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Abstract

:

Studying Hilbert functions of concrete examples of normal toric rings, it is demonstrated that for each   1 ≤ s ≤ 5  , an O-sequence    (  h 0  ,  h 1  , … ,  h  2 s − 1   )  ∈  Z  ≥ 0   2 s     satisfying the properties that (i)    h 0  ≤  h 1  ≤ ⋯ ≤  h  s − 1    , (ii)    h  2 s − 1   =  h 0   ,    h  2 s − 2   =  h 1    and (iii)    h  2 s − 1 − i   =  h i  +   ( − 1 )  i   ,   2 ≤ i ≤ s − 1  , can be the h-vector of a Cohen-Macaulay standard G-domain.
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1. Background


In the paper [1] published in 1989, several conjectures on Hilbert functions of Cohen-Macaulay integral domains are studied.



Let   A =  ⨁  n = 0  ∞   A n    be a standard G-algebra [2]. Thus A is a Noetherian commutative graded ring for which (i)    A 0  = K   a field, (ii)   A = K [  A 1  ]   and (iii)    dim K   A 1  < ∞  . The Hilbert function of A is defined by


  H  ( A , n )  =  dim K   A n  ,      n = 0 , 1 , 2 , …  











Let   dim A = d   and   v = H  ( A , 1 )  =  dim K   A 1   . A classical result ([3], Chapter 5, Section 13) says that   H ( A , n )   is a polynomial for n sufficiently large and its degree is   d − 1  . It follows that the sequence   h  ( A )  =  (  h 0  ,  h 1  ,  h 2  , … )   , called the h-vector of A, defined by the formula


    ( 1 − λ )  d   ∑  n = 0  ∞  H  ( A , n )   λ n  =  ∑  i = 0  ∞   h i   λ i   








has finitely many non-zero terms with    h 0  = 1   and    h 1  = v − d  . If    h i  = 0   for   i > s   and    h s  ≠ 0  , then we write   h  ( A )  =  (  h 0  ,  h 1  , … ,  h s  )   .



Let    Y 1  , … ,  Y r    be indeterminates. A non-empty set M of monomials    Y 1  a 1   ⋯  Y r  a r     in the variables    Y 1  , … ,  Y r    is said to be an order ideal of monomials if, whenever   m ∈ M   and   m ′   divides m, then    m ′  ∈ M  . Equivalently, if    Y 1  a 1   ⋯  Y r  a r   ∈ M   and   0 ≤  b i  ≤  a i   , then    Y 1  b 1   ⋯  Y r  b r   ∈ M  . In particular, since M is non-empty,   1 ∈ M  . A finite sequence   (  h 0  ,  h 1  , … ,  h s  )   of non-negative integers is said to be an O-sequence if there exists an order ideal M of monomials in    Y ,  … ,  Y r    with each   deg  Y i  = 1   such that    h j  =  |  { m ∈ M | deg m = j }  |    for any   0 ≤ j ≤ s  . In particular,    h 0  = 1  . If A is Cohen-Macaulay, then   h  ( A )  =  (  h 0  ,  h 1  , … ,  h s  )    is an O-sequence ([2], p. 60). Furthermore, a finite sequence   (  h 0  ,  h 1  , … ,  h s  )   of integers with    h 0  = 1   and    h s  ≠ 0   is the h-vector of a Cohen-Macaulay standard G-algebra if and only if   (  h 0  ,  h 1  , … ,  h s  )   is an O-sequence ([2], Corollary 3.11).



An O-sequence   (  h 0  ,  h 1  , … ,  h s  )   with    h s  ≠ 0   is called flawless ([1], p. 245) if (i)    h i  ≤  h  s − i     for   0 ≤ i ≤ [ s / 2 ]   and (ii)    h 0  ≤  h 1  ≤ ⋯ ≤  h  [ s / 2 ]    . A standard G-domain is a standard G-algebra which is an integral domain. It was conjectured ([1], Conjecture 1.4) that the h-vector of a Cohen-Macaulay standard G-domain is flawless. Niesi and Robbiano ([4], Example 2.4) succeeded in constructing a Cohen-Macaulay standard G-domain with   ( 1 , 3 , 5 , 4 , 4 , 1 )   its h-vector. Thus, in general, the h-vector of a Cohen-Macaulay standard G-domain is not flawless.



In the present paper, it is shown that, for each   1 ≤ s ≤ 5  , an O-sequence


   (  h 0  ,  h 1  , … ,  h  s − 1   ,  h s  , … ,  h  2 s − 2   ,  h  2 s − 1   )  ∈  Z  ≥ 0   2 s    








satisfying the properties that




	(i)

	
   h 0  ≤  h 1  ≤ ⋯ ≤  h  s − 1    ,




	(ii)

	
   h  2 s − 1   =  h 0   ,    h  2 s − 2   =  h 1   ,




	(iii)

	
   h  2 s − 1 − i   =  h i  +   ( − 1 )  i   ,   2 ≤ i ≤ s − 1  









can be the h-vector of a normal toric ring arising from a cycle of odd length. In particular, the above O-sequence, which is non-flawless for each of   s = 4   and   s = 5  , can be the h-vector of a Cohen-Macaulay standard G-domain.




2. Toric Rings Arising from Odd Cycles


Let   C  2 s + 1    denote a cycle of length   2 s + 1  , where   s ≥ 1  , on   [ 2 s + 1 ] = { 1 , 2 , … , 2 s + 1 }   with the edges


     { 1 , 2 } , { 2 , 3 } , … , { 2 s − 1 , 2 s } , { 2 s , 2 s + 1 } , { 2 s + 1 , 1 } .     



