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Abstract: In the present article, the Schauder-type fixed point theorem for the class of fuzzy
continuous, as well as fuzzy compact operators is established in a fuzzy normed linear space (fnls)
whose underlying t-norm is left-continuous at (1, 1). In the fuzzy setting, the concept of the measure
of non-compactness is introduced, and some basic properties of the measure of non-compactness
are investigated. Darbo’s generalization of the Schauder-type fixed point theorem is developed
for the class of ψ-set contractions. This theorem is proven by using the idea of the measure
of non-compactness.
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1. Introduction

In 1930, Schauder established an important theorem in the field of fixed point theory. The theorem
stated that “If B is a compact, convex subset of a Banach space X and f : B→ B is a continuous function
then f has a fixed point.” However, to develop more results in functional analysis, Schauder relaxed
the compactness by closedness. The theorem has an enormous influence on the theory of differential
equations. At first, the Schauder-type fixed point theorem was applied to Peano’s existence theorem
for the first order differential equations. After that, many interesting applications of this theorem
were given to differential equations. For example, in 2007, Chu and Torres [1] proved the existence
of positive solutions to the second order singular differential equations with the help of this fixed
point theorem. In 2009, A. F. Dizaji et al. [2] determined the sufficient condition for the existence
of periodic solution of the initial value problems, which correspond to the Duffing’s oscillator
with time varying coefficients as an application of the Schauder-type fixed point theorem. Recently,
in 2019, Shengjun Li et al. [3] established the existence of the periodic orbits of rapidly symmetric
systems with a repulsive singularity. The line of proof of this existence problem is based on the
use of Schauder’s fixed point theorem. Moreover, the global existence of the solution for a class of
functional equations is also studied using the Schauder fixed point theorem, which arises in various
types of neural networks such as the Hopfield neural network, the Cohen–Grossberg neural network,
cellular networks, etc. For the references, please see [4–6].

Due to its huge application in real-life problems, much scientific attention has been drawn
towards the generalization of this theorem. In 1935, A. N. Tychonoff [7] extended Schauder’s theorem
to locally convex spaces. In 1950, M. Hukuhara [8] unified both the theorem of Schauder and Tychonoff.
In 1955 [9], G. Darbo extended the Schauder theorem to a more general class of mappings, the so-called
α-set contractions, which contain compact, as well as continuous mappings. Darbo proved this theorem
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using the concept of Kuratowski’s measure of non-compactness. In 1961 [10], Ky Fan generalized
both Schauder’s and Tychonoff’s theorem for the class of continuous set-valued mappings. In recent
years, a significant contribution has been made towards the generalization of Schauder’s fixed point
theorem. For example, in 2012, R. L. Pouso [11] introduced a new version of Schauder’s theorem for
the class of discontinuous operators. In 2013, R. P. Agarawal et al. [12] established this theorem in
semilinear Banach spaces. In 2016, Wei-Shih Du [13] generalized this theorem in an another direction,
i.e., the compactness assumption is replaced by the finite open cover, and the continuity condition is
totally removed.

On the other hand, several authors, viz. Xio and Zhu, Bag and Samanta, and Zhang and Guo,
have played important roles in the process of the formulation of the Schauder-type fixed point
theorem in the fuzzy setting. For the references, please see [14–16]. However, all of them considered
the underlying t-norm as the continuous t-norm. Therefore, naturally, a question may arise: Is it
possible to prove the Schauder-type fixed point theorem in a fuzzy normed linear space (fnls) w.r.t.
the general t-norm?

In this paper, we try to give an affirmative answer to this question.
In this paper, we develop the Schauder-type fixed point theorem for a fuzzy continuous, as well as

a fuzzy compact operator in an fnls whose underlying t-norm is left-continuous only at (1, 1). We also
establish Darbo’s generalization of the Schauder-type fixed point theorem in the fuzzy setting for the
class of ψ-set contraction mappings using the properties of the measure of non-compactness.

This article is divided into three parts. Section 2 deals with preliminary results, which are used
in the subsequent sections. In Section 3, the Schauder-type fixed point theorem for the class of
fuzzy continuous, as well as fuzzy compact mappings is established in generalized fnls. In Section 4,
the definition of the measure of non-compactness is given, and some basic properties are studied to
prove Darbo’s generalization of the Schauder-type fixed point theorem.

2. Preliminaries

Definition 1 ([17]). Let X be a linear space over the field F (C or R). A fuzzy subset N of X×R (R is the set
of all real numbers) is called a fuzzy norm on X if:

(N1) ∀t ∈ R with t ≤ 0, N(x, t) = 0;
(N2) (∀t ∈ R, t > 0, N(x, t) = 1) i f f x = θ;
(N3) ∀t ∈ R, t > 0, N(cx, t) = N(x, t

|c| ) i f c 6= 0;
(N4) ∀s, t ∈ R; x, u ∈ X; N(x + u, s + t) ≥ N(x, s) ∗ N(u, t);
(N5) N(x, .) is a non-decreasing function of R and lim

t→∞
N(x, t) = 1.

The triplet (X, N, ∗) is referred to as an fnls.

Throughout the paper, we assume the following conditions:

1. For each x 6= θ, N(x, t) is a left-continuous function w.r.t. t.
2. The t-norm ∗ is left-continuous at one with respect to the first or second component.

Theorem 1 ([17]). Let (X, N, ∗) be a finite-dimensional fnls in which the underlying t-norm ∗ is continuous
at (1, 1). Then, a subset A is compact iff A is closed and bounded.

Lemma 1 ([18]). Let (X, N, ∗) be an fnls. Then:

lim
n→∞

N(xn − x, t) = 1 ∀t > 0⇔ lim
n→∞

∧ {t > 0 : N(xn − x, t) > 1− α} = 0 ∀α ∈ (0, 1)

Proposition 1 ([18]). Let (X, N, ∗) be an fnls. Then, the function M : X × X × [0, ∞) → [0, 1] defined by
MN(x, y, t) = N(x− y, t) is a fuzzy metric space defined by H. Wu [19]. Thus, the family B (the collection of
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all (α, t) neighborhoods BN(x, α, t), x ∈ X, 0 < α < 1, t > 0) induces a Hausdorff topology τ such that B is a
base for τ and τ also satisfies the first countability axiom, where BN(x, α, t) = {y ∈ X : N(x− y, t) > 1− α}.

Definition 2 ([20]). A fuzzy metric space (X, M, ∗) is called compact if (X, τM) is compact.

Theorem 2 ([20]). A fuzzy metric space (X, M, ∗) is fuzzy totally bounded iff every sequence has a
Cauchy subsequence.

Note 1. The above result is also true if (X, M, ∗) is the H. Wu-type fuzzy metric space.

