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Abstract: For a controlled system of coupled Markov chains, which share common control parameters,
a tensor description is proposed. A control optimality condition in the form of a dynamic
programming equation is derived in tensor form. This condition can be reduced to a system of
coupled ordinary differential equations and admits an effective numerical solution. As an application
example, the problem of the optimal control for a system of water reservoirs with phase and balance
constraints is considered.

Keywords: coupled markov chains; stochastic control; optimal control; tensor representation;
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1. Introduction

The analysis and optimization of systems of coupled Markov Chains (MC) appear in various
applied areas such as environmental management [1,2], control of dams [3–5], control of data
transmission systems for the avoidance of congestion [6–8], and many others. In general, the optimal
control of MC with constraints and various criteria leads to the solution of a system of ordinary
differential equations. However, the coupled MC produces serious difficulties due to a dramatic
increase in the number of states, which renders impossible the numerical solution of the optimization
problem with the aid of standard computers in a reasonable time [9]. Moreover, the presence of
constraints very often leads to rather complicated and cumbersome mathematical problems.

The evolution of single controlled MC may be effectively represented via a vector-valued
function satisfying stochastic differential equations with a control dependent generator [10]. If a set
of MCs shares common control parameters, they no longer can be analyzed separately, since the
system becomes coupled. Approaching the coupled system as a whole leads to the necessity of the
consideration of a global system state, which incorporates the states of all individual MCs involved.
Joining together the states of all MCs as a set of vectors (perhaps of different dimensions) leads to the
description of their evolution in tensor form. The next step of the control synthesis for this coupled
system is the derivation of the optimality conditions in the form of a special dynamic programming
equation (DPE). The demand for accuracy leads, however, to the extension of MCs’ state space, and by
that, to the increase of the dimensionality of the DPE. At the same time, the numerical solution of DPE
allows the parallelization of the most time-consuming operations, and this is one of the advantages
of the tensor representation. Here we give an algorithm for DPE derivation, which is the principal
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step for its numerical solution. It should be noted that this paper follows the previously published
works [6,9,11] and provides a proper mathematical justification for the results presented there.

As an example, we consider the management of coupled dams under non-stationary seasonally
changing random inflows/outflows. The presentation of a dam’s state as a continuous-time MC
permits one to take into account the random character of the incoming and outgoing water flow due to
rain, evaporation, and, of course, customer demands. However, sometimes it is necessary to organize
the interflow between the different parts of a system, such as controlled flow from one dam to another
or controlled release, to avoid overflow. In all these cases, it is necessary to consider the system as
a whole, that is, the global state of the dam system. The current water level of each dam is described
by the state of a continuous-time MC, hence the state of the whole system of the coupled dams is
represented in tensor form. The connection of MCs is a result of the controlled flow between the dams.
The control aims to maintain the required water levels in given weather conditions, and at the same
time, to satisfy the customer demands. The general approach is based on the solution of DPE in tensor
form. This equation may be reduced to a system of ordinary differential equations. We suggest here the
procedure for the generation of this system and also the approach to the minimization in its right-hand
side (RHS), which may be realized for each state of the coupled MC independently.

The structure of the paper is as follows: in Section 2 we describe the model of the controlled MC
system. The martingale representation and stochastic evolution of the global state of coupled MC is
given in Section 3. The optimal control and Kolmogorov equation for the distribution of states of the
controlled coupled system of MC is in Section 4. A numerical example motivated by the Goulburn
River water cascade is presented in Section 5.

2. Model of Controlled Markov Chains System

In this section we give the definition of the model of the controlled coupled MCs. Let us consider
a set of M MCs. The m-th MC has Nm possible states and a time- and control-dependent generator
Am(t, u) = [am

i,j(t, u)], i, j = 1, . . . , Nm:

• am
i,j(t, u) ≥ 0, for i 6= j;

• am
i,i(t, u) = − ∑

j 6=i
am

j,i(t, u).

The controlparameter u ∈ U, where U is a compact set in some complete metric space, and the
matrix valued functions Am, m = 1, . . . , M are assumed to be continuous in both parameters
(t, u) ∈ [0, T]×U, where T < ∞. The control parameter u is shared by all the MCs, and hence
defines their interconnection.

2.1. Global State

Let the local state space of the m-th MC be given by a set of standard basis vectors
Xm

t ∈ Sm = {e1, . . . , eNm}, then its dynamics can be described by the following stochastic differential
equation [10]:

Xm
t = Xm

0 +

t∫
0

Am(s, u(s))Xm
s ds + Wm

t , m = 1, . . . , M, (1)

where Xm
0 is the initial state of the m-th MC and the process Wm

t is a square integrable martingale with
bounded quadratic variation. We assume that the martingales W l

t and Wm
t are independent for m 6= l,

and hence the MCs do not experience simultaneous transitions.
The first approach to the controlled coupled MCs was presented in References [6,9,11], where the

global system state was described as a tensor product of the individual MCs’ states:

Xt = X1
t ⊗ X2

t ⊗ . . .⊗ XM
t =

M⊗
m=1

Xm
t , (2)
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Xt ∈ S, S = S1 × . . . × SM, where × denotes the Cartesian product (the definition of tensor
product can be found in Appendix A). For the combination of local states X1

t = ei1 , . . . , XM
t = eiM

,
the global state Xt = ei1 ...iM

= ei1 ⊗ . . .⊗ eiM
can be represented as a multidimensional array of shape

(N1, . . . , NM) with single non-zero element Xi1 ...iM
t = 1. This representation allows us to significantly

simplify the expressions involved in the DPE and makes the implementation of the control optimization
algorithms rather straightforward, especially with programming tools that allow multidimensional
array objects (e.g., Matlab, Python NumPy or Julia).

