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Abstract: This paper gives the new concepts of quasi (s, r)-contractive multi-valued operators and
establishes some related fixed point results for such operators. In addition, an application to certain
functional equations arising from dynamic programming is given to illustrate the usage of the
obtained results.
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1. Introduction and Preliminaries

As it is well known to all, the proverbial Banach contraction mapping principle is a very useful,
simple and classical tool in modern mathematics, and has been widely used in many branches
of mathematics and physics. Many mathematicians have researched and generalized the Banach
contraction mapping principle along different directions, such as the fixed point theorem of fuzzy
metric spaces, C∗-algebra valued metric spaces and so on [1–5]. In general the theorem has been
extended in two directions. On the one hand, the usual contractive condition is replaced with a weakly
contractive condition. On the other hand, the complete metric space is replaced by different types
of metric spaces [6–8]. However at present, in order to get an analog result, one always has to equip
the powerset of a nonempty set with some suitable metric. One such a metric is a Hausdorff metric.
It was Markin [9] who used the Hausdorff metric to study the fixed point theory of the multi-valued
contractive mappings for the first time. In 1969, Nadler [10] and Reich [11,12] introduced the fixed
point theorems of the multi-valued contractive operators respectively. Recently Popescu [13] gave the
concept of the (s, r)−contractive multi-valued operator and showed that such an operator is nothing
but a weakly Picard operator. Based on [13] Kamran and Hussain [14] introduced the notion of the
weakly (s, r)−contractive multi-valued operator.

This paper will introduce the concept of quasi (s, r)-contractive multi-valued operator based
on the notion and properties of (s, r)-contractive multi-valued operator. Moreover, some fixed point
theorems for mappings satisfying the contractive conditions about such an operator are established.
In addition, the existence results for a type of functional equations arising in dynamic programming
are given as an application.

To begin, let us start from some fundamental definitions and theorems as follows. Details can be
seen in [6,10,13,15–20].
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Definition 1. [13] Suppose that (X, d) is a nonempty metric space and CB(X) be the class of all nonempty
bounded closed subsets of X. Set

H(A, B) = max

{
sup
x∈A

d(x, B), sup
y∈B

d(y, A)

}
, A, B ∈ CB(X),

where d(x, B) = inf
y∈B

d(x, y), then (CB(X), H) is a metric space and H(A, B) is called a Hausdorff metric

between A and B.

It is easy to see that if (X, d) is a complete metric space, (CB(X), H) is complete as well.

Definition 2. [10] Let X be a metric space and T : X → CB(X) be a multi-valued operator. If there exists
k ∈ [0, 1] such that H(Tx, Ty) ≤ k d(x, y) for all x, y ∈ X, we call T a contractive multi-valued operator.

Definition 3. [13] Let (X, d) be a metric space and T : X → CB(X) be a multi-valued operator. If there exists
r ∈ [0, 1) and s ≥ r, such that

d(y, Tx) ≤ s d(x, y)⇒ H(Tx, Ty) ≤ rMT(x, y), ∀x, y ∈ X,

where

MT(x, y) = max
{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}
,

then T is called a (s, r)-contractive multi-valued operator.

Theorem 1. [10] Let (X, d) be a complete metric space and T : X → CB(X) be an (s, r)-contractive
multi-valued operator with s > r. Then T has a fixed point, namely, there exists x ∈ X such that x ∈ Tx.

Theorem 2. [10] Let (X, d) be a complete metric space and T : X → X be an (s, r)-contractive single-valued
operator. Then T has a fixed point. Moreover, T has a uniqued fixed point for s ≥ 1.

Definition 4. [15] Let (X, d) be a metric space. The multi-valued map T : X → CB(X) is said to be
a multi-valued quasi-contraction if

H(Tx, Ty) ≤ r max { d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} , ∀x, y ∈ X, r ∈ [0, 1).

Theorem 3. [15] Let (X, d) be a complete metric space. Let T : X → CB(X) be a multi-valued
quasi-contraction with r ∈ [0, 1

2 ). Then T has a fixed point.