Definition 3 ([21]). Let (X, N, ∗) be an fnls. Let {xn} be a sequence in X. Then, {xn} is said to be convergent
if ∃ x ∈ X such that:

lim
n→∞

N(xn − x, t) = 1 ∀t > 0.

In that case, x is called the limit of the sequence {xn} and is denoted by lim xn.

Definition 4 ([21]). A subset A of an fnls is said to be fuzzy bounded if for each α, 0 < α < 1 ∃ t(α) > 0 such
that N(x, t) > 1− α ∀x ∈ A.

Definition 5 ([21]). Let (X, N, ∗) be an fnls. A subset F of X is said to be closed if for any sequence {xn} in F,
it converges to x, i.e.,

lim
n→∞

N(xn − x, t) = 1 ∀t > 0

implies that x ∈ F.

Definition 6 ([21]). Let (X, N, ∗) be an fnls. A subset B of X is said to be the closure of F if for any x ∈ B, ∃,
a sequence {xn} in F such that:

lim
n→∞

N(xn − x, t) = 1 ∀t > 0.

We denote the set B by F.

Definition 7 ([21]). Let (X, N, ∗) be an fnls. A subset A of X is said to be compact if any sequence {xn} in A
has a subsequence converging to an element of A.

Definition 8 ([21]). A sequence {xn} is said to be Cauchy if lim
n→∞

N(xn − xn+p, t) = 1, ∀t > 0, p = 1, 2, 3...

This definition of a Cauchy sequence is equivalent to lim
n,m→∞

N(xn − xm, t) = 1, ∀t > 0.

Throughout the paper, we use this as the definition of the Cauchy sequence.

Lemma 2 ([22]). Let (X, N, ∗) be an fnls. If A ⊆ X is fuzzy bounded, then A is also.

Definition 9 ([22]). Let (X, N1, ∗1) and (Y, N2, ∗2) be two fnlss. A linear operator T : (X, N1, ∗1) →
(Y, N2, ∗2) is called a fuzzy compact linear operator if for every fuzzy bounded subset M of X, the subset T(M)

of Y is relatively compact, i.e., T(M) is a compact set w.r.t. τN2 .

Theorem 3 ([22]). Let T : (X, N1, ∗1) → (Y, N2, ∗2) be a linear operator and ∗2 be continuous at (1, 1).
Then, T is a fuzzy compact linear operator iff it maps every bounded sequence {xn} in (X, N1, ∗1) onto a
sequence {T(xn)} in (Y, N2, ∗2), which has a convergent subsequence.
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Lemma 3 ([23]). A fuzzy metric space (X, M, ∗) is sequentially compact iff it is compact.

Note 2. By Lemma 3, in an fnls, Definition 2 and Definition 7 are equivalent.

Theorem 4 ([24]). In an fnls (X, N, ∗), a subset A of X is fuzzy bounded iff A is bounded in topology τN .

Theorem 5 ([24]). In an fnls (X, N, ∗), the following statements are equivalent:

(i) A is fuzzy totally bounded.

(ii) ∀α ∈ (0, 1), ∀t > 0 ∃ {x1, x2, · · · xn} ⊆ A : A ⊆
n
∪

i=1
(xi + B(θ, α, t))

Theorem 6 ([24]). Let (X, N, ∗) be an fnls and K ⊆ X be a compact set in (X, τN). Then, K is fuzzy
totally bounded.

Definition 10 ([25]). An fnls (X, N) is a fuzzy Banach space if its induced fuzzy metric is complete.

Definition 11 ([26]). A subset A of an fnls (X, N, ∗) is called fuzzy totally bounded if:

∀α ∈ (0, 1), ∃ {x1, x2, · · · xn} ⊆ X : A ⊆
n
∪

i=1
(xi + B(θ, α, α)).

Theorem 7 ([26]). Let T : (X, N1) → (Y, N2) be a mapping where (X, N1) and (Y, N2) are fnlss. Then,
the following statements are equivalent:

(i) T is fuzzy continuous on X.
(ii) T is continuous on X.
(iii) T maps a fuzzy bounded set to a fuzzy bounded set.

Theorem 8. In a fuzzy Banach space (X, N, ∗), if a subset A of X is fuzzy totally bounded, then it is compact
in (X, τN).

Proof. Consider a sequence {xn} in A. By Theorem 2, {xn} has a Cauchy subsequence. Since (X, N, ∗)
is fuzzy Banach space, then the Cauchy subsequence of {xn} is convergent in (X, N, ∗). Therefore,
by Definition 7, A is compact in (X, N, ∗).

Definition 12 ([27]). (Fuzzy continuous) A mapping T from (X, N1) to (Y, N2) is said to be fuzzy continuous
at x0 ∈ X if for given ε > 0, α ∈ (0, 1) ∃ δ(α, ε) > 0, β(α, ε) ∈ (0, 1) such that ∀x ∈ X:

N1(x− x0, δ) > β =⇒ N2(Tx− Tx0, ε) > α

If T is fuzzy continuous at each,
x ∈ X, then T is fuzzy continuous on X.

Definition 13 ([27]). (Sequentially fuzzy continuous) A mapping T from (X, N1) to (Y, N2) is said to be
sequentially fuzzy continuous at x0 ∈ X if for any sequence {xn}, xn ∈ X with xn → x0 implies Txn → Tx0,
i.e., lim

n→∞
N1(xn − x0, t) = 1 ∀t > 0, =⇒ lim

n→∞
N2(Txn − Tx0, t) = 1 ∀t > 0

Theorem 9 ([27]). Let T : (X, N1)→ (Y, N2) be a mapping where (X, N1) and (Y, N2) are fnlss. Then, T is
fuzzy continuous iff it is sequentially fuzzy continuous.

Note 3. From Definition 9, it is clear that if T is a fuzzy compact linear operator, then T maps bounded sets of
X to bounded sets of Y by Theorem 4. Thus, T is a continuous mapping from (X, τN1) to (Y, τN2).
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3. Schauder-Type Fixed Point Theorem

In this section, we first define the uniformly fuzzy convergence and pointwise fuzzy convergence
for a sequence of functions and investigate the relation between them. After that, we propound
three types of Schauder-type fixed point theorems for the fuzzy compact class, as well as the fuzzy
continuous linear operator in a generalized fnls and try to prove them.