Let the set of admissible controls U be defined as a set of FX
t -predictable controls taking values in

U (here FX
t stands for a natural filtration associated with the stochastic process Xt). This assumption

ensures the measurability of the admissible controls. In other words, if the number of global state
transitions of the coupled MC system up to the current time t ∈ [0, T] is Nt and τk is the time of the
k-th jump and

Xm|t0 = {(Xm
0 , 0), (Xm

1 , τ1), . . . , (Xm
Nt

, τNt)}

is the history of the m-th MC on the time interval [0, t] (set of state and jump time pairs), then for
τNt ≤ t < τNt+1 the controls u(t) = u(t, X|t0) are measurable with respect to t and the global history

X|t0 = {X0
∣∣t
0 , . . . , XM

∣∣t
0} [9].

2.2. Performance Criterion

Let f (s, u(s), Xs) be a running cost function defined for the global state Xs and time s ∈ [0, T],
and ϕ0(XT) be a terminal condition. Then a general performance criterion to be minimized is given by

J[u(·), X(·)] = E
[

ϕ0(XT) +
∫ T

0
f (s, u(s), Xs)ds

]
. (3)

Here f (s, u(s), ·) is, in fact, a multidimensional array-valued function defined for any possible
global state of the coupled MC system Xt = ei1 ...iM

= ei1 ⊗ . . .⊗ eiM
. For example, the running cost

function can be represented as

f (s, u(s), Xt) = 〈f(s, u(s)), Xt〉 = ∑
i1 ...iM

fi1 ...iM (s, u(s))Xi1 ...iM

t = ∑
i1 ...iM

fi1 ...iM (s, u(s))I{Xi1 ...iM

t = 1}, (4)

where 〈·, ·〉 denotes the inner product and I{·} is the indicator function. Thus, for given t and u(t),
the state Xt = ei1 ...iM

selects a single value fi1 ...iM (s, u(s)) from the multidimensional array f(s, u(s)).
The same is valid for the terminal condition ϕ0(XT) = 〈ϕT , XT〉, which is defined by a multidimensional
array ϕT .

Assumption 1. The elements of f(s, u(s)) are bounded from below and are continuous functions on [0, T]×U.

3. Martingale Representation of the Global State

In this section we derive the martingale representation for the global state of the controlled coupled
MC system analogous to (1). To that end, we need to introduce some additional notations. Let IAm

denote an identity matrix of the same shape as the matrix Am(s, u(s)), m = 1, . . . , M, and A⊗ B denote
the tensor product of matrices A and B (see Appendix A). Then

A(s, u(s)) =
M⊕

m=1
Am(s, u(s)) = A1(s, u(s))⊕ A1(s, u(s))⊕ . . .⊕ AM(s, u(s))

= A1(s, u(s))⊗ IA2 ⊗ . . .⊗ IAM

+ IA1 ⊗ A2(s, u(s))⊗ . . .⊗ IAM

. . .
+ IA1 ⊗ IA2 ⊗ . . .⊗ AM(s, u(s))

(5)
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is called the tensor sum [12] of the square matrices Am(s, u(s)), m = 1, . . . , M.

Theorem 1. Let Xt be the global state of the coupled MC system, where each MC satisfies the representation (1).
Then Xt satisfies the representation

Xt = X0 +

t∫
0

A(s, u(s))Xsds + Wt = X0 +

t∫
0

M⊕
m=1

Am(s, u(s))
M⊗

m=1

Xm
s ds + Wt, (6)

where Wt is a square integrable martingale.

Note that from Theorem 1 it follows, that piece-wise constant right-continuous process Xt and
square integrable martingale Wt give the solution of the martingale problem (see Reference [13],
[Chapter III] for details) for SDE (6).

Proof. The theory of stochastic differential equations with values from finite-dimensional Hilbert
spaces can be found in Reference [14], and the present proof is based on the corollary from the Ito
formula for a finite-dimensional Hilbert space [14], [Section 4.1]. This result, applied for the case of
M = 2, that is, for tensor product Xt = X1

t ⊗ X2
t , brings the following:

X1
t ⊗ X2

t = X1
0 ⊗ X2

0 +

t∫
0

X1
s− ⊗ dX2

s + dX1
s ⊗ X2

s− +
[
W1, W2

]
t
,

where
[
W1, W2]

t stands for the tensor mutual variation of the processes X1
t , X2

t , which is a zero tensor
due to the independence of the martingales W1

t , W2
t .

