
mathematics

Article

Two Nested Limit Cycles in Two-Species Reactions

Ilona Nagy 1,*,† , Valery G. Romanovski 2,3,4,† and János Tóth 1,5,†

1 Department of Mathematical Analysis, Budapest University of Technology and Economics, Egry J. u. 1.,
H-1111 Budapest, Hungary; jtoth@math.bme.hu

2 Center for Applied Mathematics and Theoretical Physics, SI-2000 Maribor, Slovenia;
valerij.romanovskij@um.si

3 Faculty of Electrical Engineering and Computer Science, University of Maribor, SI-2000 Maribor, Slovenia
4 Faculty of Natural Science and Mathematics, University of Maribor, SI-2000 Maribor, Slovenia
5 Laboratory for Chemical Kinetics, Eötvös Loránd University, Pázmány P. sétány 1/A,

H-1117 Budapest, Hungary
* Correspondence: nagyi@math.bme.hu; Tel.: +36-1463-5141
† These authors contributed equally to this work.

Received: 24 August 2020; Accepted: 22 September 2020; Published: 25 September 2020
����������
�������

Abstract: We search for limit cycles in the dynamical model of two-species chemical reactions that
contain seven reaction rate coefficients as parameters and at least one third-order reaction step,
that is, the induced kinetic differential equation of the reaction is a planar cubic differential system.
Symbolic calculations were carried out using the Mathematica computer algebra system, and it was
also used for the numerical verifications to show the following facts: the kinetic differential equations
of these reactions each have two limit cycles surrounding the stationary point of focus type in the
positive quadrant. In the case of Model 1, the outer limit cycle is stable and the inner one is unstable,
which appears in a supercritical Hopf bifurcation. Moreover, the oscillations in a neighborhood of the
outer limit cycle are slow-fast oscillations. In the case of Model 2, the outer limit cycle is unstable and
the inner one is stable. With another set of parameters, the outer limit cycle can be made stable and
the inner one unstable.
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MSC: 34C07; 34D99; 34C25; 80A30

1. Introduction

This paper is a part of a series of works [1–5] on the existence or absence of limit cycles in two-
and three-species chemical reactions endowed with mass action kinetics. A very recent paper [6] by
Valenzuela et al. is similar to ours, but they use the normal form theory, which is computationally not
very efficient. (A few of our papers on models with non mass action—rational—kinetics are [7,8].)

Let us review the history of the topics shortly. Although similar models were known even in the
XIXth century [9], the first model with some chemical relevance and showing oscillatory behavior was
the Lotka–Volterra reaction [10–12].

X −−→ 2 X, X + Y −−→ 2 Y, Y −−→ 0.

Frank-Kamenetsky [13] used it to describe the oxidation of hydrocarbons, or—in [14]—as
a model of cold flames. The induced kinetic differential equation of this reaction shows
conservative oscillations: its stationary point is a center around which a family of periodic
trajectories—parametrized by the initial conditions—appears. People interested in applications were
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looking for a natural model with (stable) limit cycles, because this corresponds to the experimental
observation that the trajectories tend to a periodic one on the long run. According to the general
view, the first reaction (called Brusselator) with an induced kinetic differential equation having a limit
cycle was constructed by Prigogine and Lefever in [15]. However, Frank-Kamenetsky and Salnikov in
an extremely well-written early paper [16] constructed the reaction.

X
k1−−→ 2 X, X + Y

k2−−→ 2 Y, 2 X
k4−−→ 3 X, Y

k3←−→
k5

0

with the induced kinetic differential equation

ẋ = k1x− k2xy + k4x2 ẏ = k2xy− k3y + k5

having a limit cycle and only containing second-order terms (second-order reaction steps).
In the sixties and seventies of the twentieth century, the oscillatory Belousov–Zhabotinsky reaction

was the topic of active (mainly experimental) research [17,18]. Ding-Hsü [19] was the first to use
explicitly Hopf’s theorem to prove the existence of a limit cycle in the induced kinetic differential
equation of a reaction, namely that of the Oregonator, leading to a three-variable differential equation
with a second degree right hand side. It is worth citing him to show how happy he was to find this
tool for this purpose: “thereby to publicize Hopf’s theorem. This theorem is not as well known and
available as it should be”.

As to the more theoretical investigations, one should mention the Póta–Hanusse–Tyson–Light
theorem, actually proven by Póta [20] stating that two-species bimolecular systems cannot have limit
cycles (see an alternative proof in [21]). Schnakenberg [22] and following him Császár et al. [23]
constructed classes of reactions which showed limit cycles—numerically.