Definition 14. Let fn : (X, N1, ∗1)→ (Y, N2, ∗2) be a family of functions.
(i) { fn} is said to be uniformly fuzzy convergent to a function f on a subset A of X if for each α ∈ (0, 1),

lim
n→∞

∨
x∈A
∧{t > 0 : N2( fn(x)− f (x), t) > 1− α} = 0

i.e., for each α ∈ (0, 1) and for each ε > 0 ∃ N0(α, ε) ∈ N such that:

∨
x∈A
∧ {t > 0 : N2( fn(x)− f (x), t) > 1− α} < ε ∀n ≥ N0

(ii) { fn} is said to be pointwise fuzzy convergent to a function f on a subset A of X if for each α ∈ (0, 1),
for each x ∈ Y ∃ N0(α, ε, x) ∈ N such that:

∧{t > 0 : N2( fn(x)− f (x), t) > 1− α} < ε ∀n ≥ N0

From the definition, it is obvious that (i) implies (ii), but (ii) does not imply (i).We verify this by
the following example.

Example 1. Let us consider a real nls (normed linear space) (R, ‖ ‖), where R is the set of all real numbers and
‖x‖ = |x|, ∀x ∈ R. Define two functions as follows:

N1(x, t) =

 t
t+‖x‖ , t > 0

0, t ≤ 0
N2(x, t) =

{
1, t ≥ ‖x‖
0, t < ‖x‖

Define fn : (R, N1,∧)→ (R, N2,∧) by fn(x) = xn. Now, if we consider
fn : [0, 1]→ [0, 1], then fn is pointwise fuzzy convergent, but not uniformly fuzzy convergent.

Lemma 4. Let f be self-mapping defined on a fuzzy Banach space (X, N, ∗) and f also be a fuzzy compact
linear operator on a subset M of X. Then, there exists a sequence of continuous mappings { fn} such that:

(i) { fn} is uniformly fuzzy convergent to f .
(ii) { fn(M)} generates a finite-dimensional subspace of X.

Proof. Since f is a fuzzy compact linear operator, thus the set { f (x); x ∈ M} is a fuzzy compact
set, i.e., { f (x); x ∈ M} is a compact set w.r.t. τN . Now, by Theorem 6, { f (x); x ∈ M} is fuzzy totally
bounded. Let α0 ∈ (0, 1) and {tn} be a strictly decreasing sequence that tends to 0. Then, for each tn,
we can find a finite No. of elements yn

1 , yn
2 , · · · yn

m ∈ f (M) such that:

f (M) ⊆
m
∪

i=1
yn

i + BN(θ, α0, tn)

=⇒ N( f (x)− yn
i , tn) > 1− α0 ∀x ∈ M

=⇒ ∧{t > 0 : N( f (x)− yn
i , t) > 1− α0} ≤ tn (1)
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We now define fn on f (M) for each y ∈ f (M), by:

fn(y) =
m

∑
i=1

gn
i (y)y

n
i /

m

∑
i=1

gn
i (y)

where gn
i (y) = max{0, tn −∧{t > 0 : N(y− yn

i , t) > 1− α0}}

Since the family ∧{t > 0 : N(x, t) > 1− α} is a continuous function on X for each α ∈ (0, 1) and
f is continuous on M by Note 3, so gn

i (x) is continuous on M. Thus, each fn is a continuous function
on f (M). Now,

∧ {t > 0 : N( fn(y)− y, t) > 1− α0}

= ∧{t > 0 : N(
m

∑
i=1

gn
i (y)y

n
i /

m

∑
i=1

gn
i (y)− y, t) > 1− α0}

=
1

m
∑

i=1
gn

i (y)
∧ {t > 0 : N(

m

∑
i=1

gn
i (y){yn

i − y}, t) > 1− α0}

=

m
∑

i=1
gn

i (y)

m
∑

i=1
gn

i (y)
∧ { t

m
∑

i=1
gn

i (y)
> 0 : N(yn

i − y,
t

m
∑

i=1
gn

i (y)
) > 1− α0}

= ∧{t′ > 0 : N(yn
i − y, t

′
) > 1− α0} ≤ tn (2)

Now, define f̃n : M→ M by f̃n(x) = fn( f (x)). Thus, by Inequality (1),

∧ {t > 0 : N( fn( f (x))− f (x), t) > 1− α0} ≤ tn ∀x ∈ M

=⇒ ∨
x∈M
∧ {t > 0 : N( fn( f (x))− f (x), t) > 1− α0} ≤ tn

Thus, lim
n→∞

∨
x∈M
∧{t > 0 : N( fn( f (x))− f (x), t) > 1− α0} = 0.

Since α0 ∈ (0, 1) is arbitrary, then the above relation is true for each α0 ∈ (0, 1). Thus, f̃n uniformly
fuzzy converges to f . Condition (ii) is automatically valid by the construction of fn.

Remark 1. In Lemma 4, each { fn} contains a fixed point, say xn. This can be shown in the following way:
Now, the sequence { fn}, which is uniformly fuzzy convergent to f , is of the form:

fn(x) =
m

∑
i=1

gn
i ( f (x))yn

i /
m

∑
i=1

gn
i ( f (x))

where gn
i ( f (x)) = max{0, tn −∧{t > 0 : N( f (x)− yn

i , t) > 1− α0}}

Now, if we choose Cn = Co{yn
i }m

i=1 (convex closure of {yn
i }m

i=1), Yn = Span{yn
i }m

i=1, then Cn is a closed,
bounded, convex subset of the finite-dimensional subspace Yn of X and fn(Cn) ⊆ Cn (by the definition of fn).
Each fn is continuous. Now, by the Brouwer fixed point theorem, ∃ a point xn ∈ Cn such that fn(xn) = xn.

Remark 2. If { fn} is uniformly fuzzy convergent to f on X, then for each x ∈ X,

lim
n→∞

N2( fn(x)− f (x), t) = 1 ∀t > 0.

Proof. Since { fn} is uniformly fuzzy convergent to f , then { fn} pointwise fuzzy converges to f . Thus:

lim
n→∞

∧ {t > 0 : N2( fn(x)− f (x), t) > 1− α} = 0 ∀x ∈ X, ∀α ∈ (0, 1).
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Now, from Lemma 1, the required result follows immediately.

Lemma 5. Let {Tn} be a sequence of fuzzy compact linear operators defined on E ⊆ X, where (X, N, ∗) is

an fnls. Again, {Tn} is uniformly fuzzy convergent on E. Then, the set Ẽ =
∞
∪

i=1
TiE is a fuzzy compact set,

i.e., compact w.r.t. the topology τN .