Substituting the martingale representation of the individual MCs (1) for m = 1, 2 we obtain

X1
t ⊗ X2

t = X1
0 ⊗ X2

0 +

t∫
0

A1(s, u(s))X1
s ⊗ X2

s ds + X1
s ⊗ A2(s, u(s))X2

s ds + W1,2
t ,

where dW1,2
t = X1

s− ⊗ dW2
t + dW1

t ⊗ X2
s−, so W1,2

t is a square integrable martingale.
Proceeding further for m > 2, we finally have

X1
t ⊗ X2

t ⊗ . . .⊗ XM
t = X1

0 ⊗ X2
0 ⊗ . . .⊗ XM

0

+

t∫
0

A1(s, u(s))X1
s ⊗ X2

s ⊗ . . .⊗ XM
s ds

+ X1
s ⊗ A2(s, u(s))X2

s ⊗ . . .⊗ XM
s ds

. . .
+ X1

s ⊗ X2
s ⊗ . . .⊗ AM(s, u(s))XM

s ds +Wt.

(7)

Now using the definition of tensor product of matrices (see Appendix A), we can factorize the
summands in the last expression as

X1
t ⊗ X2

t ⊗ . . .⊗ XM
t = X1

0 ⊗ X2
0 ⊗ . . .⊗ XM

0

+

t∫
0

(
A1(s, u(s))⊗ IA2 ⊗ . . .⊗ IAM

) (
X1

s ⊗ X2
s ⊗ . . .⊗ XM

s

)
ds

+
(

IA1 ⊗ A2(s, u(s))⊗ . . .⊗ IAM
) (

X1
s ⊗ X2

s ⊗ . . .⊗ XM
s

)
ds

. . .

+
(

IA1 ⊗ IA2 ⊗ . . .⊗ AM(s, u(s))
) (

X1
s ⊗ X2

s ⊗ . . .⊗ XM
s

)
ds +Wt,
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which, along with the definition of the tensor sum (5), yields the theorem statement.

Note that Formula (7) provides an efficient way to calculate the tensor contraction A(s, u(s))Xs =

Ai1 ...iM

j1 ...jM Xj1 ...jM

s :

A(s, u(s))Xs = A1(s, u(s))X1
s ⊗ X2

s ⊗ . . .⊗ XM
s

+ X1
s ⊗ A2(s, u(s))X2

s ⊗ . . .⊗ XM
s

. . .
+ X1

s ⊗ X2
s ⊗ . . .⊗ AM(s, u(s))XM

s .

(8)

4. Optimal Control

4.1. Value Function Representation

The value function of the coupled MC system is a function, which is equal to the minimum total
cost for the system given the starting time t ∈ [0, T] and state Xt = X:

V(t, X) = inf
u(·)

J[u(·), X(·) |Xt = X],

where

J[u(·), X(·) |Xt = X] = E

〈ϕT , XT〉+
T∫

t

〈f(s, u(s)), Xs〉ds
∣∣∣∣Xt = X

 .

As in Formula (4) for the running cost function, we now represent the value function V(t, X) as

V(t, X) = 〈ϕt, X〉, (9)

where ϕt is a multidimensional array-valued function defined for any possible global state of the
coupled MC system Xt = ei1 ...iM

= ei1 ⊗ . . .⊗ eiM
.

4.2. Dynamic Programming Equation

Further, we generalize the approach to the control optimization of ordinary MC [7] to the
controlled MC systems. Define the dynamic programming equation with respect to ϕ̂t ∈ RN1 × . . .×RNM

:

〈dϕ̂t, Xt〉
dt

= −min
u∈U

{
〈ϕ̂t, A(t, u)Xt〉+ 〈f(t, u), Xt〉

}
= −min

u∈U
H(t,ϕ̂t, u, Xt) = −H(t,ϕ̂t, Xt) (10)

with terminal condition ϕ̂(T) = ϕT [7,10,15]. Our aim is to show that (10) has a unique solution ϕ̂t,
and that ϕ̂t = ϕt from the value function representation (9). This will allow us to present an optimal
Markov control, which minimizes the performance criterion (3).

If Assumption 1 holds, then H(t,ϕ̂t, u, X) is continuous in (t, u), and hence for any X ∈ S
there exists

u∗(t, X) = argmin
u∈U

H(t,ϕ̂t, u, X),

which minimizes this continuous function on a compact set U. Moreover, H(t,ϕ̂t, u, X) is affine in
ϕ̂t for any (t, X) ∈ [0, T]× S, so H(t,ϕ̂t, X) is Lipschitz in ϕ̂t, and hence Equation (10) has a unique
solution on [0, T].