A possible classification of problems in reaction kinetics (but also in other fields of applied
sciences) might be this [24] [Ch. 11]. Models are formulated and their properties are investigated
by the methods of the qualitative theory, or by numerical and other methods: this approach is the
direct approach. A more interesting direction for the chemist (biologist, etc.) is the inverse approach:
given some measurements of qualitative properties of a phenomenon, we look for models with this
behavior. A special case of this is parameter estimation, when the model structure is known and it is
only the numerical values of the model parameters we are looking for. All the research mentioned
up to this point solved direct problems: given a reaction or its kinetic differential equation, some
properties of it are found. (Note that whereas the route from reactions to differential equations is
straightforward [24,25], it is far from being true in the opposite direction, see, e.g., [26].) Our present
paper also belongs to this category. However, Escher [27,28] formulated and solved a series of inverse
problems: given a dynamic behavior (e.g., existence of a limit cycle) he constructed reactions to show
the given phenomenon.

In this paper, we present two reactions among two species and not higher than third-order
reaction steps, then show that both models can have two limit cycles with appropriate values of the
parameters (reaction rate coefficients by meaning). Although we present illustrating figures coming
from numerical calculations, we emphasize that our proofs are rigorous and use no approximations.
The novelty of our treatment is that we use focus quantities to find limit cycles symbolically in a
kinetic differential equation. Although the framework of our work is simple, the computations are
cumbersome both for the human and the computer, and also needs ingenuity.

The structure of our paper is as follows. Section 2 describes a method to find limit cycles.
Next, in Section 3 we discuss our Model 1 in detail. For Model 2, the same investigations will be carried
out in less detail in Section 4. Figures illustrate the rigorous results throughout. Finally, we mention
that our Mathematica notebooks are available online [29] and also as a supplementary material.
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2. A Method to Find Limit Cycles

Here—following [30]—we summarize briefly how we can find two limit cycles in the planar
differential system u̇ = P ◦ (u, v), v̇ = Q ◦ (u, v), where P and Q are functions (here: polynomials)
dependent on some parameters, by a local investigation of a singular point.

1. As a first step, the singular point (u0, v0) of the system is shifted into the origin using the
substitution x = u− u0, y = v− v0, so in the new coordinates the system is written as

ẋ = P̃ ◦ (x, y), ẏ = Q̃ ◦ (x, y). (1)

Let us denote the Jacobian matrix of this system at the origin by J and let λ1 and λ2 be the
eigenvalues. Next, the parameters are chosen in such a way that trace(J) = 0.

2. Then we look for a polynomial Φ(x, y) =
6

∑
k+s=2

φksxkys such that

∂Φ
∂x

ẋ +
∂Φ
∂y

ẏ = g1(x2 + y2)2 + g2(x2 + y2)3 + h.o.t (2)

and the quadratic part of Φ(x, y),

Φ0(x, y) = φ20x2 + φ11xy + φ02y2

is a positive definite quadratic form. The coefficients g1 and g2 in (2) depend on parameters of
system (1) and are called focus (or Lyapunov) quantities.

3. Keeping trace(J) = 0 and Φ0 positive definite we look for values of parameters of system (1) to
set the values of g1 and g2 in the following way.

(a) First, if g1 = 0 and g2 < 0 then, since Φ is a positive definite Lyapunov function, the origin
is a stable focus.

(b) If we now take a small perturbation, so that g1 becomes positive (while g2 remains negative),
then an unstable focus arises at the origin and a stable limit cycle appears around the
singular point.

4. Finally, the parameters are perturbed in such a way that trace(J) 6= 0 and Re(λ1,2) < 0. In this
case, the origin becomes stable, and if the perturbation is sufficiently small, then the outer stable
limit cycle is preserved (but can be shifted) and an unstable limit cycle appears between the origin
and the outer stable limit cycle as a result of a supercritical Hopf bifurcation. Since we cannot
say in advance what perturbations are “sufficiently small”, the existence of two limit cycles in
a specific perturbed system should be also verified numerically.

Similarly, if in step 3a we look for parameters such that g1 = 0 and g2 > 0 at the beginning and
achieve that Re(λ1,2) > 0, g1 < 0, g2 > 0 in the end, then the outer limit cycle will be unstable
and the inner one will be stable.

3. Model 1

We investigate the induced kinetic differential equation of the reaction in Figure 1.
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Figure 1. The reaction inducing the system (3).

Assuming mass action type kinetics, i.e., the dynamical system:

ẋ =x2y + xy− c1x2 − d1x + e1y + f1,

ẏ =− x2y− xy + c1x2 + d2x− e2y + f2.
(3)

where x(t) ≥ 0 and y(t) ≥ 0 denote the concentrations of two chemical species and c1, d1, d2, e1, e2, f1, f2

are the reaction rate coefficients, all supposed to be positive. The meaning of reaction rate coefficients
can be found in standard textbooks on chemical kinetics or in [24]. The reader who is not an insider
will understand the signs if (s)he glances a look at Figure 1.