(1)







A finite set   W ⊂ [ 2 s + 1 ]   is called stable in   C  2 s + 1    if none of the sets of (1) is a subset of W. In particular, the empty set ∅ and   { 1 } , { 2 } , … , { 2 s + 1 }   are stable. Let   S = K [  x 1  , … ,  x  2 s + 1   , y ]   denote the polynomial ring in   2 s + 2   variables over K. The toric ring of   C  2 s + 1    is the subring   K [  C  2 s + 1   ]   of S which is generated by those squarefree monomials   (  ∏  i ∈ W    x i  ) y   for which   W ⊂ [ 2 s + 1 ]   is stable in   C  2 s + 1   . It follows that   K [  C  2 s + 1   ]   can be a standard G-algebra with each   deg (  ∏  i ∈ W    x i  ) y = 1  . It is shown ([5], Theorem 8.1) that   K [  C  2 s + 1   ]   is normal. In particular,   K [  C  2 s + 1   ]   is a Cohen-Macaulay standard G-domain. Now, we discuss when   K [  C  2 s + 1   ]   is Gorenstein. Here a Cohen-Macaulay ring is called Gorenstein if it has finite injective dimension.



Theorem 1.

The toric ring   K [  C  2 s + 1   ]   is Gorenstein if and only if either   s = 1   or   s = 2  .





Proof. 

Since the h-vector of   K [  C 3  ]   is   ( 1 , 1 )   and since the h-vector of   K [  C 5  ]   is   ( 1 , 6 , 6 , 1 )  , it follows from ([2], Theorem 4.4) that each of   K [  C 3  ]   and   K [  C 5  ]   is Gorenstein.





Now, we show that   K [  C  2 s + 1   ]   is not Gorenstein if   s ≥ 3  . Let   s ≥ 3  . Write    Q  C  2 s + 1    ⊂   R   2 s + 1     for the stable set polytope of   C  2 s + 1   . Thus   Q  C  2 s + 1     is the convex hull of the finite set


    ∑  i ∈ W    e i  : W  is   a   stable   set   of    G  ⊂   R   2 s + 1   ,  








where    e 1  , … ,  e  2 s + 1   ∈   R   2 s + 1     are the canonical unit coordinate vectors of    R   2 s + 1    and where    ∑  i ∈ ∅    e i  =  ( 0 , … , 0 )  ∈   R   2 s + 1    . One has   dim  Q  2 s + 1   = 2 s + 1  . Then ([6], Theorem 4) says that   Q  C  2 s + 1     is defined by the following inequalities:



	
  0 ≤  x i  ≤ 1   for all   1 ≤ i ≤ 2 s + 1  ;



	
   x i  +  x  i + 1   ≤ 1   for all   1 ≤ i ≤ 2 s  ;



	
   x 1  +  x  2 s + 1   ≤ 1  ;



	
   x 1  + ⋯ +  x  2 s + 1   ≤ s  .






It then follows that each of   Q  C  2 s + 1     and   2  Q  C  2 s + 1      has no interior lattice points and that   ( 1 , … , 1 )   is an interior lattice point of   3  Q  C  2 s + 1     . Furthermore, (Ref. [7], Theorem 4.2) guarantees that the inequality


   x 1  + ⋯ +  x  2 s + 1   ≤ s  








defines a facet of   Q  C  2 s + 1    . Let    P s  = 3  Q  C  2 s + 1    −  ( 1 , … , 1 )   . Thus the origin of    R   2 s + 1    is an interior lattice point of   P s   and the inequality


   x 1  + ⋯ +  x  2 s + 1   ≤ s − 1  








defines a facet of   P s  . This fact together with [8] implies that   P s   is not reflexive. In other words, the dual polytope   P s ∨   of   P s   defined by


   P s ∨  =  { y ∈   R   2 s + 1   :  〈 x , y 〉  ≤ 1  for  all  x ∈  P s  }   








is not a lattice polytope, where   〈 x , y 〉   is the usual inner product of    R   2 s + 1   . It then follows from ([9], Theorem (1.1)) (and also from ([5], Theorem 8.1)) that   K [  C  2 s + 1   ]   is not Gorenstein, as desired. □



It is known ([2], Theorem 4.4) that a Cohen-Macaulay standard G-domain A is Gorenstein if and only if the h-vector   h  ( A )  =  (  h 0  , … ,  h s  )    is symmetric, i.e.,    h i  =  h  s − i     for   0 ≤ i ≤ [ s / 2 ]  . Hence the h-vector of the toric ring   K [  C  2 s + 1   ]   is not symmetric when   s ≥ 3  .



Example 1.

By using Normaliz [10], the h-vector of the toric ring   K [  C 7  ]   is   ( 1 , 21 , 84 , 85 , 21 , 1 )  .






3. Non-Flawless  O -Sequences of Normal Toric Rings


We now come to concrete examples of non-flawless O-sequences which can be the h-vectors of normal toric rings.



Example 2.

The h-vector of the toric ring   K [  C 9  ]   is


   ( 1 , 66 , 744 , 2305 , 2304 , 745 , 66 , 1 ) .   








Furthermore,


   ( 1 , 187 , 5049 , 37247 , 96448 , 96449 , 37246 , 5050 , 187 , 1 )   








is the h-vector of the toric ring   K [  C 11  ]  .





We conclude the present paper with the following



Conjecture 1.

The h-vector of the toric ring   K [  C  2 s + 1   ]   of   C  2 s + 1    is of the form


   ( 1 ,  h 1  ,  h 2  ,  h 3  , … ,  h i  , … ,  h  s − 1   ,  h  s − 1   +   ( − 1 )   s − 1   , … ,  h i  +   ( − 1 )  i  , … ,  h 3  − 1 ,  h 2  + 1 ,  h 1  , 1 ) .   
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