The existence of an FX
t -predictable (i.e., FX

t−-measurable) optimal control, provided that
Assumption 1 is true, follows from a general result [16], [Theorem 4.2]. The following theorem
states that the optimal control can be chosen among the Markov controls, which depend not on the
whole process history X|t0, but on the left limit Xt− only. It should be noted that this result is a
generalization of Theorem 2.8 [7] for controlled MCs to the case of controlled MC systems.
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Theorem 2. If Assumption 1 holds, then the Markov control and the value function is defined by the solution of
the DPE (10), that is, V(t, X) = 〈ϕ̂t, X〉 and

û(t, X|t0) = u∗(t, Xt−) = argmin
u∈U

H(t,ϕ̂t, u, Xt−),

is the optimal control.

Proof. Since û(·) is a predictable control, then for any initial condition X0 ∈ S there exists a unique
solution of the martingale problem (6). That is, there exists a process Xû

t ∈ SD[0,T], where SD[0,T] is
a class of S-valued right continuous functions with left limits, which satisfies Equation (6), that is,

Xû
t = X0 +

t∫
0

A(s, û(s))Xû
s ds + Wû

t ,

where Wû is a square integrable FXû
t martingale.

Let us take some admissible control u(·) and corresponding solution Xu
t of the martingale

problem (6). Applying Ito’s formula to the process 〈ϕ̂t, Xu
t 〉 we get

〈ϕ̂t, Xu
t 〉 = 〈ϕ̂T , Xu

T〉 −
T∫

t

{〈dϕ̂s, Xu
s 〉+ 〈ϕ̂s, dXu

s 〉} .

Since the first integrand in the RHS is the minimum in (10), and Xu
s in the second integrand obeys

the martingale representation (6), we can transform the last equation into the following inequality:

〈ϕ̂t, Xu
t 〉 ≤ 〈ϕ̂T , Xu

T〉+
T∫

t

{H(t,ϕ̂s, u(s), Xu
s )ds− 〈ϕ̂s, A(s, u(s))Xu

t 〉ds− 〈ϕ̂s, dWu
t 〉}

= 〈ϕ̂T , Xu
T〉+

T∫
t

{〈f(s, u(s))Xu
t 〉ds− 〈ϕ̂s, dWu

t 〉} .

Taking the expectation E
[
·
∣∣Xt = X

]
of both parts of the inequality, we get

J[u(·), X(·) |Xt = X] = E

〈ϕ̂T , Xu
T〉+

T∫
t

〈f(s, u(s)), Xu
s 〉ds

∣∣∣∣Xt = X

 ≥ 〈ϕ̂t, X〉,

since ϕ̂s is a continuous deterministic function and the expectation of the integral over the martingale
is equal to zero. Substitution of the control û(t, X|t0) = u∗(t, Xt−) yields the equality, which means
that the solution to the DPE (10) defines the value function V(t, X) = 〈ϕ̂t, X〉 and u∗(t, Xt−) is the
optimal control.

4.3. Optimal Control Calculation

In the previous section it was shown that the solution to the DPE (10) is unique and from
Theorem 2 it follows that the Markov control, which minimizes the RHS of this equation, is optimal.
Now if we let Xt = ei1 ...iM

= ei1 ⊗ . . .⊗ eiM
, then we get a system of ∏M

m=1 Nm ordinary differential
equations (ODEs):

dϕ̂i1 ...iM

t
dt

= −min
u∈U

{
〈ϕ̂t, A(t, u)ei1 ...iM 〉+ fi1 ...iM (t, u)

}
= −H(t,ϕ̂t, ei1 ...iM

). (11)
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The inner product in the right-hand side of the ODEs (11) can be simplified as follows:

〈ϕ̂t, A(t, u)ei1 ...iM 〉 = ∑
j1 ...jM

ϕ̂
j1 ...jM

t 〈A(t, u)ei1 ...iM
, ej1 ...jM 〉

= ∑
j1 ...jM

ϕ̂
j1 ...jM

t

(
〈A1(t, u(t))ei1 , ej1〉 ⊗ . . .⊗ 〈eiM

, ejM 〉+ . . . + 〈ei1 , ej1〉 ⊗ . . .⊗ 〈AM(t, u(t))eiM
, ejM 〉

)
= ∑

j1 ...jM

ϕ̂
j1 ...jM

t

(
〈A1T

(t, u(t))ej1 , ei1〉 ⊗ . . .⊗ 〈ejM
, eiM 〉+ . . . + 〈ej1 , ei1〉 ⊗ . . .⊗ 〈AMT

(t, u(t))ejM
, eiM 〉

)
= ∑

j1 ...jM

ϕ̂
j1 ...jM

t 〈AT(t, u(t))ej1 ...jM
, ei1 ...iM 〉 = 〈AT(t, u(t))ϕ̂t, ei1 ...iM 〉,

where we used the definition of tensor sum (5), the representation of the inner product as
a component-wise sum, and denoted

AT(t, u(t)) =
M⊕

m=1

AmT(t, u(t)).