3.1. Symbolic Preparations

Let us denote the singular point of system (3) in the first quadrant by A(x0, y0). To simplify
the calculations, we consider the case when x0 = 1. Solving the system ẋ = 0, ẏ = 0 for d1 and y0,
we get that

d1 =
d2(2 + e1) + c1(e1 − e2) + (2 + e2) f1 + (2 + e1) f2

2 + e2
, (4)

y0 =
c1 + d2 + f2

2 + e2
. (5)

Let us emphasize again that the assumption x0 = 1 implies that the reaction rate coefficients are
not independent, (4) should hold among them.
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Now, shifting the singular point A(x0, y0) into the origin with the transformation
x1 = x− x0, y1 = y− y0, we get that the transformed system is

ẋ1 =− 1
2 + e2

(c1x1 − d2x1 + c1e1x1 + d2e1x1 + c1e2x1 + 2 f1x1

+ e2 f1x1 − f2x1 + e1 f2x1 + c1x2
1 − d2x2

1 + c1e2x2
1 − f2x2

1 − 4y1

− 2e1y1 − 2e2y1 − e1e2y1 − 6x1y1 − 3e2x1y1 − 2x2
1y1 − e2x2

1y1),

ẏ1 =− 1
2 + e2

(−c1x1 + d2x1 − 2c1e2x1 − d2e2x1 + 3 f2x1 − c1x2
1

+ d2x2
1 − c1e2x2

1 + f2x2
1 + 4y1 + 4e2y1 + e2

2y1 + 6x1y1 + 3e2x1y1

+ 2x2
1y1 + e2x2

1y1).

(6)

Let J denote the Jacobian matrix of system (6) at the origin. The necessary condition for a Hopf
bifurcation at the origin (and also at the point A(x0, y0)) is that the matrix J has pure imaginary
eigenvalues (and the necessary condition for this is that the trace of J is zero).

Calculating the trace of J, we get that

trace(J) = −
4 + c1 − d2 + c1e1 + d2e1 + 4e2 + c1e2 + e2

2 + 2 f1 + e2 f1 − f2 + e1 f2

2 + e2
(7)

Solving trace(J) = 0 for c1 gives

c1 =
d2 − d2e1 − (2 + e2)(2 + e2 + f1) + f2 − e1 f2

1 + e1 + e2
. (8)

In this case, the eigenvalues of J are of the form λ1,2 = ±i
√

β, where

β =
1

1 + e1 + e2
(−2e1 + 2d2e1 + d2e2

1 + 2e2 − 2d2e2 + e1e2 − d2e1e2 − e2
2 + e1e2

2 − e3
2

+ 2 f1 + e1 f1 + 4e2 f1 + 2e1e2 f1 + 2 f2 + 5e1 f2 + 2e2
1 f2).

(9)

The eigenvalues will be purely imaginary if β > 0. Then system (6) with the substitution for c1

in (8) (and using the variables x and y instead of x1 and y1) will be the following:

ẋ =
1

1 + e1 + e2
(2x + 2e1x + 3e2x + e1e2x + e2

2x + 2x2 + d2e1x2

+ 3e2x2 + e2
2x2 + f1x2 + e2 f1x2 + e1 f2x2 + 2y + 3e1y + e2

1y

+ 2e2y + e1e2y + 3xy + 3e1xy + 3e2xy + x2y + e1x2y + e2x2y),

ẏ =− 1
1 + e1 + e2

(2x + d2e1x + 5e2x− d2e2x + 2e2
2x + f1x + 2e2 f1x

+ f2x + 2e1 f2x + 2x2 + d2e1x2 + 3e2x2 + e2
2x2 + f1x2 + e2 f1x2

+ e1 f2x2 + 2y + 2e1y + 3e2y + e1e2y + e2
2y + 3xy + 3e1xy + 3e2xy + x2y + e1x2y + e2x2y).

