On Canonical Almost Geodesic Mappings of Type π2(e)
Abstract
:1. Introduction
2. Basic Definitions of Almost Geodesic Mappings of Spaces with Affine Connections
3. Almost Geodesic Mappings
4. Canonical Almost Geodesic Mappings Preserving the Riemann Tensor
5. Canonical Almost Geodesic Mappings of Spaces with Affine Connection onto Symmetric Spaces
Author Contributions
Funding
Conflicts of Interest
References
- Levi-Civita, T. Sulle trasformazioni dello equazioni dinamiche. Annali di Matematica Pura ed Applicata 1896, 24, 252–300. [Google Scholar] [CrossRef] [Green Version]
- Petrov, A.Z. Modeling of physical fields. Gravitation Gen. Relat. 1968, 4, 7–21. [Google Scholar]
- Sinyukov, N.S. Almost geodesic mappings of affinely connected and Riemannian spaces. Sov. Math. 1963, 4, 1086–1088. [Google Scholar]
- Sinyukov, N.S. Almost-geodesic mappings of affinely-connected spaces and e-structures. Math. Notes 1970, 7, 272–278. [Google Scholar] [CrossRef]
- Sinyukov, N.S. Geodesic Mappings of Riemannian Spaces; Nauka: Moscow, Russia, 1979. [Google Scholar]
- Sinyukov, N.S. Almost-geodesic mappings of affinely connected and Riemann spaces. J. Sov. Math. 1984, 25, 1235–1249. [Google Scholar] [CrossRef]
- Sobchuk, V.S. Almost geodesic mappings of Riemannian spaces onto symmetric Riemannian spaces. Mat. Zametki 1975, 17, 757–763. [Google Scholar]
- Sobchuk, V.S.; Mikeš, J.; Pokorná, O. On almost geodesic mappings π2 between semisymmetric Riemannian spaces. Novi Sad J. Math. 1999, 9, 309–312. [Google Scholar]
- Shadnyi, V.S. Almost geodesic maps of Riemannian spaces onto spaces of constant curvature. Math. Notes 1979, 25, 151–153. [Google Scholar] [CrossRef]
- Yablonskaya, N.V. Special groups of almost geodesic transformations of spaces with affine connection. Sov. Math. 1986, 30, 105–108. [Google Scholar]
- Berezovski, V.; Bácsó, S.; Mikeš, J. Almost geodesic mappings of affinely connected spaces that preserve the riemannian curvature. Ann. Math. Inf. 2015, 45, 3–10. [Google Scholar]
- Berezovskii, V.E.; Guseva, N.I.; Mikeš, J. On special first-type almost geodesic mappings of affine connection spaces preserving a certain tensor. Math. Notes 2015, 98, 515–518. [Google Scholar] [CrossRef]
- Berezovski, V.E.; Jukl, M.; Juklová, L. Almost geodesic mappings of the first type onto symmetric spaces. In Proceedings of the 16th Conference on Applied Mathematics (APLIMAT 2017), Bratislava, Slovakia, 31 January–2 February 2017. [Google Scholar]
- Berezovski, V.E.; Mikeš, J. On the classification of almost geodesic mappings of affine-connected spaces. In Proceedings of the Differential Geometry and Applications Conference, Dubrovnik, Yugoslavia, 26 June–3 July 1988; pp. 41–48. [Google Scholar]
- Berezovski, V.E.; Mikeš, J. On a classification of almost geodesic mappings of affine connection spaces. Acta Univ. Palacki. Olomuc. Math. 1996, 35, 21–24. [Google Scholar]
- Berezovski, V.E.; Mikeš, J. On almost geodesic mappings of the type π1 of Riemannian spaces preserving a system n-orthogonal hypersurfaces. Rend. Circ. Mat. Palermo 1999, II, 103–108. [Google Scholar]
- Berezovski, V.E.; Mikeš, J. Almost geodesic mappings of type π1 onto generalized Ricci-symmetric manifolds. Uch. zap. Kazan. Univ. Ser. Fiz.-Math. 2009, 151, 9–14. [Google Scholar]
- Berezovski, V.E.; Mikeš, J. On canonical almost geodesic mappings of the first type of affinely connected spaces. Russ. Math. 2014, 58, 1–5. [Google Scholar] [CrossRef]
- Berezovski, V.E.; Mikeš, J. Almost geodesic mappings of spaces with affine connection. J. Math. Sci. 2015, 207, 389–409. [Google Scholar] [CrossRef]
- Berezovski, V.E.; Mikeš, J.; Vanžurová, A. Almost geodesic mappings onto generalized Ricci-Symmetric manifolds. Acta Math. Acad. Paedag. Nyiregyhaziensis 2010, 26, 221–230. [Google Scholar]
- Berezovski, V.E.; Mikeš, J.; Vanžurová, A. Fundamental PDE’s of the canonical almost geodesic mappings of type π1. Bull. Malays. Math. Sci. Soc. 2014, 2, 647–659. [Google Scholar]
- Berezovski, V.E.; Cherevko, Y.; Rýparová, L. Conformal and geodesic mappings onto some special spaces. Mathematics 2019, 7, 664. [Google Scholar] [CrossRef] [Green Version]
- Mikeš, J.; Pokorná, O.; Starko, G.A.; Vavříková, H. On almost geodesic mappings π2(e), e = ±1. In Proceedings of the APLIMAT 2005 Conference, Bratislava, Slovakia, 1–4 February 2005; pp. 315–321. [Google Scholar]
- Škodová, M.; Mikeš, J.; Pokorná, O. On holomorphically projective mappings from equiaffine symmetric and recurrent spaces onto Kählerian spaces. Rend. Circ. Mat. Palermo. Ser. II 2005, 75, 309–316. [Google Scholar]
