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Abstract: A (t, n)-secret sharing scheme is a method of distribution of information among n
participants such that any t > 1 of them can reconstruct the secret but any t− 1 cannot. A ramp
secret sharing scheme is a relaxation of that protocol that allows that some (t− 1)-coalitions could
reconstruct the secret. In this work, we explore some ramp secret sharing schemes based on quotients
of polynomial rings. The security analysis depends on the distribution of zero-sum sets in abelian
groups. We characterize all finite commutative rings for which the sum of all elements is zero, a
result of independent interest. When the quotient is a finite field, we are led to study the weight
distribution of a coset of shortened Hamming codes.
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1. Introduction

Secret sharing schemes were introduced by Shamir in 1979 [1]. A (t, n)-secret sharing scheme is a
method of distribution of information among n participants such that t > 1 can reconstruct the secret
but any t− 1 cannot.

The person distributing the shares is called the dealer and a minimal t-subset of participants that
can reconstruct the secret is called a coalition. Shamir scheme was based on polynomial interpolation
but was later shown by McEliece and Sarwate to be an application of the Massey scheme, a scheme
based on codes [2], to Reed-Solomon codes [3].

In the present work, we present a ramp secret sharing scheme based on polynomial residue rings.
It was shown in [4] that such schemes can be concatenated with a classical (t, n)-scheme. Thus, our
scheme complements but does not compete with Shamir scheme for instance. We generalize and
sometimes correct the results of [5]. To determine the residue rings where our scheme can be applied,
we are led to characterize all finite commutative rings that are S0. These are defined by the property
that the sum of all their elements is zero. This result is of independent algebraic interest. When the
residue ring is a finite field, to study the size distribution of admissible coalitions, we are led to study
the weight distribution of a coset of shortened Hamming codes. The analysis employs the MacWilliams
formula and the fact that Hamming codes are homogeneous.

The material is organized as follows. Section 2 discusses S0 rings. Section 3 describes the scheme,
and analyzes its security. Section 4 collects concluding remarks and open problems.

2. Algebraic Preliminaries

The aim of the first three subsections is to characterize commutative rings for which the sum of
all elements is zero.

2.1. Integer Residue Rings

We begin with a lemma on integer residues.
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Lemma 1. If N is an odd integer, then ∑N
i=1 i is an integer divisible by N.

Proof. Summing an arithmetic series yields ∑N
i=1 i = N(N+1)

2 . Since N is odd, the number (N+1)
2 is

an integer.

Remark 1. Note that the result does not hold for even integers. For instance, 1 + 2 + 3 + 4 = 10 is not a
multiple of 4. In fact, the sum is congruent to N/2 modulo N.

We proceed to generalized the above result to polynomial residue rings. Let q be an arbitrary
integer > 1. Let f denote a polynomial of degree d in Zq[x] and denote by R( f ) the quotient ring
Zq[x]/( f (x)).

Theorem 1. If q is odd and d ≥ 1 or q is even and d > 1, then ∑h∈R( f ) h = 0.

Proof. If d = 1 and q is odd, the preceding Lemma applies with N = q. If d > 1, write the residue
class representative h as

h =
d−1

∑
i=0

hixi.

We see that, for given i, any fixed value of hi will appear qd−1 times when the h′js with j 6= i range
over Zq. The result follows since then d > 1.

2.2. Zero-Sum Sets

We want to exhibit R( f ) = Zq[x]/( f (x)) the sum of all elements of which is zero, but without
smaller size zero-sum sets. The next result shows that composite q’s should be avoided.

Lemma 2. Assume d > 1. If m divides q, then R( f ) has a zero-sum set of size md.

Proof. Writing q = ms, and g = f (mod m), we see that R(g) embeds additively into R( f ) by the
map h 7→ sg. Thus, R( f ) by Theorem 1 applied to R(g) has a zero sum-set of size md.

Next, we show that composite f ’s should be avoided.

Lemma 3. Assume d > 1. If h of degree d > s > 1 divides f , then R( f ) has a zero-sum set of size qs.

Proof. Writing f = hr, and we see that R(h) embeds additively into R( f ) by the map g 7→ rg. Thus,
R( f ) by Theorem 1 applied to R(h) has a zero-sum set of size qs.

Eventually, pd − 1 should not be composite.

Lemma 4. Assume R( f ) = GF(pd) and that d > 1. If s divides pd − 1, then R( f ) has a zero-sum set of size s.

Proof. In that case, the multiplicative group of R( f ) contains s roots of unity of order s, which add up
to zero.

2.3. Generalization to Rings

Definition 1. A ring R is S0 iff

∑
x∈R

x = 0.

Proposition 1. If the ring R contains a unit u such that 1− u is also a unit, then R is S0.
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Proof. Let S = ∑x∈R x. Since u is invertible, then the map x 7→ ux permutes R. Thus, uS = S, and so
(1− u)S = 0.