Finally, we get the following tensor form for the system of ODEs (11):

dϕ̂t
dt

= −min
u∈U

{
AT(t, u(t))ϕ̂t + f(t, u)

}
. (12)

The system (12) provides a method of simultaneous calculation of the optimal Markov control
u∗(t, Xt−) and the DPE solution. This system is solved backwards in time, starting from the terminal
condition ϕ̂(T) = ϕ̂(t). The minimizations of the RHSs of the equations of this system are independent
of each other and, in the case of the numerical solution, these time-consuming operations can be
performed in parallel. The result of the minimization yields a set of control functions u∗i1 ...iM (t),
which define the Markov optimal control:

u∗(t, Xt−) = u∗i1 ...iM (t)I{Xt− = ei1 ...iM}. (13)

4.4. Kolmogorov Equation

Once the optimal control is obtained, there arises the problem of the state probabilities calculation.
The main difficulty is that the optimal Markov control depends on the state Xt, so one cannot directly
compute the generator using the tensor sum Formula (5). To overcome this issue for a single controlled
MC with the generator A(t, u(t, Xt)), it suffices to substitute u(t, Xt) in the j-th column with control
u(t, ej), which corresponds to the state ej. For the controlled MC system, the generator A(t, u∗(t, Xt))

can be constructed in a similar block-wise manner. Indeed, for any global state ej1 ...jM
= ej1 ⊗ . . .⊗ ejM

,
the corresponding Markov control is equal to u∗(t, ej1 ...jM

) and

Ai1 ...iM

j1 ...jM (t, u∗(t, Xt)) = Ai1 ...iM

j1 ...jM (t, u∗(t, ej1 ...jM
)), for every multi-index i1 . . . iM, (14)

where A(t, u∗(t, ej1 ...jM
)) is defined by Formula (5) for u(t) = u∗(t, ej1 ...jM

).
Finally, Equation (14) defines the transition rate tensor A(t, u∗(t, Xt)), which is nonrandom,

and the state probabilities Pt = P{Xt = ei1 ...iM} for the process Xû
t satisfy the Kolmogorov equation

dPt

dt
= A(t, u∗(t, Xt))Pt. (15)

Note that as in the case of a single controlled MC this equation is simply a result of taking the
expectation of both sides of the corresponding SDE (6). Note also that the right-hand side of (15) is the

tensor contraction A(t, u∗(t, Xt))Pt = Ai1 ...iM

j1 ...jM (t, u∗(t, Xt)) Pj1 ...jM

t defined as in (8).
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5. Numerical Study: Goulburn River Cascade

To illustrate our approach to the modeling of real-world systems as coupled MCs and optimal
control synthesis, in this section we present a numerical study based on real-world data. The usual
area of applications for MCs and numerous generalizations is service systems, which can be described
in terms of Poisson arrival flows, queues, and servers. For example, in References [6,17], one can
find an application of coupled MCs for congestion control in networks. Specifically, an optimal
control strategy was proposed for a multi-homing network connection, where the packets (portions
of incoming traffic) could be sent through one of two lines of different speed and price or discarded.
However, in the present paper, we stick to another application area, namely, the control of water
reservoirs. The reason is that the proposed approach allows successful modeling of these systems,
accounting for the stochastic nature of the incoming and outgoing flows, being dependent on the
weather condition and users’ behavior. Moreover, the proposed form of the performance criterion
(3) permits a variety of optimization goals, for example, minimization of the difference between the
actual and desired demand intensities, maintenance of the balance between the incoming and outgoing
flows, minimization of the probability that either dam falls below some critical level on average or
at the terminal time [9]. Besides, this criterion allows penalizing control in certain states, so that
natural restrictions (such as the impossibility to transfer water from an empty or to an overflowing
reservoir) can also be taken into account. The terminal condition can reflect the desire to bring the
system to a certain state by the end of the control interval.

The object of our study is a system of interconnected dams of the Goulburn River cascade.
The model is deliberately simplified to avoid cumbersome details, which are unnecessary for a journal
on mathematical subjects, nevertheless, it demonstrates all the necessary techniques, such as MCs
states’ choice, relations between the discharges and state transition intensities, accounting for the
natural inflows and outflows, consumer demands, and environmental constraints.

The Goulburn River Basin is located in the south-western part of State Victoria, Australia.
The description of the region and a review of the literature devoted to water resource modeling and
planning can be found, for instance, in References [18–20]. The review of papers on allocation modeling
in this region and water trading can be found in References [21–23]. The Goulburn Basin, together
with the Upper Murray, Ovens, Kiewa, Broken, Loddon, and Campaspe Basins constitute an area
called the Goulburn-Murray Irrigation District (common abbreviation is GMW from Goulburn-Murray
Water—an organization governing water resources in this area). Since the Goulburn River is a major
waterway and a major contributor of water supply in the district, it is an object of very intensive
research and modeling. The GMW uses the Goulburn simulation model (GSM) for the optimization
and planning of water supply in the region. The GSM represents the Goulburn system as a set of
nodes of different types: storages, demands, and streamflow inputs. These nodes are connected
by a network of carriers characterized by their capacities and delivery penalties (penalty functions).
The GSM was calibrated using a trial-and-error procedure, which optimizes the model parameters
related to the water supply infrastructure [24]. The model presented here reflects a part of the GSM
and involves Lake Eildon—a major storage of water, which can be required by farmers during the
irrigation season, and Lake Nagambie with the Goulbourn Weir, which is connected by three major
channels to the end-users. The Goulburn River connects the two water storages and continues to run
after Nagambie, serving as its fourth outflow. Based on the request of irrigators, the water is released
from Lake Eildon to Lake Nagambie, and then by one of three channels or the river delivered to the
farmers (water right holders). The important point is that apart from irrigation requests, the system
must satisfy environmental demand, which means the levels in rivers and channels should exceed
some minimal threshold that will allow the support of healthy ecosystems and provide some required
minimal inflows to satisfy downstream demands.