(10)

Now, in order to apply the procedure described in the previous section, we look for a polynomial

Φ(x, y) =
6

∑
k+s=2

φksxkys (11)

such that
∂Φ
∂x

ẋ +
∂Φ
∂y

ẏ = g1(x2 + y2)2 + g2(x2 + y2)3 + h.o.t. (12)

Calculating the quadratic part of (11) we get that
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Φ2 =
1
2

φ11

(
(d2(e1 − e2) + (1 + 2e2)(2 + e2 + f1) + f2 + 2e1 f2)

(2 + e2)(1 + e1 + e2)
x2 + 2xy +

2 + e1

2 + e2
y2
)

,

where φ11 can be chosen arbitrarily, so we set φ11 = 1. Now, let

A :=

( d2(e1−e2)+(1+2e2)(2+e2+ f1)+ f2+2e1 f2
2(2+e2)(1+e1+e2)

1
2

1
2

2+e1
2(2+e2)

)
The determinants of the upper-left main minors of A are

A11 =
d2(e1 − e2) + (1 + 2e2)(2 + e2 + f1) + f2 + 2e1 f2

(1 + e1 − e2)(2(2 + e2)(1 + e1 + e2)
,

det(A) =− ((2e1 − 2d2e1 − d2e2
1 − 2e2 + 2d2e2 − e1e2 + d2e1e2

+ e2
2 − e1e2

2 + e3
2 − 2 f1 − e1 f1 − 4e2 f1 − 2e1e2 f1

− 2 f2 − 5e1 f2 − 2e2
1 f2)/(4(2 + e2)

2(1 + e1 + e2))).

(13)

At this point, the positive definiteness of A together with the previous conditions cannot be
decided, so in order to simplify the further calculations, we fix the values of two more reaction rate
coefficients f1 and f2 as

f1 = 1, f2 = 2 (14)

and proceed with calculating g1. This gives

g1 =(−36− 105e1 − 30d2e1 − 120e2
1 − 50d2e2

1 − 6d2
2e2

1 − 56e3
1 − 28d2e3

1

− 7d2
2e3

1 − 6e4
1 − 6d2e4

1 − 2d2
2e4

1 − 75e2 + 12d2e2 − 159e1e2 − 8d2e1e2

+ 6d2
2e1e2 − 113e2

1e2 − 9d2e2
1e2 + 7d2

2e2
1e2 − 18e3

1e2 − d2e3
1e2 + 2d2

2e3
1e2

− 36e2
2 + 13d2e2

2 − 65e1e2
2 + 18d2e1e2

2 − 30e2
1e2

2 − 6e3
1e2

2 − 4d2e3
1e2

2

+ 9e3
2 + d2e3

2 − 6e1e3
2 + 7d2e1e3

2 − e2
1e3

2 + 4d2e2
1e3

2 + 6e4
2 + 7e1e4

2 (15)

− 2e2
1e4

2 + 2e1e5
2)/((2 + e2)(123 + 234e1 + 34d2e1 + 137e2

1 + 30d2e2
1

+ 3d2
2e2

1 + 26e3
1 + 2d2e3

1 + 3e4
1 + 330e2 − 34d2e2 + 348e1e2 + 16d2e1e2

− 6d22e1e2 + 68e2
1e2 + 6e3

1e2 + 307e2
2 − 46d2e2

2 + 3d2
2e2

2 + 126e1e2
2

+ 10d2e1e2
2 + 11e2

1e2
2 + 116e3

2 − 12d2e3
2 + 12e1e3

2 + 16e4
2)).

We calculated the value of g2 in (12) as a function of d2, e1, e2, however, the expression is very
complicated, it is contained in [29]. To simplify it, again we fix the values of two further reaction rate
coefficients, e1 and d2 as

e1 = 1/2, d2 = 20, (16)
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then the formula for g2 is

g2 =− ((2(−126512084933352295 + 478399692835658985e2

− 762458375238510816e2
2 + 730329622432012315e3

2

− 466875108129002500e4
2 + 180057388265535584e5

2

− 42412278548678749e6
2 + 7565318705371668e7

2 − 1899913140260206e8
2

+ 200501244715092e9
2 + 44607817747872e10

2 + 18408318367872e11
2 (17)

+ 8352995841088e12
2 + 1190085589888e13

2 + 348608893184e14
2

+ 33760183296e15
2 + 6787676672e16

2 + 473953280e17
2 + 64299008e18

2

+ 2555904e19
2 + 196608e20

2 ))/(3(2 + e2)(83− 42e2 + 8e2
2)(−73 + 85e2

(+e2
2 + 2e3

2))
2(109− 25e2 + 32e2

2 + 4e3
2)(17163− 19172e2 + 12044e2

2

− 1888e3
2 + 256e4

2)(23933− 29628e2 + 23764e2
2 − 2976e3

2 + 512e4
2))).