Remark 2. The condition is sufficient but not necessary as the ring F2 × F2 is S0 and contains only one unit
u = (1, 1). Thus, (1, 1)− u = (0, 0), which is not a unit.

The following result is well-known.

Corollary 1. Every finite field Fq except F2 is S0.

Proof. If q > 2, any nonzero element u 6= 1 is such that 1− u is invertible.

The following result shows that many rings are S0.

Corollary 2. Every ring of odd characteristic is S0.

Proof. If the characteristic is odd, then u = 2 is a unit and also 1− u = −1.

We are still far from a characterization as there are many even characteristic S0 rings, like e.g., the
direct product F2 × F2. A complete characterization was given in [6]. To be self-contained, we sketch a
proof here.

Theorem 2. A commutative ring is not S0 iff its additive group contains only one summand of even size in its
decomposition as a direct sum of cyclic groups.

Proof. The sum of all the elements of a finite abelian group G is equal to the sum of elements of
order 2. Call N the set consisting of 0 and the elements of order 2. The set N is an abelian group,
or, equivalently, a vector space over F2, of dimension k, say. Thus, the set of all elements of N is zero
iff it is the case for F2k . By Corollary 1, this happens iff k = 1, iff |N | = 2. Thus, G contains exactly one
element of order 2. This happens iff it contains only one summand of even size in its fundamental
decomposition as a direct sum of cyclic groups.

2.4. Secret Sharing Schemes

Definition 2. (Minimal Access Set) A subset of participants is called a minimal access set, if the participants
in the subsets can recover the secret by combining their shares, but any subset of these can not do so [7].

Definition 3. (Access Structure) The access structure of a secret sharing scheme is the set of all minimal access
sets [7].

Definition 4. (Ramp Secret Sharing Scheme) Ramp secret sharing scheme (RSS) is a relaxation of secret
sharing scheme. In a RSS of parameters (m, t, n) with m < t < n, all t-subsets can reconstruct the secret, no
j-subsets with j < m can reconstruct the secret, and some j-subsets with m ≤ j < t can reconstruct the subset.
There is a lot of work on the ramp secret sharing scheme. Some of them are given in [8,9]. Alahmadi et al. [8]
explain a multisecret-sharing scheme based on LCD codes. They use Blakley’s method to construct their scheme.
Çalkavur and Solé [9] introduce some multisecret-sharing schemes over finite fields. In their work, they claim
that the Blakley scheme does not work well if they replace R with a finite field. These two schemes are also the
ramp secret sharing schemes.

3. The Scheme

Assume a polynomial residue ring R( f ) = GF(2d) that satisfies the hypothesis of Theorem 1
and construct a threshold scheme based on this ring. Put n = 2d, with d > 2. We construct an
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(3, n− 1, n− 1)-ramp scheme. The motivation for this special choice of R( f ) is as follows. From the
three Lemmas above, the recommended values of R( f ) in the notation of §II are

1. q = 2
2. f irreducible
3. 2d − 1 prime
4. d > 4.

The primes of the form 2d − 1 are called Mersenne primes. The first few admissible d′s are 2, 3, 5, 7.
The largest known in April 2020 was for d = 82,589,933 [10]. For that value of d, the quantity 2d − 1 is
the largest known prime today.

The share dealing protocol proceeds as follows:

• All of the elements of GF(2d) are written as binary vectors of length d.
• The dealer pics any element of GF(2d) as the secret.
• He distributes the remaining n− 1 elements of R( f ) to the n− 1 users.

The recovery phase is as follows. The set of all n− 1 users pool their shares together, and add
them up obtaining a sum Σ. Thus, the secret is then computed as s = −Σ. We summarize the discussion
in the following proposition.

Proposition 2. With the above conditions, the finite field GF(2d) determines a (3, 2d − 1, 2d − 1)-ramp secret
sharing scheme.

Proof. By Corollary 1, the finite field GF(2d) is S0. Anticipating the next section, we see that the
zero sum sets of GF(2d) are in bijection with the codewords of the Hamming code of parameters
[2d − 1, 2d − 1− d, 3]. This means, in the scheme, there are 2d − 1 participants, and the secret is split in
2d − 1 pieces and there are zero-sum set of size 3 corresponding to weight 3 codewords in Hamming
scheme. The results follow.

3.1. Coding Interpretation

The following result is elementary but essential. A coalition is any zero-sum set containing
the secret, minus the secret itself.

Proposition 3. There is a bijective correspondence between coalitions of size w and codewords of weight w + 1
in the Hamming codeHd of parameters [n− 1, n− 1− d, 3].

Proof. Let H be the matrix with columns all the 2d − 1 nonzero binary vectors of length d. As is
well-known [11], this matrix is a parity-check matrix for the said Hamming code Hd. Let C be a
coalition, and let χC be the characteristic vector of C′ = C ∪ s, where s denotes the secret. Since C′ is a
zero-set, we know that HχC = 0, implying χC ∈ Hd. Furthermore, |C′| = |C|+ 1 equals the Hamming
weight of χC.