Proof. We show that Ẽ is fuzzy totally bounded. Then, by Theorem 8, the assertion of the lemma is
automatically valid. Let ε > 0 be an arbitrary No. and α0 ∈ (0, 1) be given. Then, by the left-continuity
of ∗ at (1, 1) ∃ β0 ∈ (0, 1) such that:

(1− β0) ∗ (1− β0) ∗ (1− β0) > 1− α0

Since {Tn} uniformly fuzzy converges to T, then ∃N0(ε/4, β0) ∈ N such that:

∨
x∈E
∧{t > 0 : N(Tn(x)− T(x), t) > 1− β0} < ε/4 ∀n ≥ N0

=⇒ ∧{t > 0 : N(Tn(x)− T(x), t) > 1− β0} < ε/4 ∀n ≥ N0, ∀x ∈ E

=⇒ N(Tn(x)− T(x), ε/4) > 1− β0 ∀n ≥ N0, ∀x ∈ E (3)

Again, the sets T0E, T1E, · · · , TN0 E are fuzzy compact sets, i.e., compact w.r.t τN by the definition

of the fuzzy compact linear operator. Therefore,
N0∪
i=0

TiE is compact w.r.t. τN . By Theorem 6,
N0∪
i=0

TiE is

fuzzy totally bounded. Now, by the definition of the fuzzy total boundedness, we can find y1, y2, · · · , yn

such that:

Tj(x) ∈
n
∪

i=0
BN(yi, ε/2, β0) ∀ Tj(x) ∈

N0∪
i=0

TiE

Now, for any Tm(x) ∈
∞
∪

i=0
TiE, if m ≤ N0, we have:

Tm(x) ∈
n
∪

i=0
BN(yi, ε/2, β0) ⊆

n
∪

i=0
BN(yi, ε, α0) (4)

If m > N0, then:

N(Tm(x)− yi, ε) ≥ N(Tm(x)− T(x), ε/4) ∗ N(T(x)− TN0 (x), ε/4) ∗ N(TN0 (x)− yi, ε/2)

≥ (1− β0) ∗ (1− β0) ∗ (1− β0) > (1− α0)

∴ Tm(x) ∈
n
∪

i=0
BN(yi, ε, α0) (5)

Thus,
∞
∪

i=0
TiE is fuzzy totally bounded. This completes the proof.

Lemma 6. Let T be a continuous self-mapping on (X, N, ∗) and dim T(X) < ∞. Then, T is a fuzzy compact
linear operator.

Proof. Let {yn} be a fuzzy bounded sequence. Then, by Theorem 7, {Tyn} is a fuzzy bounded
sequence. Again, the range set of {Tyn} say R(Tyn : n ∈ N) is fuzzy bounded. Now, by Lemma 2,
R(Tyn : n ∈ N) is fuzzy bounded. Since T(X) is finite-dimensional, thus R(Tyn : n ∈ N) is fuzzy
compact. Therefore, {Tyn} has a fuzzy convergent subsequence. Thus, T is a fuzzy compact linear
operator by Theorem 3.
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Lemma 7. Let (X, N, ∗) be an fnls. For each α ∈ (0, 1) ∃ β ∈ (0, α/3) such that:

B(θ, β, β) + B(θ, β, β) + B(θ, β, β) ⊆ B(θ, α, α)

Proof. Suppose α0 ∈ (0, 1). Then, α0/3 also belongs to (0, 1). By the left-continuity of ‘∗′ at (1, 1),
∃β0 ∈ (0, α/3] such that:

(1− β0) ∗ (1− β0) ∗ (1− β0) > 1− α0/3

Let y ∈ B(θ, β0, β0) + B(θ, β0, β0) + B(θ, β0, β0). Thus, y = y1 + y2 + y3, where y1, y2, y3 ∈
B(θ, β0, β0). Now:

N(y, α0)

≥ N(y1, α0/3) ∗ N(y2, α0/3) ∗ N(y3, α0/3)

≥ N(y1, β) ∗ N(y2, β) ∗ N(y3, β)

≥ (1− β) ∗ (1− β) ∗ (1− β)

> (1− α0)

∴ y ∈ B(θ, α0, α0)

This completes the proof.

Theorem 10. (Schauder-type fixed point theorem) Let (X, N, ∗) be an fnls, C be a bounded, closed, convex subset
in X w.r.t. τN , and f : C → C be a fuzzy compact linear operator. Then, there exists a point x0 ∈ C such that
f (x0) = x0.

Proof. Since f is a fuzzy compact linear operator, then by Lemma 4 and Remark 1, there exists a
sequence of continuous mappings { fn}, which is uniformly fuzzy convergent to f , and each { fn}
contains a fixed point, say xn, i.e., fn(xn) = xn, ∀n ∈ N.

Since each xn ∈ C̃, then by Lemma 5, {xn} has a fuzzy convergent subsequence, say {xnk},
i.e., xnk → x0. Now, for any t > 0, α0 ∈ (0, 1) with
(1− β0) ∗ (1− β0) ∗ (1− β0) > 1− α0, we have:

N( f (x0)− x0, t) ≥N( f (x0)− fnk (x0), t/4) ∗ N( fnk (x0)− fnk (xnk ), t/4)∗
N( fnk (xnk )− xnk , t/4) ∗ N(xnk − x0, t/4) (6)

Since { fnk} uniformly fuzzy converges to f , then by Remark 2, for x0 ∈ X,

lim
k→∞

N( f (x0)− fnk (x0), t/4) = 1

Again, each { fnk} is continuous, so xnk → x0 =⇒ fnk (xnk )→ fnk (x0),

i.e., lim
k→∞

N( fnk (x0)− fnk (x0), t/4) = 1

Taking lim k→ ∞ in both sides of Inequality 6, we get,

N( f (x0)− x0, t) ≥ 1

⇒ N( f (x0)− x0, t) = 1 ∀t > 0

⇒ f (x0) = x0 (by N2)

This completes the proof.
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Theorem 11. Let (X, N, ∗) be an fnls. Let C be a convex, compact subset of X and f be a continuous operator
from C into C. Then, there exists x0 ∈ C such that f (x0) = x0.

Proof. Since C is compact w.r.t. τN , thus by Theorem 6, C is fuzzy totally bounded. Now, consider a
strictly decreasing sequence {αn} with αn → 0, then ∃ {x1

n, x2
n, · · · xm

n } ⊆ C such that,

C ⊆
m
∪

i=1
{xi

n}+ B(θ, αn, αn)

Now, define a family of functions such that:

fn(x) = ∑m
i=1 βi

n(x)xi
n

∑m
i=1 βi

n(x)

where ∑m
i=1 βi

n(x) = max{0, αn −∧{t > 0 : N( f (x)− xi
n, t) > 1− αn}}

Let x ∈ C and α0 ∈ (0, 1).