By using the fact d(x,Ty)+ d(y,Tx)
2 ≤ max{ d(x, Ty), d(y, Tx)}, we introduce the new notions

which is combined the ideas of Harandi [15], Popescu [13] and Haghi [21] for contractive
multi-valued operators.

2. Main Results

Illuminated by the concept of (s, r)-contractive multi-valued operator, this section will introduce
a new operator, namely, the quasi (s, r)-contractive multi-valued operator and give some related fixed
point theorems.
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Definition 5. Let (X, d) be a complete metric space and T : X → CB(X) be a multi-valued operator.
If there exist r ∈ [0, 1) and s ≥ r such that

d(y, Tx) ≤ s d(x, y)⇒ H(Tx, Ty) ≤ rM∗(x, y), ∀x, y ∈ X,

where

M∗(x, y) = max { d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} ,

then T is called a quasi (s, r)-contractive multi-valued operator on X.

The following theorem generalizes the result of [13] to the setting of complete metric space.

Theorem 4. Suppose that (X, d) is a complete metric space and T : X → CB(X) is a quasi (s, r)-contractive
multi-valued operator with r ∈ [0, 1) and s > r. Then T has a fixed point.

Proof. Let u0 ∈ X and u1 ∈ Tu0.
If u1 = u0, then u0 is a fixed point of T. Let u1 6= u0. Take u2 ∈ Tu1 such that d(u1, u2) ≤ qH(Tu0, Tu1),
where q > 1 with 2qr1 < 1 and 0 ≤ r < r1 < 1.

Since d(u1, Tu0) = 0 ≤ s d(u1, u0), by our hypothesis

H(Tu0, Tu1) ≤ r max{ d(u0, u1), d(u0, Tu0), d(u1, Tu1), d(u0, Tu1), d(u1, Tu0)},

d(u1, u2) ≤ qH(Tu0, Tu1) ≤ qr max{ d(u0, u1), d(u0, Tu0), d(u1, Tu1), d(u0, Tu1), d(u1, Tu0)}
≤ qr1 max{ d(u0, u1), d(u1, u2), d(u0, u2)}
≤ qr1 max{ d(u0, u1), d(u1, u2), d(u0, u1) + d(u1, u2)}
= qr1[ d(u0, u1) + d(u1, u2)]

= 2qr1[
d(u0, u1) + d(u1, u2)

2
]

≤ 2qr1 max{ d(u0, u1), d(u1, u2)},

where, 2qr1 < 1.
Case(i) : If max{ d(u0, u1), d(u1, u2)} = d(u1, u2), then d(u2, u1) = 0.
So u1 is a fixed point of T since u1 = u2 ∈ Tu1.
Case(ii) : If max{ d(u0, u1), d(u1, u2)} = d(u0, u1), then we have

d(u1, u2) ≤ 2qr1 d(u0, u1).

Thus one can construct a sequence {un} in X such that un+1 ∈ Tun with

d(un+1, un+2) ≤ 2qr1 d(un, un+1), 2qr1 < 1, ∀n ≥ 0,

whenever,
d(un+1, Tun) ≤ s d(un+1, un),



Mathematics 2020, 8, 64 4 of 11

∞

∑
n=0

d(un+1, un+2) = d(u1, u2) + d(u2, u3) + d(u3, u4) + · · ·

≤ 2qr1 d(u0, u1) + 2qr1 d(u1, u2) + 2qr1 d(u2, u3) + · · ·
≤ [2qr1 + (2qr1)

2 + (2qr1)
3 + · · · ] d(u0, u1)

=
2qr1

1− 2qr1
d(u0, u1), 2qr1 < 1

< ∞.

It means {un} in X is a Cauchy sequence and limp→∞ un = u∗ in X since (X, d)is a complete
metric space.

We now show that there exists a subsequence {unk} of {un} such that d(u∗, Tunk ) ≤
s d(u∗, unk ), ∀k ∈ N.

Indeed, if there is a positive integer N such that

d(u∗, Tun) > s d(u∗, un), ∀n ≥ N.

This implies
d(u∗, un+1) > s d(u∗, un), ∀n ≥ N.

