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Abstract: Studying Hilbert functions of concrete examples of normal toric rings, it is demonstrated that
for each 1 ≤ s ≤ 5, an O-sequence (h0, h1, . . . , h2s−1) ∈ Z2s

≥0 satisfying the properties that (i) h0 ≤ h1 ≤
· · · ≤ hs−1, (ii) h2s−1 = h0, h2s−2 = h1 and (iii) h2s−1−i = hi + (−1)i, 2 ≤ i ≤ s− 1, can be the h-vector of
a Cohen-Macaulay standard G-domain.
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1. Background

In the paper [1] published in 1989, several conjectures on Hilbert functions of Cohen-Macaulay
integral domains are studied.

Let A =
⊕∞

n=0 An be a standard G-algebra [2]. Thus A is a Noetherian commutative graded ring for
which (i) A0 = K a field, (ii) A = K[A1] and (iii) dimK A1 < ∞. The Hilbert function of A is defined by

H(A, n) = dimK An, n = 0, 1, 2, . . .

Let dim A = d and v = H(A, 1) = dimK A1. A classical result ([3], Chapter 5, Section 13) says
that H(A, n) is a polynomial for n sufficiently large and its degree is d− 1. It follows that the sequence
h(A) = (h0, h1, h2, . . .), called the h-vector of A, defined by the formula

(1− λ)d
∞

∑
n=0

H(A, n)λn =
∞

∑
i=0

hiλ
i

has finitely many non-zero terms with h0 = 1 and h1 = v− d. If hi = 0 for i > s and hs 6= 0, then we write
h(A) = (h0, h1, . . . , hs).

Let Y1, . . . , Yr be indeterminates. A non-empty set M of monomials Ya1
1 · · ·Y

ar
r in the variables

Y1, . . . , Yr is said to be an order ideal of monomials if, whenever m ∈ M and m′ divides m, then m′ ∈ M.
Equivalently, if Ya1

1 · · ·Y
ar
r ∈ M and 0 ≤ bi ≤ ai, then Yb1

1 · · ·Y
br
r ∈ M. In particular, since M is non-empty,

1 ∈ M. A finite sequence (h0, h1, . . . , hs) of non-negative integers is said to be an O-sequence if there exists
an order ideal M of monomials in Y, . . . , Yr with each deg Yi = 1 such that hj = |{m ∈ M|deg m = j}|
for any 0 ≤ j ≤ s. In particular, h0 = 1. If A is Cohen-Macaulay, then h(A) = (h0, h1, . . . , hs) is an
O-sequence ([2], p. 60). Furthermore, a finite sequence (h0, h1, . . . , hs) of integers with h0 = 1 and hs 6= 0 is
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the h-vector of a Cohen-Macaulay standard G-algebra if and only if (h0, h1, . . . , hs) is an O-sequence ([2],
Corollary 3.11).

An O-sequence (h0, h1, . . . , hs) with hs 6= 0 is called flawless ([1], p. 245) if (i) hi ≤ hs−i for 0 ≤ i ≤ [s/2]
and (ii) h0 ≤ h1 ≤ · · · ≤ h[s/2]. A standard G-domain is a standard G-algebra which is an integral domain.
It was conjectured ([1], Conjecture 1.4) that the h-vector of a Cohen-Macaulay standard G-domain is
flawless. Niesi and Robbiano ([4], Example 2.4) succeeded in constructing a Cohen-Macaulay standard
G-domain with (1, 3, 5, 4, 4, 1) its h-vector. Thus, in general, the h-vector of a Cohen-Macaulay standard
G-domain is not flawless.

In the present paper, it is shown that, for each 1 ≤ s ≤ 5, an O-sequence

(h0, h1, . . . , hs−1, hs, . . . , h2s−2, h2s−1) ∈ Z2s
≥0

satisfying the properties that

(i) h0 ≤ h1 ≤ · · · ≤ hs−1,
(ii) h2s−1 = h0, h2s−2 = h1,

(iii) h2s−1−i = hi + (−1)i, 2 ≤ i ≤ s− 1

can be the h-vector of a normal toric ring arising from a cycle of odd length. In particular, the above
O-sequence, which is non-flawless for each of s = 4 and s = 5, can be the h-vector of a Cohen-Macaulay
standard G-domain.