- Vavříková, H.; Mikeš, J.; Pokorná, O.; Starko, G. On fundamental equations of almost geodesic mappings π2(e). Russ. Math. 2007, 1, 8–12. [Google Scholar] [CrossRef]
- Petrović, M.Z.; Stanković, M.S. Special almost geodesic mappings of the first type of non-symmetric affine connection spaces. Bull. Malays. Math. Sci. Soc. 2017, 40, 1353–1362. [Google Scholar] [CrossRef]
- Petrović, M.Z. Canonical almost geodesic mappings of type θπ2(0,F), θ ∈ {1,2} between generalized parabolic Kähler manifolds. Miskolc Math. Notes 2018, 19, 469–482. [Google Scholar] [CrossRef]
- Petrović, M.Z. Special almost geodesic mappings of the second type between generalized Riemannian spaces. Bull. Malays. Math. Sci. Soc. 2019, 42, 707–727. [Google Scholar] [CrossRef]
- Stanković, M.S. On canonic almost geodesic mappings of the second type of affine spaces. Filomat 1999, 13, 105–144. [Google Scholar]
- Stanković, M.S.; Zlatanović, M.L.; Vesić, N.O. Basic equations of G-almost geodesic mappings of the second type, which have the property of reciprocity. Czech. Math. J. 2015, 65, 787–799. [Google Scholar] [CrossRef] [Green Version]
- Vesić, N.O.; Stanković, M.S. Invariants of special second-type almost geodesic mappings of generalized Riemannian space. Mediterr. J. Math. 2018, 15, 60. [Google Scholar] [CrossRef]
- Vesić, N.O.; Velimirović, L.S.; Stanković, M.S. Some invariants of equitorsion third type almost geodesic mappings. Mediterr. J. Math. 2016, 13, 4581–4590. [Google Scholar] [CrossRef]
- Mikeš, J.; Stepanova, E.; Vanžurová, A.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Gavrilchenko, M.L.; Haddad, M.; et al. Differential Geometry of Special Mappings; Palacky Univ. Press: Olomouc, Czech Republic, 2015. [Google Scholar]
- Mikeš, J.; Bácsó, S.; Berezovski, V.E.; Chepurna, O.; Chodorová, M.; Chudá, H.; Formella, S.; Gavrilchenko, M.L.; Haddad, M.; Hinterleitner, I.; et al. Differential Geometry of Special Mappings; Palacky Univ. Press: Olomouc, Czech Republic, 2019. [Google Scholar]
- Mikeš, J. Holomorphically projective mappings and their generalizations. J. Math. Sci. 1998, 89, 1334–1353. [Google Scholar] [CrossRef]
- Berezovskii, V.E.; Mikeš, J.; Chudá, H.; Chepurna, O.Y. On canonical almost geodesic mappings which preserve the Weyl projective tensor. Russ. Math. 2017, 61, 1–5. [Google Scholar] [CrossRef]
- Bejan, C.-L.; Kowalski, O. On generalization of geodesic and magnetic curves. Note Mat. 2017, 37, 49–57. [Google Scholar]
- Kozak, A.; Borowiec, A. Palatini frames in scalar-tensor theories of gravity. Eur. Phys. J. 2019, 79, 335. [Google Scholar] [CrossRef]
- Sinyukov, N.S. On geodesic mappings of Riemannian manifolds onto symmetric spaces. Dokl. Akad. Nauk SSSR 1954, 98, 21–23. [Google Scholar]
- Fomin, V.E. On geodesic mappings of infinite-dimmensional Riemannian spaces onto symmetric spaces of an affine connection. Tr. Geom. Semin. Kazan 1979, 11, 93–99. [Google Scholar]
- Hinterleitner, I.; Mikeš, J. Geodesic mappings onto Weyl manifolds. J. Appl. Math. 2009, 2, 125–133. [Google Scholar]
- Mikeš, J. Special F-planar mappings of affinely connected spaces onto Riemannian spaces. Vestn. Mosk. Univ. 1994, 3, 18–24, Mosc. Univ. Math. Bull.1994, 49, 15–21. [Google Scholar]
- Mikeš, J.; Sinyukov, N.S. On quasiplanar mappings of spaces of affine connection. Iz. VUZ. Matematika 1983, 27, 55–61, Sov. Math.1983, 27, 63–70. [Google Scholar]
- Cartan, É. Les espaces riemanniens symétriques. Verhandlungen Kongress Zürich 1932, 1, 152–161. [Google Scholar]
- Helgason, S. Differential Geometry, Lie Groups, and Symmetric Spaces; AMS: Providence, RI, USA, 1978. [Google Scholar]
- Shirokov, A.P. P.A. Shirokov’s work on the geometry of symmetric spaces. J. Math. Sci. 1998, 89, 1253–1260. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berezovski, V.; Mikeš, J.; Rýparová, L.; Sabykanov, A. On Canonical Almost Geodesic Mappings of Type π2(e). Mathematics 2020, 8, 54. https://doi.org/10.3390/math8010054
Berezovski V, Mikeš J, Rýparová L, Sabykanov A. On Canonical Almost Geodesic Mappings of Type π2(e). Mathematics. 2020; 8(1):54. https://doi.org/10.3390/math8010054
Chicago/Turabian StyleBerezovski, Volodymyr, Josef Mikeš, Lenka Rýparová, and Almazbek Sabykanov. 2020. "On Canonical Almost Geodesic Mappings of Type π2(e)" Mathematics 8, no. 1: 54. https://doi.org/10.3390/math8010054
APA StyleBerezovski, V., Mikeš, J., Rýparová, L., & Sabykanov, A. (2020). On Canonical Almost Geodesic Mappings of Type π2(e). Mathematics, 8(1), 54. https://doi.org/10.3390/math8010054