Using induction, one can obtain that for all n ≥ N, p ≥ 1,

d(u∗, un+p) > sp d(u∗, un).

Futhermore,

d(un, un+p) ≤ d(un, un+1) + d(un+1, un+2) + · · ·+ d(un+p−1, un+p)

≤ d(un, un+1) + 2qr1 d(un, un+1) + · · ·+ (2qr1)
p−1 d(un, un+1)

= (
1− (2qr1)

p

1− 2qr1
) d(un, un+1), ∀n ≥ N, p ≥ 1.

Set p→ ∞, then we have

d(u∗, un) ≤
1

1− 2qr1
d(un, un+1), ∀n ≥ 0.

So

d(u∗, un+p) ≤
1

1− 2qr1
d(un+p, un+p+1)

≤
rp

1
1− 2qr1

d(un, un+1).

But d(u∗, un+p) > sp d(u∗, un), so

spd(u∗, un) < d(u∗, un+p) ≤
(r1)

p

1− 2qr1
d(un, un+1),

and

d(u∗, un) ≤
(r1)

p

sp(1− 2qr1)
d(un, un+1) =

( r1
s )

p

1− 2qr1
d(un, un+1),
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set p→ ∞, we have

d(u∗, un) ≤ lim
p→∞

( r1
s )

p

1− 2qr1
d(un, un+1) = 0.

It implies that u∗ = un. This is contradict to d(u∗, un+p) > sp d(u∗, un). Therefore there exists
a subsequence {unk} of {un} such that

d(u∗, Tunk ) ≤ s d(u∗, unk ), ∀k ∈ N.

By hypothesis, one has

H(Tu∗, Tunk ) ≤ r max
{

d(u∗, unk ), d(u∗, Tu∗), d(unk , Tunk ), d(u∗, Tunk ), d(unk , Tu∗)
}

.

Therefore,

d(unk+1 , Tu∗) ≤ r max
{

d(u∗, unk ), d(u∗, Tu∗), d(unk , unk+1), d(u∗, unk+1), d(unk , Tu∗)
}

.

Letting k→ ∞, we get

d(u∗, Tu∗) ≤ r max { d(u∗, Tu∗), d(u∗, Tu∗)} ,

d(u∗, Tu∗) ≤ r d(u∗, Tu∗),

where it implies that d(u∗, Tu∗) = 0. Hence u∗ ∈ Tu∗ and u∗ is a fixed point of T. This completes
the proof.

The following example shows that under the condition of Theorem 4 the fixed point may
not be unique.

Example 1. Let X = [1, ∞) with d(x, y) = |x− y| for all x, y ∈ X. Define T : X → CB(X) by

Tx =
[
3, 3 +

x
4

]
, x ∈ X.

Consider
H(Tx, Ty) =

1
4
|x− y| = 1

4
d(x, y),

where we choose r = 1
3 ∈ [0, 1), s = 1

2 > r. Then the conditions of Theorem 4 are fulfilled. It is clear that the
points 3 and 4 are both fixed points of T which implies that the fixed points are not unique.

It is necessary for us to consider when the fixed point of the quasi (s, r)-contractive multi-valued
operator is unique.

Corollary 1. Let (X, d) be a complete metric space and T : X → X be a quasi (s, r)-contractive single-valued
operator with r ∈ [0, 1) and s ≥ 1. Then T has a unique fixed point.

Proof. Suppose u∗ and v∗ are fixed points of T and u∗ 6= v∗.
Then

d(v∗, Tu∗) = d(v∗, u∗) ≤ s d(v∗, u∗), s ≥ 1.
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Using the hypothesis,

H(Tu∗, Tv∗)) ≤ r max { d(u∗, v∗), d(u∗, Tu∗), d(v∗, Tv∗), d(u∗, Tv∗), d(v∗, Tu∗)}
≤ r max { d(u∗, v∗), d(v∗, v∗), d(u∗, u∗)}
= r d(u∗, v∗).