Using the requirement that negative cross-effect cannot be present in a kinetic differential
equation [24] [Theorem 6.27] and conditions (4), (5), (8), (9), (13)–(17) and the Reduce command
of Mathematica [31], the numerical solution of the semi-algebraic system

g1 = 0∧ g2 < 0∧ A11 > 0∧ det(A) > 0∧ y0 > 0∧ β > 0∧ c1 > 0∧ d1 > 0∧ e2 > 0

for e2 is
e2 ≈ −0.771291. (18)

Similarly, we found that g2 > 0 is not possible for g2 defined by (17). For the value of e2 in (18),
the numerical value of g2 is

g2 ≈ −0.0278896

and also the condition trace(J) = 0 holds. From A11 > 0 and det(A) > 0 it follows that Φ2 is a positive
definite quadratic form, so the function Φ(x, y) defined in (11) is a positive definite Lyapunov function
in a sufficiently small neighbourhood of the origin. This together with conditions g1 = 0 and g2 < 0
means that its Lie derivative given in (12) is negative definite, so the origin is a stable focus.

From (15), we can see that g1 is a polynomial in d2, e1, e2 and d2 = 20, e1 = 1/2 and e2 defined
by (18) is a simple root of the equation g1 = 0. Thus, we can choose a small perturbation of any of
the parameters d2, e1, e2 such that g1 becomes negative. Hence, after such a perturbation a stable limit
cycle bifurcates from the origin.

Now, from (7) and (8) it is obvious that we can take an arbitrarily small perturbation of any of the
parameters d2, ei, fi (i = 1, 2) such that an unstable limit cycle appears from the origin in a supercritical
Hopf bifurcation. Thus, the resulting perturbed system has two limit cycles.

Remark 1. We mention that we have performed some computational experiments changing the parameters f1,
f2, d2, e1, e2 trying to find values of the parameters for which trace(J) = 0, g1 = 0, g2 > 0, but we failed to find
such values.

3.2. Numerical Results for Model 1

In this section we present the numerical study confirming the existence of two limit cycles in
system (3) and illustrate the results with figures created with the Wolfram Language.
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3.2.1. The Appearance of the First Limit Cycle

For the values of the parameters defined by (4), (8), (14), (16) and (18) we first perturb the
parameter e2 such that g1 becomes positive. If

e2 =
78

100

then we get that
g1 ≈ 0.015511 > 0, g2 ≈ −0.666999 < 0, trace(J) = 0.

It means that the origin becomes unstable and a stable limit cycle appears around the
singular point.

In this case, the parameter settings for system (3) are the following: c1 =
1229
5700

≈ 0.215614,

d1 =
59173
2850

≈ 20.7625, d2 = 20, e1 =
1
2

, e2 =
78
100

, f1 = 1, f2 = 2. The singular point of the

system in the first quadrant is A(x0, y0) = (1, 7.99123) and the eigenvalues of the Jacobian matrix are
λ1,2 ≈ ±1.06195i.

The trajectories can be seen in Figures 2 and 3, where the initial point (x0, y0 + d) is denoted in red
and A(x0, y0) is denoted in orange. Picture (a) shows the behavior of the trajectories in the phase plain,
and pictures (b) and (c) show the solutions as a function of time. Where the shape of the trajectories
makes it possible, we also denoted the direction of the trajectories with an arrow.
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10
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(a)

20 40 60 80
t

5

10

15

x

(b)

20 40 60 80
t

5

10

15

y

(c)

Figure 2. Model 1 with one stable limit cycle. The trajectory is going inward, approaching the limit
cycle. The distance of the initial point from the singular point is d = 10.
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Figure 3. Model 1 with one stable limit cycle. The trajectory is going outward approaching the limit
cycle. The distance of the initial point from the singular point is d = 0.038.
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3.2.2. The Appearance of the Second Limit Cycle

Next, we perturb the parameter c1 such that trace(J) becomes negative. If c1 =
22

100
, then we

get that
g1 ≈ 0.015511 > 0, g2 ≈ −0.666999 < 0, trace(J) ≈ −0.00359712 < 0.

Since the trace of J is now negative, it means that the eigenvalues of J have negative real parts.
It means that the origin becomes stable and an unstable limit cycle appears between the origin and the
outer stable limit cycle as a result of a supercritical Hopf bifurcation. The perturbation for c1 must be
sufficiently small to ensure that when the inner limit cycle appears, the outer one is still preserved.

In this case, the parameter settings for system (3) are the following: c1 =
22

100
, d1 =

72148
3475

≈

20.762, d2 = 20, e1 =
1
2

, e2 =
78
100

, f1 = 1, f2 = 2. The singular point of the system in the first quadrant

is A(x0, y0) = (1, 7.99281) and the eigenvalues of the Jacobian matrix are λ12 ≈ −0.00179856± 1.0619i.
The trajectories can be seen in Figures 4–7, where the initial point (x0, y0 + d) is denoted in red

and A(x0, y0) is denoted in orange. Picture (a) shows the behavior of the trajectories in the phase plain,
and pictures (b) and (c) show the solutions as a function of time.
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Figure 4. Model 1 with a stable outer and an unstable inner limit cycle. The trajectory is going inward,
approaching the large limit cycle as t tends to +∞. The distance of the initial point from the singular
point is d = 10.
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Figure 5. Model 1 with a stable outer and an unstable inner limit cycle. The trajectory is going
outward, approaching the large limit cycle as t tends to +∞ and the small limit cycle as t tends to −∞.
The distance of the initial point from the singular point is d = 0.042.



