)l
(eλ (t)− 1− em−1,λ (t))

l

l!
(x)k,λ

k!
tk

=
∞

∑
l=0

(1− x)l

∞

∑
n=0

S2,m;λ (n, l : x)
tn+k

n!
(x)k,λ

k!

=
∞

∑
n=0

∞

∑
l=0

(1− x)l S2,m;λ (n, l : x)
(x)k,λ

k!
tn+k

n!
.

Hence we arrive at the following theorem including a relation between the Detr-Bernstein
polynomials and the Detr-Stirling polynomials of the second kind.

Theorem 33. For x ∈ [0, 1], we have

B
[m]
k,n (x : λ) =

n−k

∑
l=0

(
n
k

)
(x)k,λ (1− x)l S2,m;λ (n− k, l : x) . (103)

By using (106) and (62) in conjunction with (79), we consider that

∞

∑
n=0

Belm,n;λ (x, y)
tn

n!
=

∞

∑
k=0

yk (eλ (t)− 1− em−1,λ (t))
k

k!
ex

λ (t)

=
∞

∑
k=0

yk (eλ (t)− em−1,λ (t)− 1)k

k!
ex

λ (t)

=
∞

∑
k=0

yk

k!
ex

λ (t)
k

∑
l=0

(
k
l

)
(−1)k−l (eλ (t)− em−1,λ (t))

l (1− l)k,λ

k!
tk k!
(1− l)k,λ

t−k

=
∞

∑
k=0

yk
k

∑
l=0

(
k
l

)
(−1)k−l

(1− l)k,λ
t−k

∞

∑
n=0

(x)n,λ
tn

n!

∞

∑
n=0

B
[m]
k,n (1− l : λ)

tn

n!

=
∞

∑
k=0

yk
k

∑
l=0

(
k
l

)
(−1)k−l

(1− l)k,λ

∞

∑
n=0

n

∑
u=0

(
n
u

)
(x)n−u,λ B

[m]
k,u (1− l : λ)

tn−k

n!

Thus, we obtain the following theorem including a correlation covering the Detr-Bernstein
polynomials and the Detr-Bell polynomials.

Theorem 34. The following correlation

Belm,n;λ (x, y) = n!
n

∑
k=0

k

∑
l=0

n−k

∑
u=0

yk
(

k
l

)
(−1)k−l

(1− l)k,λ

(x)n−k−u,λ

(n− k− u)!u!
B

[m]
k,u (1− l : λ) (104)
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In terms of (74) and (85), we see that

∞

∑
n=0

Belm,n;λ (x, y)
tn

n!
= ey(eλ(t)−1−em−1,λ(t))ex

λ (t)

=
∞

∑
l=0

yl (eλ (t)− 1− em−1,λ (t))
l

l!
ex

λ (t)

=
∞

∑
l=0

yl

l!

 eλ (t)− 1− em−1,λ (t)

(1)m+1,λ
tm+1

(m+1)!

l

ex
λ (t)

(
(1)m+1,λ

)l t(m+1)l

((m + 1)!)l

=
∞

∑
l=0

yl

l!

(
(1)m+1,λ

)l

((m + 1)!)l

∞

∑
n=0

B(−l)
m,n,λ (x)

tn+(m+1)l

n!
.

Thus, we arrive at the following theorem including the bivariate Detr-Bell polynomials and the
Detr-Bernoulli polynomials.

Theorem 35. The following summation equality

Belm,n;λ (x, y) = n!
∞

∑
l=0

yl

l!

(
(1)m+1,λ

)l

((m + 1)!)l

B(−l)
m,n−(m+1),λ (x)

(n− (m + 1))!
(105)

is valid.

By means of (37) and (56)

∞

∑
n=0

Fm,n;λ

(
x,−1

2

)
tn

n!
=

(1)m,λ
tm

m! e
x
λ (t)

1 + 1
2 (eλ (t)− 1− em−1,λ (t))

=
2 (1)m,λ

tm

m! e
x
λ (t)

eλ (t) + 1− em−1,λ (t)

=
∞

∑
n=0

Em,n,λ (x)
tn

n!
.

Therefore, we obtain the following theorem involving the bivariate Detr-Fubini polynomials and
the Detr-Euler polynomials.

Theorem 36. The following relation

Fm,n;λ

(
x,−1

2

)
= Em,n,λ (x) (106)

holds true for m, n ∈ N0.

An immediate result for Formula (106) is as follows.

Corollary 3. Setting x = 0 in (106), we then get a relation between the Detr-Fubini polynomials and the
Detr-Euler numbers:

Fm,n;λ

(
−1

2

)
= Em,n;λ. (107)
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Remark 13. The relationships (106) and (107) are extensions of the well-known relation given by ([15])

Fn

(
−1

2

)
= En.

By (37) and (56), we get

∞

∑
n=0

Fm,n;λ (x, y)
tn

n!
=

(1)m,λ
tm

m! e
x
λ (t)

1− y (eλ (t)− 1− em−1,λ (t))
2 tm

m! (1)m,λ

eλ (t) + 1− em−1,λ (t)
eλ (t) + 1− em−1,λ (t)

2 tm

m! (1)m,λ

=
1

2 (1)m,λ

m!
tm

∞

∑
n=0

Fm,n;λ (y)
tn

n!

∞

∑
n=0

Em,n;λ (x)
tn

n!