The scheme of the Goulburn River cascade is presented in Figure 1. We assume that the water
level of Lake Eildon is affected by two major flows. One is the incoming flow, which reflects
the sum of all the natural water arrivals and losses, including precipitation, upstream tributaries,
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evaporation, and other causes. The single outcoming flow is the controlled discharge of the Goulburn
River, which also serves as the single incoming flow of Lake Nagambie (other natural inflows and
outflows into this lake are ignored here due to a significant difference in the size of the two lakes).
From Lake Nagambie, there are four controlled discharges, namely the Stuart Murray Canal, Cattanach
Canal, East Goulburn Main Channel, and the Goulburn River.

Lake Eildon Lake Nagambie
Goulburn riverRainfalls

Stuart Murray Canal

Cattanach Canal

East Goulburn Main Channel

Goulburn River

Figure 1. Goulburn River cascade scheme.

5.1. Mcs and Generators

The states of the water reservoirs indicate their water levels, expressed in equal portions of their
volume. So for Lake Eildon with a total volume equal to VE = 3,390,000 ML, the bounds of the states are
i·VE
NE

, where i = 1, . . . , NE and NE is the desired number of states, which is chosen according to accuracy
demands. The same state division is considered for Lake Nagambie with volume VN = 25,500 ML:
the bounds are j·VN

NN
, j = 1, . . . , NN , NN — desired number of states for this reservoir. Association of

the states with water volumes instead of the water surface levels leads to the same dependency of the
transitions on the incoming and outcoming flows and hence simplifies the resulting model.

We model the reservoirs as MCs, so the evolution of the reservoirs’ states in time is described
by the stochastic differential Equation (1), where M = 2 and X1

t and X2
t stand for Lakes Eildon and

Nagambie respectively. Due to natural reasons, the transitions are only possible between adjacent
states, so the generators Am(t, u) reflect a birth-and-death processes:

A1(t, u) =


−LR λR 0 0 . . . 0
UE −UE − LR LR 0 . . . 0
0 UE −UE − LR LR . . . 0

. . .
0 . . . 0 0 UE −UE,


where LR = LR(t) is the intensity of the incoming flow of natural water arrivals and losses,
and UE = UE(t) is the controlled intensity, which reflects the flow from Lake Eildon to Lake Nagambie.
The variables LR and UE have a purely probabilistic sense, which has to be translated into the common
units of water discharge measurement, say [ML

day ]. Here the basic assumption is the equality of the
average transition times, which for the constant rate λ and constant discharge u are equal to 1/λ

from the one side, and to v
u from the other. Here v is the volume of water, which corresponds to the

difference between the levels, for example, for Lake Eildon, v = VE
NE

. Thus, in terms of the discharges,
the generator A1(t, u) can be represented as follows:

A1(t, u) =
NE
VE


−λR λR 0 0 . . . 0
uE −uE − λR λR 0 . . . 0
0 uE −uE − λR λR . . . 0

. . .
0 . . . 0 0 uE −uE,

 (16)



Mathematics 2020, 8, 1712 10 of 17

where uE is the discharge from Lake Eildon, and λR is the sum of all the natural inflows expressed in
common units [ML

day ].
Denote the controlled discharges from Lake Nagambie by uSM, uCa, uEG, uGR, which stand

respectively for the discharges of the Stuart Murray, Cattanach, East Goulburn Main Channels, and the
Goulburn River, and the sum of these discharges as uN = uSM + uCa + uEG + uGR. Since the outflow
of Lake Eildon is at the same time the incoming flow of Lake Nagambie, we have the following
representation of the generator A2(t, u):

A2(t, u) =
NN
VN


−uE uE 0 0 . . . 0
uN −uN − uE uE 0 . . . 0
0 uN −uN − uE uE . . . 0

. . .
0 . . . 0 0 uN −uN .

 (17)

It should be noted that the capacity of Lake Eildon is more than 100 times larger than the capacity
of Lake Nagambie. This causes certain problems for the numerical simulation since the same discharge
values affect the transition rates in different scales. To overcome this issue, one can normalize the
transition rates by adjusting the number of states, providing NE � NN . Another way is to scale
down the time discretization step, ensuring adequate probabilities of state transitions for the MC,
which corresponds to Lake Nagambie.