Since αn → 0, so ∃ N0 ∈ N such that αn < α0 ∀n ≥ N0. Now:

∧ {t > 0 : N( fn(x)− f (x), t) > 1− α0}

= ∧{t > 0 : N(
∑m

i=1 βi
n(x)xi

n

∑m
i=1 βi

n(x)
− f (x), t) > 1− α0}

= ∧{t > 0 : N(xi
n − f (x), t) > 1− α0}

≤ ∧{t > 0 : N(xi
n − f (x), t) > 1− αn} ≤ αn ∀n ≥ N0

⇒ ∨
x∈C
∧ {t > 0 : N( fn(x)− f (x), t) > 1− α0} ≤ αn ∀n ≥ N0

⇒ ∨
x∈C
∧ {t > 0 : N( fn(x)− f (x), t) > 1− α0} → 0 as n→ ∞

Since α0 ∈ (0, 1) is arbitrary, thus { fn} uniformly fuzzy converges to f . Again, { fn} is a family
of continuous functions from (X, τN) to itself. For each n ∈ N, fn maps from C to the closed convex
hull Cn of {xi

n, i = 1, 2, 3, · · · }. Since C is convex, then Cn ⊆ C. We constrict the restricted mapping
fn : Cn → Cn, and it turns out that it maps the compact, convex subset of a finite-dimensional set
Cn of Yn = the span of {xi

n, i = 1, 2, · · · , m(n)} into itself. Thus, by the Browder fixed point theorem,
∃ xn ∈ Cn ⊆ C such that fn(xn) = xn, ∀n ∈ N. Since C is compact w.r.t. τN , {xn} has a convergent
subsequence, say {xnk} w.r.t. fuzzy norm N and {xnk} → x0. Now, consider t0(> 0) ∈ R.

We have N( f (x0)− x0, t0)

≥ N( f (x0)− f (xnk ), t0/3) ∗ N( f (xnk )− xnk , t0/3) ∗ N(xnk − x0, t0/3)

Taking k→ ∞ on both sides, we get N( f (x0)− x0, t0) = 1. Again, t0 > 0 is arbitrary.

So, N( f (x0)− x0, t) = 1, ∀t > 0

⇒ f (x0) = x0.

Theorem 12. Let (X, N, ∗) be a fuzzy Banach space, C be a closed and convex subset of X, and f : C → C
be a continuous mapping such that the image of C is contained ina compact set. Then, ∃ x0 ∈ C such that
f (x0) = x0.



Mathematics 2020, 8, 1643 10 of 18

Proof. Let B = f (C). Consider K = Co( f (C)) (where Co( f (C)) is the convex combination of the
element of f (C)). It is clear that K is a convex subset of X. We show that K is compact w.r.t. τN . We have
B(⊆ C), a compact subset of X w.r.t. τN . Therefore, B is fuzzy totally bounded.
Let α0 ∈ (0, 1). Then, ∃β0 ∈ (0, α0/3) such that (1 − β0) ∗ (1 − β0) ∗ (1 − β0) > (1 − α0). Again,
since β0 ∈ (0, 1), ∃ {x1, x2, · · · , xn} ⊆ B such that:

B ⊆
n
∪

i=1
{xi}+ B(θ, β0, β0) (7)

Let x ∈ Co(B). Thus, x is of the form ∑m
j=1 αjyj, where ∑m

j=1 αj = 1. Again, each yj ∈
n
∪

i=1
{xi}+

B(θ, β0, β0), j = {1, 2, · · · , m(≤)n}, Therefore, for each yj, ∃ xi for some i ∈ {1, 2, · · · , n} such that:

N(xi − yj, β0) > 1− β0

Here:

N(
m

∑
j=1

αjxj −
m

∑
j=1

αjyj, β0)

= N(xj − yj, β0) > 1− β0

∴ x ∈
m

∑
j=1

αjxj + B(θ, β0, β0)

∴ x ∈ Cj + B(θ, β0, β0), where Cj = ∑m
j=1 αjxj. Since each fnls is a topological vector space:

so, Co(B) = ∩
α∈(0,1)

Co(B) + B(θ, α, α)

Thus:

Co(B) ⊆ Co(B) + B(θ, β0, β0)

⊆ Cj + B(θ, β0, β0) + B(θ, β0, β0)

⊆ Cj + B(θ, β0, β0) + B(θ, β0, β0)

Here, Cj is a closed bounded subset of Yj = Span{xj}m
j=1. Therefore, Cj is compact w.r.t. τN . Thus,

∃ {pk}r
k=1 ∈ Cj ⊆ Co(B) such that:

Cj ⊆
r
∪

k=1
{pk}+ B(θ, β0, β0)

∴ Co(B) ⊆
r
∪

k=1
{pk}+ B(θ, β0, β0) + B(θ, β0, β0) + B(θ, β0, β0)

⊆
r
∪

k=1
{pk}+ B(θ, α, α)

Thus, we get that K = Co(B) is totally bounded and complete, i.e., compact w.r.t. τN . Again,
f (K) ⊆ f (C) ⊆ K. By theorem 11, ∃x0 ∈ K such that f (x0) = x0.

4. Darbo’s Generalization of the Schauder-Type Fixed Point Theorem Using the Concept of the
Measure of Non-Compactness

In this section, we first consider two types of fuzzy bounded subsets of a KM-type fuzzy metric
space (i.e., M is a left-continuous function w.r.t. t, and ∗ is left-continuous at (1, 1)). We renamed
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them as strongly and weakly and studied the relation between them. After that, the measure
of the non-compactness of a strongly fuzzy bounded subset of the fuzzy metric space is defined.
Using this concept, a family of ψ-set contraction mapping is specified, and Darbo’s generalization of
the Schauder-type fixed point theorem is established for these types of contraction mappings.

Definition 15. (Strongly fuzzy boundedness) Let (X, M, ∗) be a fuzzy metric space. A subset Q of X is said to
be strongly fuzzy bounded if ∃ t > 0 such that for each α ∈ (0, 1):

x ∈ BM(y, α, t) ∀ x, y ∈ Q

i.e., fuzzy diameter of Q ( f − δ(Q)) less than ∞ where
f − δ(Q) = ∨

α∈(0,1)
∨

x,y∈Q
∧{t > 0 : M(x, y, t) > 1− α} (defined by Bag and Samanta in the paper [28].)

An example is presented to understand the strongly fuzzy boundedness more clearly.

Example 2. Let X = R2 (the set of all ordered pairs of the elements of the set of all real numbers)
and ‖x‖′ = |x1| + |x2|, ‖x‖

′′
= (|x1|2 + |x2|2)1/2, where x = (x1, x2) are two norms on X. Clearly,

‖x‖′ ≥ ‖x‖′′ , ∀x ∈ X. Define a function M : X× X×R→ [0, 1] by:

M(x, y, t) =


1, t ≥ ‖x− y‖′

1/2, ‖x− y‖′′ ≤ t < ‖x− y‖′

0, t < ‖x− y‖′′

Then, M is a fuzzy metric on X w.r.t. the min t-norm. Clearly,

∧{t > 0 : M(x, y, t) > 1− α} =
{
‖x− y‖′ , 0 < α < 1/2

‖x− y‖′′ , 1/2 ≤ α < 1

Consider A = B(0, 1). Now:

f − δ(A) = ∨
α∈(0,1)

∨
x,y∈A

∧{t > 0 : M(x, y, t) > 1− α}

= diamA w.r.t.‖ ‖′

= 1 < ∞

∴ A is strongly fuzzy bounded.