2. Toric Rings Arising from Odd Cycles

Let C2s+1 denote a cycle of length 2s + 1, where s ≥ 1, on [2s + 1] = {1, 2, . . . , 2s + 1} with the edges

{1, 2}, {2, 3}, . . . , {2s− 1, 2s}, {2s, 2s + 1}, {2s + 1, 1}. (1)

A finite set W ⊂ [2s + 1] is called stable in C2s+1 if none of the sets of (1) is a subset of W. In particular,
the empty set ∅ and {1}, {2}, . . . , {2s + 1} are stable. Let S = K[x1, . . . , x2s+1, y] denote the polynomial
ring in 2s + 2 variables over K. The toric ring of C2s+1 is the subring K[C2s+1] of S which is generated by
those squarefree monomials (∏i∈W xi)y for which W ⊂ [2s + 1] is stable in C2s+1. It follows that K[C2s+1]

can be a standard G-algebra with each deg(∏i∈W xi)y = 1. It is shown ([5], Theorem 8.1) that K[C2s+1] is
normal. In particular, K[C2s+1] is a Cohen-Macaulay standard G-domain. Now, we discuss when K[C2s+1]

is Gorenstein. Here a Cohen-Macaulay ring is called Gorenstein if it has finite injective dimension.

Theorem 1. The toric ring K[C2s+1] is Gorenstein if and only if either s = 1 or s = 2.

Proof. Since the h-vector of K[C3] is (1, 1) and since the h-vector of K[C5] is (1, 6, 6, 1), it follows from ([2],
Theorem 4.4) that each of K[C3] and K[C5] is Gorenstein.

Now, we show that K[C2s+1] is not Gorenstein if s ≥ 3. Let s ≥ 3. Write QC2s+1 ⊂ R2s+1 for the stable
set polytope of C2s+1. Thus QC2s+1 is the convex hull of the finite set{

∑
i∈W

ei : W is a stable set of G

}
⊂ R2s+1,

where e1, . . . , e2s+1 ∈ R2s+1 are the canonical unit coordinate vectors of R2s+1 and where ∑i∈∅ ei =

(0, . . . , 0) ∈ R2s+1. One has dimQ2s+1 = 2s + 1. Then ([6], Theorem 4) says that QC2s+1 is defined by the
following inequalities:
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• 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ 2s + 1;
• xi + xi+1 ≤ 1 for all 1 ≤ i ≤ 2s ;
• x1 + x2s+1 ≤ 1;
• x1 + · · ·+ x2s+1 ≤ s.

It then follows that each of QC2s+1 and 2QC2s+1 has no interior lattice points and that (1, . . . , 1) is an
interior lattice point of 3QC2s+1 . Furthermore, (Ref. [7], Theorem 4.2) guarantees that the inequality

x1 + · · ·+ x2s+1 ≤ s

defines a facet of QC2s+1 . Let Ps = 3QC2s+1 − (1, . . . , 1). Thus the origin of R2s+1 is an interior lattice point
of Ps and the inequality

x1 + · · ·+ x2s+1 ≤ s− 1

defines a facet of Ps. This fact together with [8] implies that Ps is not reflexive. In other words, the dual
polytope P∨s of Ps defined by

P∨s = {y ∈ R2s+1 : 〈x, y〉 ≤ 1 for all x ∈ Ps}

is not a lattice polytope, where 〈x, y〉 is the usual inner product of R2s+1. It then follows from ([9],
Theorem (1.1)) (and also from ([5], Theorem 8.1)) that K[C2s+1] is not Gorenstein, as desired.

It is known ([2], Theorem 4.4) that a Cohen-Macaulay standard G-domain A is Gorenstein if and only
if the h-vector h(A) = (h0, . . . , hs) is symmetric, i.e., hi = hs−i for 0 ≤ i ≤ [s/2]. Hence the h-vector of the
toric ring K[C2s+1] is not symmetric when s ≥ 3.

Example 1. By using Normaliz [10], the h-vector of the toric ring K[C7] is (1, 21, 84, 85, 21, 1).

3. Non-Flawless O-Sequences of Normal Toric Rings

We now come to concrete examples of non-flawless O-sequences which can be the h-vectors of normal
toric rings.

Example 2. The h-vector of the toric ring K[C9] is

(1, 66, 744, 2305, 2304, 745, 66, 1).

Furthermore,
(1, 187, 5049, 37247, 96448, 96449, 37246, 5050, 187, 1)

is the h-vector of the toric ring K[C11].

We conclude the present paper with the following

Conjecture 1. The h-vector of the toric ring K[C2s+1] of C2s+1 is of the form

(1, h1, h2, h3, . . . , hi, . . . , hs−1, hs−1 + (−1)s−1, . . . , hi + (−1)i, . . . , h3 − 1, h2 + 1, h1, 1).
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