Mathematics 2020, 8, 1658 10 of 16

0.9 1.0 1.1 1.2
x

7.7

7.8

7.9

8.0

8.1

y

(a)

20 40 60 80 100
t

0.9

1.0

1.1

1.2

x

(b)

20 40 60 80 100
t

7.7

7.8

7.9

8.0

y

(c)

Figure 6. Model 1 with a stable outer and an unstable inner limit cycle. The trajectory is going
outward, approaching the large limit cycle as t tends to +∞ and the small limit cycle as t tends to −∞.
The distance of the initial point from the singular point is d = 0.038.
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Figure 7. Model 1 with a stable outer and an unstable inner limit cycle. The trajectory is going inward,
approaching the singular point as t tends to +∞ and the small limit cycle as t tends to−∞. The distance
of the initial point from the singular point is d = 0.01.

4. Model 2

We investigate the following dynamical system:

ẋ = x2y− xy− c1x2 − d1x + e1y + f1,

ẏ =− x2y + xy + c1x2 + d2x− e2y + f2.
(19)

where x(t) ≥ 0 and y(t) ≥ 0 denote the concentrations of two chemical species and

c1, d1, d2, e1, e2, f1, f2 ≥ 0. (20)

are the reaction rate coefficients. Actually, the system is the induced kinetic differential equation of the
reaction in Figure 8 assuming mass action type kinetics.

Compared to Model 1, here the signs of the terms xy are changed. After repeating the steps (4)–(13)
with this new system, we get that

d1 =
c1(e1 − e2) + e2 f1 + e1(d2 + f2)

e2
(21)

c1 =
d2 − d2e1 − e2(e2 + f1) + f2 − e1 f2

−1 + e1 + e2
. (22)
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1

d1

d2

f1

f2 c1

1

e2

e1

2X +Y 3X

X

0 2X

X +Y

2Y

Y

Figure 8. The reaction inducing the system (19).

Setting the values f1 and f2 as

f1 =
1
2

, f2 =
1

10
(23)

and proceeding with the calculations, we obtain that both g1 and g2 are functions of d2, e1, e2.
Investigating the possible values of e1 and d2 numerically, we find that when for example d2 = 1/100
and 0.128 < e1 < 0.213 then g1 = 0, g2 > 0 is possible; and when d2 = 1/100 and 0.264 < e1 < 0.5 or
0.213 < e1 < 0.228 then g1 = 0, g2 < 0 is possible.

Here, we want to achieve that the outer limit cycle is unstable (that is, g2 > 0), so we choose these
parameters as

d2 =
1

100
, e1 =

18
100

. (24)

With this, we find that g1 = 0, g2 < 0 and g1 = g2 = 0 cannot be the case and g1 = 0, g2 > 0 is
only possible when

e2 ≈ 0.29582 (25)

where e2 is a root of a fifth-degree polynomial. With the parameter settings (21)–(25) we get that
the system has three singular points in the first quadrant: A(1, 1.30837), B(0.809127, 2.04744) and
C(0.457223, 3.41004) and

g1 ≈ 0 g2 ≈ 0.0276312 > 0 trace(J) ≈ 0

where J denotes the Jacobian matrix at A. In this case the point A is an unstable focus.
As a next step, keeping c1, d1, d2, e1, f1, f2 the same as in (21)–(24), we perturb e2 as

e2 =
278
1000

(26)
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and obtain that the system has three singular points in the first quadrant: A(1, 1.23247),
B(0.7895, 2.26181) and C(0.414968, 4.09327) and

g1 ≈ −0.0090896 < 0

g2 ≈ 0.0400065 > 0

trace(J) ≈ 0

where J denotes the Jacobian matrix at A. In this case, the point A becomes stable and an unstable
limit cycle appears around A.

Finally, perturbing c1 as

c1 =
233

1000
(27)

we get that the system has three singular points in the first quadrant: A(1, 1.23381), B(0.789796, 2.26142)
and C(0.414926, 4.09403) and

g1 ≈ −0.0090896 < 0 g2 ≈ 0.0400065 > 0 trace(J) ≈ 0.000726619 > 0

where J denotes the Jacobian matrix at A. In this case, the point A becomes unstable and a stable limit
cycle appears between A and the outer unstable limit cycle. We have to check numerically that the
perturbations are small enough, that is, the outer cycle is preserved when the inner cycle appears.
This is shown in Figures 9–11.