But H(Tu∗, Tv∗) = d(u∗, v∗).
So, d(u∗, v∗) ≤ r d(u∗, v∗), r < 1.
It implies d(u∗, v∗) = 0 and u∗ = v∗ which leads to a contradiction.

The following is another result about the quasi (s, r)-contractive multi-valued operator.

Theorem 5. Let (X, d) be a complete metric space and T : X → CB(X) be a multi-valued operator.
Suppose that there exist constants r, s ∈ [0, 1) with s > r such that

1
1 + r

d(x, Tx) ≤ d(x, y) ≤ 1
1− s

d(Tx, x)⇒ H(Tx, Ty) ≤ rM∗(x, y),

where

M∗(x, y) = max { d(x, y), d(x, Tx), d(y, Tx), d(x, Ty), d(y, Tx)} ,

then T has a fixed point.

Proof. Let s1 ∈ [0, 1) such that 0 ≤ r < s1 < s < 1. Let u0 ∈ X and u1 ∈ Tu0 such that

d(u0, u1) ≤
1− s1

1− s
d(u0, Tu0).

If u1 = u0, then u0 is a fixed point of T. Let u1 6= u0.
Then we obtain

1
1 + r

d(u0, Tu0) ≤ d(u0, u1) ≤
1

1− s1
d(u0, u1) ≤

1
1− s

d(u0, Tu0).

By our hypothesis, we get

H(Tu0, Tu1) ≤ r max { d(u0, u1), d(u0, Tu0), d(u1, Tu1), d(u0, Tu1), d(u1, Tu0)} ,

where r ∈ [0, 1).
Take u2 ∈ Tu1 such that d(u1, u2) ≤ qH(Tu0, Tu1), where q > 1 with 2qr1 < 1 and 0 ≤ r < r1 < 1.
Therefore

d(u1, u2) ≤ qr1 max{ d(u0, u1), d(u0, Tu1), d(u1, Tu1), d(u0, Tu1), d(u1, Tu0)}
≤ qr1 max{ d(u0, u1), d(u1, u2), d(u0, u2)}
≤ qr1 max{ d(u0, u1), d(u1, u2), d(u0, u1) + d(u1, u2)}

= 2qr1{
d(u0, u1) + d(u1, u2)

2
}

≤ 2qr1 max{ d(u0, u1), d(u1, u2)}.

Case(i) : If max{ d(u0, u1), d(u1, u2)} = d(u1, u2), then

d(u2, u1) ≤ 2qr1 d(u1, u2).
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It implies that d(u1, u2) = 0 and so u1 is a fixed point of T.
Case(ii) : If max{ d(u0, u1), d(u1, u2)} = d(u0, u1), then

d(u1, u2) ≤ 2qr1 d(u0, u1), 2qr1 < 1.

Thus, one can construct a sequence {un} in X such that un+1 ∈ Tun and

d(un+1, un+2) ≤ (2qr)n+1 d(un+1, un),

with
d(un, un+1) ≤

1− s1

1− s
d(un, Tun), ∀n ≥ 0

∞

∑
n=1

d(un, un+1) = d(u0, u1) + d(u1, u2) + d(u2, u3) + · · ·

≤ [1 + 2qr1 + (2qr1)
2 + · · · ] d(u0, u1)

=
1

1− 2qr1
d(u0, u1)

< ∞.

Then we obtain the sequence {un} in X is a Cauchy and un → u∗ in X, since X is a complete
meric space.

Since

d(un+p, un) ≤ d(un, un+1) + d(un+1, un+2) + · · ·+ d(un+p−1, un+p)

≤ [1 + 2qr1 + (2qr1)
2 + · · ·+ (2qr1)

p−1] d(un, un+1)

=
1− (2qr1)

p

1− 2qr1
d(un, un+1), ∀n ≥ N, p ≥ 1.

lim
p→∞

d(un+p, un) ≤ lim
p→∞

(
1− (2qr1)

p

1− 2qr1
) d(un, un+1)

d(u∗, un) ≤
1

1− 2qr1
d(un, un + 1), ∀n ≥ 0.