The fuzzy boundedness defined in Definition 4 is renamed as the weakly fuzzy bounded subset
of a fuzzy metric space (X, M, ∗). From the two definitions, it is clear that strongly fuzzy bounded
implies the weakly fuzzy boundedness, but the converse may not be. This can be justified by the
following example.

Example 3. Consider the fuzzy metric:

M(x, y, t) =

 t
t+|x−y| , t > |x− y|
0, t ≤ |x− y|
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Now, ∧{t > 0 : M(x, y, t) > 1− α} = α
1−α |x − y|. Let A = [0, 1]. Since |x − y| ≤ 1 < 2, so A is

weakly fuzzy bounded. However, ∨
α∈(0,1)

α
1−α = ∞. Thus, A is not strongly fuzzy bounded.

The weakly fuzzy bounded subset of a fuzzy metric space can also be defined as if β(A) = 1,
then A is weakly fuzzy bounded where β(A) = Sup

t>0
in f

x,y∈A
M(x, y, t). The equivalence between these

two definitions was already proved in the paper [29].

Definition 16. (Kuratowski’s measure of non-compactness) Let (X, M, ∗) be a fuzzy metric space and Q be a
strongly fuzzy bounded subset of X. Then, Kuratowski’s measure of the non-compactness of Q denoted by ψ(Q)

is defined as:

ψ(Q) = in f {ε > 0; Q ⊆
n
∪

i=1
Si, Si ⊆ X, f − δ(Si) < ε ∀i ∈ {1, 2, · · · , n}}

From the definition, it is clear that ψ(Q) < f − δ(Q), for each strongly fuzzy bounded
subset Q of X.

Definition 17. (α-level Kuratowski measure of non-compactness) Let (X, M, ∗) be a fuzzy metric space and Q
be a weakly fuzzy bounded subset (or strongly fuzzy bounded subset) of X. Then, for each α ∈ (0, 1), the α-level
Kuratowski measure of the non-compactness of Q denoted by ψα(Q) is defined as:

ψα(Q) = in f {ε > 0; Q ⊆
n
∪

i=1
Si, Si ⊆ X, α− δ(Si) < ε ∀i ∈ {1, 2, · · · , n}}

where α− δ(Si) = ∨
x,y∈Si

∧ {t > 0 : M(x, y, t) > 1− α}, defined by Bag and Samanta [28].

From the definition of ψ(Q) and ψα(Q), it is clear that if Q is a strongly fuzzy bounded subset,
then ψα(Q) ≤ ψ(Q) ∀α ∈ (0, 1), i.e., ∨

α∈(0,1)
ψα(Q) ≤ ψ(Q).

Lemma 8. Let Q, Q1, Q2 be strong fuzzy bounded subsets of a complete fuzzy metric space (X, M, ∗). Then:

(i) ψ(Q) = 0 ⇐⇒ Q̄ is compact w.r.t. τM.
(ii) ψ(Q) = ψ(Q̄)

(iii) Q1 ⊆ Q2 =⇒ ψ(Q1) ≤ ψ(Q2)

(iv) ψ(Q1 ∪Q2) = max{ψ(Q1), ψ(Q2)}

Again, if (X, N, ∗) is an fnls, then the followings properties also hold.

(v) ψ(Q1 + Q2) ≤ ψ(Q1) + ψ(Q2)

(vi) ψ(Q + x0) = ψ(Q)

(vii) ψ(rQ1) = |r|ψ(Q1)

(viii) ψ(ConvQ) = ψ(Q)

Proof. (i) First, we suppose that ψ(Q) = 0. Then, for each ε > 0 ∃ {Si}n
i=1 with f − δ(Si) < ε such that

Q ⊆
n
∪

i=1
Si. Now, if Q is totally bounded, then Q̄ is also, and we get the required result. Let α0 ∈ (0, 1)

and ε0 > 0. Consider a fixed xi ∈ Si for each i = {1, 2, · · · , n}. Then, it is clear that Si ⊆ BM(xi, α0, ε0).

∴ Q ⊆
n
∪

i=1
Si ⊆

n
∪

i=1
BM(xi, α0, ε0)

Thus, Q is totally bounded. Conversely, suppose that Q̄ is compact w.r.t. τM. Then, Q is totally
bounded. Let ε > 0 be given. Then, for any α ∈ (0, 1), and for, ε > 0, ∃ {x1, x2, · · · , xn} such that
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Q ⊆
n
∪

i=1
BM(xi, α, ε/2). Consider:

Si = ∨
α∈(0,1)

{y ∈ X,∧{t > 0 : M(xi, y, t) > 1− α < ε/2}, ∀ i = {1, 2, · · · , n}.

Then, Q ⊆
n
∪

i=1
Si, where f − δ(Si) < ε for each i = {1, 2, · · · , n}. Since ε > 0 is arbitrary,

thus ψ(Q) = 0.
(ii) We first prove that f − δ(Q) = f − δ(Q̄). Then, the required result follows immediately.

Obviously, f − δ(Q) ≤ f − δ(Q̄). For the reverse part, let x, y ∈ Q̄. Then, ∃ {xn} and {yn} in Q
such that:

lim
n→∞

M(xn, x, t) = 1 ∀t > 0

lim
n→∞

M(yn, y, t) = 1 ∀t > 0

Here:

∧ {t > 0 : M(x, y, t) > 1− α}
≤ ∧{t > 0 : M(x, xn, t) > 1− β}+ ∧{t > 0 : M(xn, yn, t) > 1− β}+ ∧{t > 0 : M(yn, y, t) > 1− β}
(β ≤ α)

=⇒ ∧{t > 0 : M(x, y, t) > 1− α} ≤ lim inf
n→∞

∧ {t > 0 : M(xn, yn, t) > 1− β} ≤ f − δ(Q)

∴ f − δ(Q̄) ≤ f − δ(Q)

Thus, we arrive at the required conclusion.