To sum up the final step, the parameter settings are c1 =
233

1000
, d1 =

67983
139000

≈ 0.489086, d2 =
1

100
,

e1 =
18
100

, e2 =
278
1000

, f1 =
1
2

, f2 =
1

10
. The system has three singular points in the first quadrant:

A(1, 1.23381) (unstable focus, orange), B(0.789796, 2.26142) (saddle, green), C(0.414926, 4.09403)
(real sink, blue). The initial point is denoted by red and the distance of the initial point from the
singular point by d.
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0.8

1.0
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Figure 9. Model 2 with an unstable outer and a stable inner limit cycle. The trajectory is going outward,
approaching the point C as t→ ∞ and the outer limit cycle as t→ −∞ (d = 0.47).
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Figure 10. Model 2 with an unstable outer and a stable inner limit cycle. The trajectory is going inward,
approaching the inner limit cycle as t→ ∞ and the outer limit cycle as t→ −∞ (d = 0.46).
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Figure 11. Model 2 with an unstable outer and a stable inner limit cycle. The trajectory is going
outward, approaching the inner limit cycle as t→ ∞ and the point A as t→ −∞ (d = 0.05).

Finally, we would like to remark that in Model 2 it is also possible that the outer limit cycle
is stable and inner one is unstable. To achieve this, we repeated the procedure described above

with the following parameter settings: c1 =
79
100

, d1 =
26331
21100

≈ 1.24791, d2 =
4

10
, e1 =

3
10

,

e2 =
633

1000
, f1 = 1, f2 = 1. We obtained that the system has one singular point in the first quadrant:

A(x0, y0) = (1, 3.45972) and

g1 ≈ 0.00642203 > 0 g2 ≈ −0.301207 < 0 trace(J) ≈ −0.00119905 < 0

where J denotes the Jacobian matrix at A which is a stable focus. The trajectories can be seen in
Figures 12–14, where the initial point (x0, y0 + d) is denoted in red and A(x0, y0) is denoted in orange.
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1.8
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x

(b)
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t
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3.0

3.5

y

(c)

Figure 12. Model 2 with a stable outer and an unstable inner limit cycle. The trajectory is going inward,
approaching the large limit cycle as t→ ∞ (d = 0.5).
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Figure 13. Model 2 with a stable outer and an unstable inner limit cycle. The trajectory is going
outward, approaching the outer limit cycle as t→ ∞ and the inner limit cycle as t→ −∞ (d = 0.05).
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Figure 14. Model 2 with a stable outer and an unstable inner limit cycle. The trajectory is going inward,
approaching the point A as t→ ∞ and the small limit cycle as t→ −∞ (d = 0.01).

5. Discussion

We investigated two reaction networks, and have found two nested limit cycles in both of them.
We did the calculations symbolically, as far as it did not become impossible. Recent methods in the
qualitative theory of differential equations helped to do this.

Either with the development of computers or theory, we hope that larger parts of such
investigations will be possible to be carried out symbolically, thus making possible the mapping
of the whole parameter space. Furthermore, we hope to understand better the role of the common
x2y term.

Supplementary Materials: The Mathematica notebooks are available online at http://www.mdpi.com/2227-7390/
8/10/1658/s1.
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8. Dukarić, M.; Errami, H.; Jerala, R.; Lebar, T.; Romanovski, V.G.; Tóth, J.; Weber, A. On three genetic
repressilator topologies. React. Kinet. Mech. Catal. 2019, 126, 3–30. [CrossRef]

9. Verhulst, P.H. Notice sur la loi que la population poursuit dans son accroissement. Corresp. Math. Phys. 1838,
10, 113–121.

10. Lotka, A.J. Contribution to the Theory of Periodic Reaction. J. Phys. Chem. 1910, 14, 271–274. [CrossRef]
11. Lotka, A.J. Analytical Note on Certain Rhythmic Relations in Organic Systems. Proc. Natl. Acad. Sci. USA

1920, 6, 410–415. [CrossRef]
12. Volterra, V. Variazioni e fluttuazioni del numero d’individui in specie animali conviventi. Mem. Acad.