≤ 1
1− r1

d(un, un + 1)

≤ 1
1− r

d(un, un + 1)

Since
d(un, un+1) ≤

1− s1

1− s
d(un, Tun)

it follows that
d(u∗, un) ≤

1
1− s

d(un, Tun), ∀n ≥ 0.

Now we have to show that

1
1 + r

d(un, Tun) ≤ d(u∗, un).

Assume that there is a positive integer N such that

d(u∗, un) <
1

1 + r
d(un, Tun), ∀n ≥ N.
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Then we have

d(un, un+1) ≤ d(un, u∗) + d(u∗, un+1)

<
1

1 + r
[ d(un, Tun) + d(un+1, Tun+1)]

≤ 1
1 + r

[ d(un, Tun) + 2qr1 d(un, un+1)]

d(un, un+1) <
1

(1 + r)(1− 2qr1)
d(un, Tun)

< d(un, Tun)

which is impossible.
So there exists a subsequence {unk} of {un} in X such that

d(u∗, unk ) ≥
1

1 + r
d(Tunk , unk ), ∀k ≥ N.

Since
d(u∗, un) ≤

1
1− s

d(un, Tun), ∀n ≥ 0,

and using the hypothesis, we obtain

H(Tu∗, Tunk ) ≤ rM∗(u∗, unk ).

Thus

d(unk+1, Tu∗) ≤ r max
{

d(u∗, unk ), d(unk , Tunk ), d(u∗, Tu∗), d(unk , Tu∗), d(u∗, Tunk )
}

lim
k→∞

d(unk , Tu∗) ≤ lim
k→∞

r max
{

d(u∗, unk ), d(unk , Tunk ), d(u∗, Tu∗), d(unk , Tu∗), d(u∗, Tunk )
}

d(u∗, Tu∗) ≤ r max { d(u∗, u∗), d(u∗, Tu∗)}
d(u∗, Tu∗) ≤ r d(u∗, Tu∗).

It implies that u∗ ∈ Tu∗ and u∗ is a fixed point of T.

Corollary 2. Let (X, d) be a complete metric space and T : X → X be a quasi (s, r)-contractive single-valued
mapping. Assume that there exist r ∈ [0, 1) such that ∀x, y ∈ X

1
1 + r

d(x, Tx) ≤ d(x, y) ≤ 1
1− r

d(x, Tx)⇒ H(Tx, Ty) ≤ rM∗(x, y),

where
M∗(x, y) = max { d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx)} .

Then there exists a fixed point of T.

Proof. Let u0 ∈ X and u1 = Tu0. Take u2 ∈ Tu1 for r ∈ [0, 1).
It is claim that

1
1 + r

d(u0, Tu0) ≤ d(u0, u1) ≤
1

1− r
d(u0, Tu0),

and thus, by assumption of Theorem 5, we obtain

d(u1, u2) ≤ H(Tu0, Tu1) ≤ 2qr1 d(u0, u1), q > 1 with 2qr1 < 1, 0 ≤ r < r1 < 1
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One can construct a sequence {un} in X with un+1 = Tun such that

d(un+1, un+2) ≤ 2qr1 d(un, un+1).

Then the sequence {un} in X is a Cauchy sequence and un → u∗ in X since X is a complete
meric space.

We can prove that

d(u∗, un) ≤
1

1− r
d(un, un+1), ∀n ≥ 0

and there exist a subsequence {unk} of {un} in X such that

d(unk , u∗) ≥ 1
1 + r

d(unk+1, unk ),

hold for k ≥ N. so

d(unk+1, Tu∗) ≤ r max
{

du∗, unk ), d(unk , Tunk ), d(u∗, Tu∗), d(unk , Tu∗), d(u∗, Tunk )
}

≤ r max
{

d(u∗, unk ), d(unk , unk+1), d(u∗, Tu∗), d(unk+1, u∗), d(Tu∗, unk+1)
}

lim
k→∞

d(unk+1 , Tu∗) ≤ lim
k→∞

r max
{

d(u∗, unk ), d(unk , unk+1), d(u∗, Tu∗), d(unk+1, u∗), d(Tu∗, unk+1)
}

d(u∗, Tu∗) ≤ r d(u∗, Tu∗).

so d(u∗, Tu∗) = 0 and hence Tu∗ = u∗.
It implies that u∗ is a fixed point of T.