5.2. Performance Criterion and Constraints

The performance criterion should take into account the customer demands and ensure the balance
of the water reservoirs inflows and outflows. We assume that there are some reference values for the
demands in the channels and the Goulburn River: ũSM, ũCa, ũEG, ũGR, which an optimal control aims
to satisfy. Let

fij(t, u) = (uN − uE)
2

+ (uSM − ũSM)2 + (uCa − ũCa)
2 + (uEG − ũEG)

2 + (uGR − ũGR)
2

+ Cu2
E I{i = 1}+ Cu2

SM I{j = 1}+ Cu2
Ca I{j = 1}+ Cu2

EG I{j = 1}+ Cu2
GR I{j = 1},

(18)

where i and j stand for the state number of Lakes Eildon and Nagambie respectively, C is some large
number, and I{·} is an indicator function.

The running cost function (4) with the state-related cost given by (18) reflects the mentioned
aim along with the intention to balance the arriving and outgoing flows of Lake Nagambie.
Plus, this running cost penalizes the nonzero discharges from both lakes, when they are in the states
X1

t = e1, X2
t = e1, which corresponds to the lowest possible level, or drought.

The terminal condition ϕ0(XT) = 〈ϕT , XT〉 in (3) is defined by matrix ϕT with elements ϕ
ij
T ,

which correspond to the combination of states X1
T = i and X2

T = j. Let X̃T be the desired terminal state
of the system, then define the terminal condition as follows:

ϕ
ij
T = C · exp(‖(i, j)T − X̃T‖1), (19)

where ‖ · ‖1 is the L1 norm (sum of absolute values). This condition penalizes any deviation of the
system’s state at the end of the control interval T from the desired and, moreover, it assigns a larger
penalty for greater deviations.

For all the control variables we also define phase constraints in the form of upper and
lower bounds:

u ≤ u ≤ ū, u = (uE, uSM, uCa, uEG, uGR)
T . (20)

These constraints bound the maximal possible discharges for the channels and the Goulburn
River and guarantee the environmental demand, mentioned earlier.
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5.3. Parameters Definition

In previous subsections, the Goulburn River cascade model was defined in general.
Nevertheless, there still are some undefined parameters, which will be specified using real-world
data. To define the reference demand values ũSM, ũCa, ũEG, ũGR, we use the data on the discharges of
the corresponding channels and river available from the Water Measurement Information System of
the Department of Environment, Land, Water & Planning of Victoria State Government [25]. The data
on the daily discharges was grouped by the day of year, and for each group, the mean value was
calculated. The resulting time series were approximated by functions

u(t) = a0 +
K

∑
i=1

{
ai sin

(
2πi
T

t
)
+ bi cos

(
2πi
T

t
)}

,

where T = 365 days and coefficients ai, bi are chosen using the Least-Squares method. The resulting
functions are smooth and have a period equal to one year, which makes them suitable for the reference
values of the irrigation demands in the proposed model. The time series of the average daily discharges
and the approximating functions are presented in Figure 2.

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
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]

Goulburn higher

Stuart Murrey

Cattanach

East Main

Goulburn lower

Figure 2. Average daily discharges (dotted lines) and the approximating smooth periodic functions
(solid lines).

The data for the Lake Eildon incoming flow is obtained from the Climate Data Online service of
the Bureau of Meteorology of the Australian Government [26]. The rainfall data is collected at the
weather station situated there. This data is averaged on a daily basis and approximated by a smooth
periodic function in the same way as the daily discharges. The resulting function serves as an incoming
flow pattern ΛR(t). For this model, we assume that the irrigation demands agree with the total
available natural resources, so the incoming flow pattern is normalized to make the incoming flow
λR(t) = const ·ΛR(t) satisfy the following condition:

T∫
0

(ũSM(t) + ũCa(t) + ũEG(t) + ũGR(t))dt =
T∫

0

λR(t)dt.

The resulting flow approximation along with normalized rainfall averages is presented in Figure 3.
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Figure 3. Normalized rainfall daily averages (dotted line) and the approximation (solid line).

Specifying of the upper and lower bounds for the control parameters
u = (uE, uSM, uCa, uEG, uGR)

T and ū = (ūE, ūSM, ūCa, ūEG, ūGR)
T by maximum and minimum

registered values of the corresponding discharges time series obtained from Reference [25] finalizes
the definition of our Goulburn River cascade model.

5.4. Simulation Results

The complete definition of the control optimization problem is given by

• state Equation (1) with generators (16) and (17);
• optimization criterion (3) with running cost (18) and terminal condition (19);
• phase constraints (20);
• incoming flow λR(t), reference values of the irrigation demands ũSM, ũCa, ũEG, ũGR and upper

and lower bounds for the control parameters defined in Section 5.3.

Now the optimal Markov control (13) can be calculated as a solution to the system of ODEs (12).
Remember that the minimization in the RHS of the ODEs can be done independently and hence can
be effectively parallelized. The system (12) was solved numerically using the Euler method with the
discretization step δt = 10−4, while the time scale and all the necessary functions were normalized so
that T = 1.0. The number of MCs’ states for both lakes was chosen as NE = NN = 10, and the desired
terminal state X̃T = (9, 9)T .