(iii) For Q1 ⊆ Q2, the set {ε > 0; Q2 ⊆
n
∪

i=1
Si, Si ⊆ X, f − δ(Si) < ε

∀i ∈ {1, 2, · · · , n}} ⊆ {ε > 0; Q1 ⊆
n
∪

i=1
Si, Si ⊆ X, f − δ(Si) < ε

∀i ∈ {1, 2, · · · , n}}. ∴ ψ(Q1) ≤ ψ(Q2).
(iv) From (iii), ψ(Q1 ∪Q2) ≤ max{ψ(Q1), ψ(Q2)} follows. The reverse part is similar to a crisp

set. For the references, please see [30].

For (v), (vi), (vii), and (viii), we first prove that in an fnls, the following properties hold.

(1) f − δ(Q1 + Q2) ≤ f − δ(Q1) + f − δ(Q2).
(2) f − δ(Q + x0) = f − δ(Q)

(3) f − δ(rQ) = |r| f − δ(Q)

(4) f − δ(ConvQ) = f − δ(Q)

Then rest of the proof of (v), (vi), (vii), and (viii) is similar to the classical version of this theorem.
(1) Now:

f − δ(Q1 + Q2) = ∨
α∈(0,1)

∨
x,y∈Q1+Q2

∧{t > 0 : N(x− y, t) > 1− α}

= ∨
α∈(0,1)

∨
x1,x2∈Q1,y1,y2∈Q2

∧{t > 0 : N(x1 + y1 − x2 − y2, t) > 1− α}

≤ ∨
α∈(0,1)

∨
x1,x2∈Q1

∧{t > 0 : N(x1 − x2, t) > 1− α}

+ ∨
α∈(0,1)

∨
y1,y2∈Q2

∧{t > 0 : N(y1 − y2, t) > 1− α}

= f − δ(Q1) + f − δ(Q2)
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(2) Again:

f − δ(Q) = ∨
α∈(0,1)

∨
x,y∈Q

∧{t > 0 : N(x− y, t) > 1− α}

= ∨
α∈(0,1)

∨
x,y∈Q

∧{t > 0 : N(x + x0 − y− x0, t) > 1− α}

= f − δ(Q + x0)

(3)

f − δ(rQ) = ∨
α∈(0,1)

∨
x,y∈rQ

∧ {t > 0 : N(x− y, t) > 1− α}

= ∨
α∈(0,1)

∨
x1,y1∈Q

∧{t > 0 : N(rx1 − ry1, t) > 1− α}

= ∨
α∈(0,1)

∨
x1,y1∈Q

∧{|r|t/|r| > 0 : N(x1 − y1, t/|r|) > 1− α}

= |r| ∨
α∈(0,1)

∨
x1,y1∈Q

∧ {t > 0 : N(x1 − y1, t) > 1− α}

= |r| f − δ(Q)

(4) f − δ(Q) ≤ f − δ(ConvQ) is obvious as Q ⊆ ConvQ. We only show that for a fixed α0 ∈ (0, 1)
and for a fixed x0( 6= θ) ∈ X,
∨

y∈Conv(Q)
∧ {t > 0 : N(x0 − y, t) > 1− α0} = ∨

y∈Q
∧ {t > 0 : N(x0 − y, t) > 1− α0}.

Since α0 and x0 are arbitrary, thus
f − δ(ConvQ) ≤ f − δ(Q). Consider y ∈ Conv(Q). Thus, y = ∑n

i=1 λixi, xi ∈ Q, ∑n
i=1 λi = 1.

∴ ∨
y∈Conv(Q)

∧ {t > 0 : N(x0 − y, t) > 1− α0}

= ∨
xi∈Q
∧ {t > 0 : N(

n

∑
i=1

λix0 −
n

∑
i=1

λixi, t) > 1− α}

= ∨
xi∈Q
∧ {t > 0 : N(x0 − xi, t/

n

∑
i=1

λi) > 1− α}

= ∨
xi∈Q
∧ {t > 0 : N(x0 − xi, t) > 1− α}

≤ ∨
y∈Q
∧ {t > 0 : N(x0 − y, t) > 1− α}

∴ we arrive at the required conclusion.

Definition 18. (Axiomatic approach) Let (X, M, ∗) be a complete fuzzy metric space and B the family of
strongly fuzzy bounded subsets of X. A map ψ : B → [0, ∞) is called a measure of non-compactness if it satisfies
the following properties:

(1) ψ(B) = 0 ⇐⇒ B is fuzzy totally bounded, ∀B ∈ B.
(2) ψ(B) = ψ(B̄), ∀B ∈ B.
(3) ψ(B1 ∪ B2) = max{ψ(B1), ψ(B2)}, ∀B1, B2 ∈ B

Using this axiomatic approach, we give some examples of the measure of the non-compactness in
a fuzzy metric space.

Example 4. Let X = R2 (the set of all ordered pairs of the elements of the set of all real numbers)
and ‖x‖′ = |x1| + |x2|, ‖x‖

′′
= (|x1|2 + |x2|2)1/2, where x = (x1, x2) are two norms on X. Clearly,
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‖x‖′ ≥ ‖x‖′′ , ∀x ∈ X. Define a function M : X× X×R→ [0, 1] by:

M(x, y, t) =


1, t ≥ ‖x− y‖′

1/2, ‖x− y‖′′ ≤ t < ‖x− y‖′

0, t < ‖x− y‖′′

Then, M is a fuzzy metric on X w.r.t. the min t-norm. Clearly,

∧{t > 0 : M(x, y, t) > 1− α} =
{
‖x− y‖′ , 0 < α < 1/2

‖x− y‖′′ , 1/2 ≤ α < 1

Define functions ψ1 and ψ2 from the set of all strongly fuzzy bounded subsets of X to [0, ∞) by:

ψ1(B) =

{
0, i f B is totally fuzzy bounded

1, otherwise

and ψ2(B) = f − δ(B).

Both ψ1 and ψ2 satisfy all the conditions of Definition 18. Therefore, both are the measure of the
non-compactness of fuzzy metric space (X, M, min).

Theorem 13. Let (X, M, ∗) be a complete fuzzy metric space. If {Fn} is a decreasing sequence of non-empty

closed, strongly fuzzy bounded subsets of X such that lim
n→∞

ψ(Fn) = 0, then the intersection F∞ =
∞
∩

n=1
Fn is a

non-empty compact subset of X w.r.t. τM.

Proof. Here, ψ(F∞) ≤ lim
n→∞

ψ(Fn) = 0. Thus, by Lemma 8, F∞ is compact w.r.t. τM, as F∞ is closed.

Now, we will show that F∞ is non-empty. Since lim
n→∞

ψ(Fn) = 0, so lim
n→∞

ψα(Fn) = 0, ∀α ∈ (0, 1).

Let {xn} ⊆ X and xn ∈ Fn, i.e., {xn} ∈ F1; {xn}∞
n=2 ∈ F2, and so on. Consider α0 ∈ (0, 1).