Lincei Roma 1926, 2, 31–113.
13. Frank-Kamenetskii, D.A. Periodicheskie processy v kinetike okislitelnykh reaktsii (The periodical processes

in the kinetics of oxidation reaction). Dokl. SSSR 1939, 25, 67–69.
14. Frank-Kamenetskii, D.A. Diffusion and Heat Transfer in Chemical Kinetics; USSR Academy of Science Press:

Moscow-Leningrad, Russia, 1947. (In Russian)
15. Prigogine, I.; Lefever, R. Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 1968,

48, 1695–1700. [CrossRef]
16. Frank-Kamenetsky, D.A.; Salnikov, I.E. On the possibility of auto-oscillation in homogeneous chemical

systems with quadratic autocatalysis. J. Phys. Chem. 1943, 17, 79–86. (In Russian)
17. Edelson, D.; Noyes, R.M.; Field, R.J. Mechanistic details of the Belousov–Zhabotinsky oscillations. II.

The organic reaction subset. Int. J. Chem. Kinet. 1979, 11, 155–164. [CrossRef]
18. Zhabotinsky, A.M. Periodic oxidizing reactions in the liquid phase. Dokl. Akad. Nauk 1964, 157, 392–395.

(In Russian)
19. Hsü, I.D. Existence of periodic solutions for the Belousov-Zaikin-Zhabotinskiı̆ reaction by a theorem of Hopf.

J. Differ. Equ. 1976, 20, 399–403. [CrossRef]
20. Póta, G. Two-component bimolecular systems cannot have limit cycles: A complete proof. J. Chem. Phys.

1983, 78, 1621–1622. [CrossRef]
21. Schuman, B.; Tóth, J. No limit cycle in two species second order kinetics. Bull. Sci. Math. 2003, 127, 222–230.

[CrossRef]
22. Schnakenberg, J. Simple chemical reaction systems with limit cycle behaviour. J. Theor. Biol. 1979, 81, 389–400.

[CrossRef]
23. Császár, A.; Jicsinszky, L.; Turányi, T. Generation of model reactions leading to limit cycle behavior.

React. Kinet. Catal. Lett. 1982, 18, 65–71. [CrossRef]
24. Tóth, J.; Nagy, A.L.; Papp, D. Reaction Kinetics: Exercises, Programs and Theorems; Springer Nature:

Berlin/Heidelberg, Germany; New York, NY, USA, 2018.
25. Feinberg, M. Foundations of Chemical Reaction Network Theory; Springer: Berlin/Heidelberg, Germany, 2019.
26. Craciun, G.; Szederkényi, G.; Johnston, M.D.; Tonello, E.; Tóth, J.; Yu, P. Realizations of kinetic differential

equations. Math. Biosci. Eng. 2020, 17, 862–892. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s12346-019-00333-9
http://dx.doi.org/10.21638/11701/spbu01.2020.214
http://dx.doi.org/10.1007/s10910-019-01099-w
http://dx.doi.org/10.1007/s11144-018-1519-5
http://dx.doi.org/10.1021/j150111a004
http://dx.doi.org/10.1073/pnas.6.7.410
http://dx.doi.org/10.1063/1.1668896
http://dx.doi.org/10.1002/kin.550110207
http://dx.doi.org/10.1016/0022-0396(76)90116-9
http://dx.doi.org/10.1063/1.444861
http://dx.doi.org/10.1016/S0007-4497(03)00019-8
http://dx.doi.org/10.1016/0022-5193(79)90042-0
http://dx.doi.org/10.1007/BF02065139
http://dx.doi.org/10.3934/mbe.2020046
http://www.ncbi.nlm.nih.gov/pubmed/31731382


Mathematics 2020, 8, 1658 16 of 16

27. Escher, C. Models of Chemical Reaction Systems with Exactly Evaluable Limit Cycle Oscillations and their
Bifurcation Behaviour. Berichte Bunsenges. Phys. Chem. 1980, 84, 387–391. [CrossRef]

28. Escher, C. Bifurcation and coexistence of several limit cycles in models of open two-variable quadratic
mass-action systems. Chem. Phys. 1981, 63, 337–348. [CrossRef]

29. Nagy, I. Calculations for Two Nested Limit Cycles in Two-Species Reactions with Wolfram
Mathematica. Avaliable online: http://math.bme.hu/~nagyi/Mathematica_notebooks/index.html
(accessed on 24 August 2020).

30. Dumortier, F.; Llibre, J.; Artés, J.C. Qualitative Theory of Planar Differential Systems; Springer:
Berlin/Heidelberg, Germany, 2006.

31. WRI. Mathematica 11.3. Available online: http://www.wolfram.com (accessed on 8 March 2018).

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1002/bbpc.19800840419
http://dx.doi.org/10.1016/0301-0104(81)87009-7
http://math.bme.hu/~nagyi/Mathematica_notebooks/index.html
http://www.wolfram.com
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A Method to Find Limit Cycles
	Model 1
	Symbolic Preparations
	Numerical Results for Model 1
	The Appearance of the First Limit Cycle
	The Appearance of the Second Limit Cycle


	Model 2
	Discussion
	References