In Figures 4 and 5, the optimal control values are presented for the states (9, 9)T and (7, 9)T .
One can see the nontrivial behavior of the optimal discharges, which differs from the reference
values even for the desired terminal state. The evolution of the value function components ϕ

ij
t

exhibits the influence both from the integral part of the criterion and the terminal condition.
Indeed, for X̃T = (9, 9)T it monotonically decreases since the demands here are mostly satisfied and
the system is already in the desired state. For the state (7, 9)T , on the contrary, there are intervals of
monotonic growth: the first is because of insufficient supplies in late summer and autumn months,
and the second starts in spring and shows the necessity to transit to the desired terminal state
X̃T = (9, 9)T .

The Kolmogorov Equation (15) allows us to calculate the probabilities of the global system states
given the initial state or distribution. The probabilities for states (9, 9)T and (7, 9)T are presented in
Figures 4 and 5 on the upper subplots. The initial state here was chosen to be equal to the terminal
X̃0 = X̃T = (9, 9)T . The solid red lines present the solution of (15), and the dotted lines are the result
of Monte-Carlo sampling: the state rate was estimated using a set of 100 sample paths governed by
the optimal control strategy. The state probabilities allow us to also calculate the average states of
MCs, which can be converted into the average levels of Lakes Eildon and Nagambie. In Figure 6,
the average levels calculated by means of the Kolmogorov Equation (15) are presented by solid
lines. The corresponding averages calculated using the Monte-Carlo sampling are depicted with
dotted lines.
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Figure 4. Probability of the state X1(t) = 9, X2(t) = 9, corresponding value function component ϕ9,9
t

and optimal Markov control u∗9,9.
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Figure 5. Probability of the state X1(t) = 7, X2(t) = 9, corresponding value function component ϕ7,9
t

and optimal Markov control u∗7,9.



Mathematics 2020, 8, 1712 14 of 17

Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun
0

2

4

6

8

10

A
ve

ra
ge

st
at

e

Eildon

Nagambie

Figure 6. Average levels of Lakes Eildon and Nagambie for optimal control.

As an alternative to the optimal control u∗(t, Xt) we present here a program control up(t, Xt)

which aims to fully satisfy the customer demands:

up(t, Xt) =


I{Xt = e1 ⊗ ej}(ũSM + ũCa + ũEG + ũGR)

I{Xt = ei ⊗ e1}ũSM
I{Xt = ei ⊗ e1}ũCa
I{Xt = ei ⊗ e1}ũEG
I{Xt = ei ⊗ e1}ũGR

 .

The indicator functions make sure that the natural constraints are satisfied, that is, the water
cannot be taken from an empty dam. In Figure 7, the average levels calculated by means of the
Kolmogorov equation and Monte-Carlo sampling are presented. One can observe that this program
control leads to overuse of the resources in contrast with the optimal one, which is able to refill the
dams after the winter demand growth and rainfall shortage.
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Figure 7. Average levels of Lakes Eildon and Nagambie for program control.

6. Conclusions

The paper presents a framework of controlled coupled MC optimization. The specific character
of the problem requires the usage of tensor representation of the set of MCs, which permits us to
derive the joint set of DPEs and organize the calculation in a parallel manner. This is important,
especially for the most time-consuming minimization of the right-hand side in each discretization step
of the numerical solution of the DPE. For a demonstration of the method, we chose a model of the
Goulburn River cascade. The model was deliberately simplified to provide a clear demonstration of the
approach; however, it is just a first step in a possible detailed analysis of this dam system, which would
rely on more detailed data on natural and agricultural processes in the district.
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Appendix A. Tensor Product Properties

In this Section we provide the tensor related definitions used throughout the paper. For more
details we refer the reader to Reference [27].

For the present paper it is sufficient to define a tensor by its entries like an M-dimensional array
of elements Vi1 ...iM ∈ R, where i1 . . . iM is multi-index (tuple) given by indices im ∈ 1, . . . , Nm. The set
of such objects we denote as RN1×···×Nm

.

Definition A1. Let Vm ∈ RNm
, m = 1, . . . , M then V ∈ RN1×···×Nm

is called tensor product of vectors Vm

V = V1 ⊗ . . .⊗VM =
M⊗

m=1

Vm

if its entries are equal to Vi1 ...iM
= Vi1

1 · . . . ·ViM

M .

From Definition A1 it follows that the tensor space RN1×···×Nm
can be defined as a set of all finite

linear combinations of tensor products of vectors from vector spaces RN1
, . . . ,RNM

:

RN1×···×Nm
=

M⊗
m=1

RNm
= span{V1 ⊗ . . .⊗VM, where Vm ∈ RNm

, m = 1, . . . , M}.

Definition A2. Let Am ∈ RNm×Qm
be a set of matrices, then the tensor product of these matrices is the

linear mapping

A = A1 ⊗ . . .⊗ AM =
M⊗

m=1

Am : RN1×···×Nm −→ RQ1×···×Qm

defined for any V ∈ RN1×···×Nm
by

AV =

(
M⊗

m=1

Am

)(
M⊗

m=1

Vm

)
=

M⊗
m=1

(AmVm) ∈ RQ1×···×Qm
.
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