Thus, lim
n→∞

ψα0(Fn) = 0.

By Definition 17, for every n ∈ N, Fn ⊆
kn∪

i=1
Fn

i such that α0− δ(Fn
i ) < ψα0(Fn) + 1/n. Since {xn} ⊆

F1 ∃{x1
n} ⊆ F1

i ∩ F2 ⊆ F1 for some i = {1, 2, · · · , kn}, so α0 − δ(x1
n) < ψα0(F1) + 1. Consider a

subsequence {x2
n} of {x1

n} with {x1
n} ⊆ F2

i ∩ F2, for some i = {1, 2, · · · , kn}. Thus, α0 − δ(x2
n) <

ψα0(F2) + 1/2.
Similarly, we get a subsequence of {xj

n} of {xj−1
n } with α0 − δ(xj

n) < ψα0(Fj) + 1/j,

i.e., lim
j→∞

α0 − δ(xj
n) = 0. This is true for any α0 ∈ (0, 1).

Thus, lim
j→∞

α− δ(xj
n) = 0, ∀α ∈ (0, 1).

For any α ∈ (0, 1) and ε > 0 ∀j1, j2 ∈ N, ∃N0(α, ε) ∈ N such that:

∧ {t > 0 : M(xj1
n , xj2

n , t) > 1− α} < ε ∀j1, j2 > N0

=⇒ M(xj1
n , xj2

n , ε) > 1− α ∀j1, j2 > N0

=⇒ lim
j1,j2→∞

M(xj1
n , xj2

n , t) = 1 ∀t > 0.
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∴ {xj
n}j is a Cauchy sequence w.r.t. (X, M, ∗), i.e., converges to x ∈ Fn ∀n ∈ N.

i.e. x ∈
∞
∩

n=1
Fn = F∞. Thus, F∞ is non-empty.

Definition 19. Let (X, M, ∗) be a complete fuzzy metric space and f : X → X be a fuzzy continuous mapping.
Then, f is called a ψ-set contraction if there exists k ∈ [0, 1) such that for all strongly fuzzy bounded subsets C of
X, the following relation holds, ψ( f (C)) ≤ kψ(C), where ψ is the measure of the noncompactness of C.

This definition is inspired by the α-set contraction in the classical set theory. For the references,
please see the book [9].

Theorem 14. (Darbo’s generalization of the Schauder-type fixed point theorem) Let (X, N, ∗) be a fuzzy Banach
space and C be a closed, strongly fuzzy bounded, and convex subset of X. If f : C → C is a ψ-set contraction,
then f has a fixed point in C.

Proof. For each n ∈ N, consider Cn = Conv f (Cn−1). Clearly, Cn+1 ⊆ Cn ∀n. Now, C∞ =
∞
∩

n=1
Cn,

which is a closed and convex set, and ψ(C) ≤ lim
n→∞

ψ(Cn). Again, lim
n→∞

ψ(Cn) = 0 (∵ ψ( f (Cn)) ≤
knψ(C)).

Furthermore, f (C∞) = f (
∞
∩

n=1
Cn) ⊆

∞
∩

n=1
f (Cn) ⊆

∞
∩

n=1
Cn+1 = C∞. By Theorem 13, C∞ is compact

and non-empty. Thus, f : C∞ → C∞ is a continuous mapping from a compact, convex set to itself.
Thus, by Theorem 11, ∃ x0 ∈ C∞ such that f (x0) = x0. This completes the proof.

Example 5. Let X = C[0, 1] (the set of all continuous functions over [0,1]) and ‖x‖′ = Sup
0≤t≤1

|x(t)|, ‖x‖′′ =∫ 1
0 |x(t)|dt be two norms on X. Clearly, ‖x‖′ ≥ ‖x‖′′ , ∀x ∈ X.

Define a function N : X×R→ [0, 1] by:

N(x, t) =


1, t ≥ ‖x‖′

1/2, ‖x‖′′ ≤ t < ‖x‖′

0, t < ‖x‖′′

Then, (X, N, min) is fuzzy Banach space. Clearly,

∧{t > 0 : N(x, t) > 1− α} =
{
‖x‖′ , 0 < α < 1/2

‖x‖′′ , 1/2 ≤ α < 1

Define a function f : B(θ, 1/2, 1) → B(θ, 1/2, 1) with ‖ f (x) − f (y)‖′ ≤ k‖x − y‖′′ , ∀x, y ∈
B(θ, 1/2, 1) and ψ(C) = f − δ(C) = ∨

x,y∈C
‖x − y‖′ , where C is a strongly fuzzy bounded subset of

B(θ, 1/2, 1). Clearly, ψ( f (C)) = ∨
x,y∈C
‖ f (x)− f (y)‖′ ≤ k ∨

x,y∈C
‖x− y‖′′ ≤ k ∨

x,y∈C
‖x− y‖′ = kψ(C).

∴ f is a ψ-set contraction mapping. By Theorem 14, f has a fixed point in C.

Remark 3. In Example 5, B(θ, 1/2, 1) = {y ∈ X, ‖x− y‖′′ ≤ 1}. It is a closed, convex, bounded subset in
(X, ‖ ‖′′), where ‖x‖′′ =

∫ 1
0 |x(t)|dt. However, (X, ‖ ‖′′) is not a Banach space. Therefore, the classical version

of Darbo’s generalization of the Schauder-type fixed point theorem will not be able to give the existence result of a
fixed point of f , which is defined in Example 5. In this scene, our theorem is more general than its classical form.
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5. Conclusions

Schauder’s fixed point theorem and its generalizations play a pivotal role in this context of
nonlinear functional analysis. The aim of this paper is to study different types of Schauder’s fixed
point theorems in the context of fuzzy settings. For this reason, two types of fuzzy convergence are
defined for a sequence of linear operators whose domain and range space are the fnlss. Moreover,
the notion of two types of fuzzy bounded subsets of a fuzzy metric space is formulated, and the
relation between them is studied. Further, the concept of Kuratowski’s measure of non-compactness
in a fuzzy metric and an fnls are introduced for both fuzzy bounded subsets. This concept is used
as a tool to prove Darbo’s generalization of the Schauder-type fixed point theorem. This is the first
instance of studying the measure of the non-compactness in fuzzy settings. There is a huge scope of
further research in this area, and many fixed point theorems can be developed by using these types of
measures of non-compactness. Schauder’s fixed point theorem has various applications in the theory
of differential equations such as Peano’s existence theorem for the first-order differential equations,
the existence of the positive solution to the second-order singular differential equations, the existence
of periodic orbits of rapidly symmetric systems, and so on. The theorems developed in this manuscript
will promote future studies on the fuzzified area of the above-mentioned differential equations, as well
as in the fuzzy neural networks.
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