(
∞

∑
n=m

(1)n,λ
tn

n!
+ 1

)

=
m!

2 (1)m,λ

∞

∑
n=0

(
n

∑
l=0

(
n
l

)
Fm,l;λ (y) Em,n−l;λ (x)

)
tn−m

n!

(
∞

∑
j=0

(1)n+m,λ
tn+m

(n + m)!
+ 1

)

=
m!

2 (1)m,λ

∞

∑
n=0

(
n

∑
l=0

(
n
l

)
Fm,l;λ (y) Em,n−l;λ (x)

)
tn−m

n!

+
m!

2 (1)m,λ

∞

∑
n=0

n

∑
j=0

(
n + m

j

)
(1)n+m−j,λ

(
j

∑
l=0

(
j
l

)
Fm,l;λ (y) Em,j−l;λ (x)

)
tn

(n + m)!
.

Hence, we state the following theorem which includes a correlation for the Fm,n;λ (x, y), Fm,n;λ (y)
and Em,n;λ (x).

Theorem 37. The following relation

Fm,n;λ (x, y) =
n!m!

(n + m)!

n+m

∑
l=0

1
2 (1)m,λ

(
n + m

l

)
Fm,l;λ (y) Em,n+m−l;λ (x) (108)

+
n!m!

(n + m)!

n

∑
j=0

1
2 (1)m,λ

(
n + m

j

)
Fm,l;λ (y) Em,j−l;λ (x)

is valid for n, m ∈ N0.

By using the generating functions of the Detr-Bernoulli and the bivariate Detr-Fubini polynomials
in (37) and (55), we derive

∑∞
n=0 Fm,n;λ (x, y) tn

n! =
(1)m,λ

tm
m! ex

λ(t)
1−y(eλ(t)−1−em−1,λ(t))

(1)m+1,λ
tm+1
(m+1)!

eλ(t)−1−em−1,λ(t)
eλ(t)−1−em−1,λ(t)

(1)m+1,λ
tm+1
(m+1)!

= (m+1)!
(1)m+1,λtm+1 ∑∞

n=0 Fm,n;λ (x, y) tn

n! ∑∞
n=0 Bm,n,λ (x) tn

n!

(
∑∞

n=m (1)n,λ
tn

n! − 1
)

= (m+1)!
(1)m+1,λ

∑∞
n=0

(
∑n

k=0 (
n
k)Fm,k;λ (y) Bm,n−k;λ (x)

) tn

n! ∑∞
n=0 (1)n+m,λ

tn−1

(n+m)!

−∑∞
n=0

(m+1)!
(1)m+1,λ

(
∑n

k=0 (
n
k)Fm,k;λ (y) Bm,n−k;λ (x)

) tn−m−1

n!

= (m+1)!
(1)m+1,λ

∑∞
n=0

[
∑n

l=0 (
n+m

l )
(

∑l
k=0 (

l
k)Fm,k;λ (y) Bm,l−k;λ (x)

)
(1)n+m−l,λ

]
tn−1

(n+m)!

−∑∞
n=0

(m+1)!
(1)m+1,λ

(
∑n

k=0 (
n
k)Fm,k;λ (y) Bm,n−k;λ (x)

) tn−m−1

n! .

Thus, we arrive at the following theorem.

Theorem 38. The following relation

Fm,n;λ (x, y) = n!(m+1)!
(1)m+1,λ

∑n+1
l=0 (n+m+1

l )
(

∑l
k=0 (

l
k)Fm,k;λ (y) Bm,l−k;λ (x)

)
(1)n+m+1−l,λ

− n!(m+1)!
(1)m+1,λ

(
∑n+m+1

k=0 (n+m+1
k )Fm,k;λ (y) Bm,n+m+1−k;λ (x)

) (109)
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is valid for non-negative integers m and n.

8. Conclusions

In the present paper, we have considered the degenerate truncated forms of the various special
polynomials and numbers and have investigated their several properties and relationships by using
the series manipulation method and some special proof techniques indicated in the proof of each
of the theorem stated in this paper. We have first introduced the degenerate truncated exponential
polynomials and have given their several properties. Then we have defined the degenerate truncated
Stirling polynomials of the second kind and have proved their elementary properties and relations.
We have also considered the degenerate truncated bivariate Fubini and Bell polynomials and numbers
and we then have attained multifarious relations and formulas, which covers several summation
formulas, addition identities, recurrence relationships, derivative property and correlations with
the degenerate truncated Stirling polynomials of the second kind. Moreover, we have defined the
truncated degenerate Bernoulli and Euler polynomials and have provided multifarious correlations
and interesting formulas including summation formulas, derivation rules and correlations with
the degenerate truncated Stirling numbers of the second. Furthermore, regarding applications,
by introducing the degenerate truncated forms of the classical Bernstein polynomials, we have
derived several correlations and formulas including the degenerate truncated Bernstein polynomials,
the bivariate Detr-Fubini polynomials, the bivariate Detr-Bell polynomials, the Detr-Bernoulli
polynomials, the Detr-Stirling polynomials of the second kind and the Detr-Euler polynomials.
We have also provided several interesting surface plots of the aforementioned polynomials in the
special cases. The results obtained in this paper are generalizations of the many earlier results,
some of which are involved related references in [1–37]. For future directions, we will analyze that the
polynomials introduced in this paper can be applied in the theory of umbral calculus and those can be
connected with some degenerate probability distributions.
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