3.2. Random Choice Attack

An obvious attack is to suppose a coalition with a zero-set containing the secret minus the secret,
and let the members of the coalition add up their shares. The following result is immediate by the
coding interpretation of Proposition 3. Denote by H−d the code obtained from Hd by puncturing in
an arbitrary position, and only retaining the codewords which were equal to one in that position.
In other words, it is the coset of the shortened code into the punctured code at the same position.

Proposition 4. The probability that a random set of [1, . . . , n− 2] size w is a coalition is Aw
(n−2

w )
, where Aw is

the number of codewords of weight w inH−d .
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Proof. By Proposition 3, the characteristic vector of a coalition is a codeword of H−d , where the
puncture has been done at the coordinate place determined by the secret.

The Aw’s can be computed by the generating function:

n−2

∑
w=0

Awxn−1−wyw =
1

n− 1
∂

∂y
W(x, y),

(coming from ([12] Th. 3)), where W(x, y), the weight enumerator of Hd, is easily computed by
MacWilliams transform:

W(x, y) =
1
2d

(
(x + y)n−1 + (n− 1)(x + y)n−1−n/2(x− y)n/2),

using the fact that the dual of the Hamming code, the so-called Simplex code is a one-weight code
([11] Chap. 5, Prob. 3).

Example 1. For small values of d, a direct computation in Magma [13] yields the following data. The weight
distribution is described as a list

[< 0, 1 >, . . . ,< i, Ai >, . . . ].

We consider d = 3, whenH3 is a [7, 4, 3] code.

• The weight distribution ofH3, punctured at coordinate 1 is [< 0, 1 >,< 2, 3 >,< 3, 8 >,< 4, 3 >

,< 6, 1 >].
• The weight distribution ofH3, shortened at coordinate 1 is [< 0, 1 >,< 3, 4 >,< 4, 3 >].
• On the contrary, we see that the weight distribution ofH−3 , is [< 0, 1 >,< 2, 3 >,< 3, 4 >].

Higher values of d (say e.g., d = 7) are feasible but lead to longer formulas.
To be concrete, we give a special case.

Proposition 5. In this scheme, there are n
2 − 1 coalitions of size 2.

Proof. By Proposition 3, such an access set is of the form {x, x + s}, where s is the secret and x is an
arbitrary nonzero vector different from s. Replacing x by x + s gives the same set.

These calculations show that the value of n should be large for the scheme to be secure.

3.3. Information Rate

Another important parameter in secret sharing is the information rate ρ of the scheme. It is equal
to the ratio of the size of the secret to the maximum size of the pieces of participants [14]. Since the
secret is an element of length d in GF(2d), its size is d. Thus, the information rate is 1.

If the information rate is equal to one, then this scheme is called the ideal. Thus, our new scheme
is an ideal secret sharing scheme.

3.4. Comparison with Other Schemes

Let Fqn denote the finite extension of degree n of the finite field Fq. Now, we compare our scheme
with other ramp type schemes in the Table 1. The number of participants, the size of a secret, and
the number of coalitions for an [n, k]-code over Fq are denoted by T, R, S, respectively. Moreover,
consider a polynomial residue ring R( f ) = GF(2d).
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Table 1. Comparison table.

System [8] [9] This Paper

T qk qn 2d − 1

R qn q 2d

S

k−1

∏
i=0

(qk − qi)

k!

n−1

∏
i=0

(qn − qi)

n!
2d − 1

2
− 1

ρ
k

k + 1
1 1

3.5. Combination with Shamir’s Scheme

The advantage of using a secret with values in a finite field is that it can be used in conjunction
with Shamir’s scheme which is based on polynomial interpolation over a finite field.

4. Conclusions

In the present article, we have generalized the work [5] to a wider class of quotient rings.
Possible attacks have been considered. Secure values of f , n, d have been recommended. Even in the
recommended values of the parameters, there are still zero sum-sets of size 2d−1. Moreover, our scheme
has the same distributed secret as Shamir’s scheme does. We send the residue classes in disguise over
open channels and then participants use properties of zero-sum sets to recover the secret. The combined
scheme has the following useful advantages over Shamir’s original scheme:

• The shares are elements of a polynomial residue ring that can be sent over open channels and
then participants use ring-theoretic methods to recover the secret.

• Once the long-term private information (the share) is distributed, several different secrets can be
distributed without updating the long-term private information.

• While recovering the secret, if participants do not want to, they do not have to reveal their shares
to each other.

On the combinatorial side, it would be interesting to derive an upper bound on the size
of nontrivial zero-sum sets in R( f ). Characterizing the distribution of zero-sum sets in general
commutative rings seems to be a challenging problem in ring theory, as it cannot use the standard
decomposition theorems, like CRT and so on.
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