3. Application

In this section, we discuss the existence and uniqueness of solutions of a functional equation by
using Theorem 4.

We give the basic notation to use in the section. Let X and Y be Banach spaces and U ⊂ X, V ⊂ Y.
Let B(U) denote the set of all bounded functions on U. If the metric dB : B(U)× B(U) −→ [0, ∞)

is defined by dB(h, k) = supx∈U |h(x)− k(x)|, then (B(U), dB) is a complete metric space.
Assume that U and V are the state and decision spaces respectively.
Then the problem of dynamic programming reduces to the problem of solving the

functional equation:
f (x) = sup

y∈V
H(x, y, f (τ(x, y))),

where τ : U ×V → U represents the transformation of the process and f (x) represents the optimal
return function with initial functional

f (x) = sup
y∈V
{g(x, y) + G(x, y, f (τ(x, y)))}, (x ∈ U),

where g : U ×V → R and G : U ×V ×R→ R are bounded functions.
Define T : B(U)→ B(U) by

T(h(x)) = sup
y∈V
{g(x, y) + G(x, y, f (τ(x, y)))}, ∀h ∈ B(U), x ∈ V.

Then the following result is grated to find the existence and uniqueness of a solution of the classic
functional equation by using theorem.
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Theorem 6. Assume that there exist r ∈ [0, 1), s > r such that for all (x, y) ∈ U × V, h, k ∈ B(U) and
t ∈ U. If the inequality

dB(k(t), Th(t)) ≤ sdB(k(t), h(t))⇒ dB(G(x, h, h(t)), G(x, y, k(t))) ≤ rM∗(h(t), k(t)),

where

M∗(h(t), k(t)) = max{ dB(h(t), k(t)), dB(h(t), Th(t)), dB(k(t), Tk(t)), dB(h(t), Tk(t)), dB(k(t), Th(t))}.

Then the functional equation (*) has a bounded solution. Moreover, if s ≥ 1, then the solution is unique.

Proof. Let l1, l2 ∈ B(U) and x ∈ U. Take y1, y2 ∈ V. Let ε be a positive real number such that

Tl1(x) < g(x, y1) + G(x, y1, l1(τ1)) + ε, (1)

Tl2(x) < g(x, y2) + G(x, y2, l2(τ2)) + ε, (2)

where τi = τi(x, yi), i ∈ {1, 2}.
By the definition of T, we have

Tl1(x) ≥ g(x, y2) + G(x, y2, l1(τ2)), (3)

Tl2(x) ≥ g(x, y1) + G(x, y1, l2(τ1)). (4)

Assume that dB(l2(x), Tl1(x)) ≤ sdB(l2(x), l1(x)). That is, |l2(x)− Tl1(x)| ≤ s|l2(x)− l1(x)|.
So, by using Equations (1) and (4), we obtain

Tl1(x)− Tl2(x) < G(x, y1, h1(τ1))− G(x, y1, h2(τ1)) + ε

= dB(G(x, y1, h1(τ1)), G(x, y1, h2(τ1)) + ε.

Similarly, from Equations (2) and (3), we obtain

Tl2(x)− Tl1(x) < rM∗(l1(x), l2(x)) + ε.

Thus
|T(l1(x))− T(l2(x))| < rM∗(l1(x), l2(x)) + ε.

That is, dB(Tl1(x), Tl2(x)) ≤ rM∗(l1(x), l2(x)).
So, we get that

dB(l2(x), Tl1(x)) ≤ s dB(l2(x), l1(x)),

implies
dB(Tl1(x), Tl2(x))
≤ r max{ dB(l1(x), l2(x), dB(l1(x), Tl1(x)), dB(l2(x), Tl2(x)), dB(l1(x), Tl2(x)), dB(l2(x), Tl1(x))},

It can be seen that all conditions of Theorem 4 are satisfied for T and hence it is proved.
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