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Abstract: Numeric simulations are performed for a comparative study of magnetohydrodynamic
(MHD) rotational flow of hybrid nanofluids (MoS2-Ag/ethylene glycol-water (50–50%) and
MoS2-Go/ethylene glycol-water (50–50%)) over a horizontally elongated plane sheet. The principal
objective is concerned with the enhancement of thermal transportation. The three-dimensional
formulation governing the conservation of mass, momentum, energy, and concentration is transmuted
into two-dimensional partial differentiation by employing similarity transforms. The resulting
set of equations (PDEs) is then solved by variational finite element procedure coded in Matlab
script. An intensive computational run is carried out for suitable ranges of the particular quantities
of influence. The primary velocity component decreases monotonically and the magnitude
of secondary velocity component diminishes significantly when magnetic parameter, rotational
parameter, and unsteadiness parameter are incremented. Both the primary and secondary velocities
are smaller in values for the hybrid phase Ag-MoS2 than that of hybrid phase Go-MoS2 but the
nanoparticle concentration and temperature are higher for hybrid phase Ag-MoS2. The increased
values of parameters for thermophoresis, Brownian motion, shape factor, and volume fraction of
φ2 made significant improvement in the temperature of the two phases of nano liquids. Results are
also computed for the coefficients of skin friction(x, y-directions), Nusselt number, and Sherwood
number. The present findings manifest reasonable comparison to their existing counterparts. Some of
the practical engineering applications of the present analysis may be found in high-temperature
nanomaterial processing technology, crystal growing, extrusion processes, manufacturing and rolling
of polymer sheets, academic research, lubrication processes, and polymer industry.

Keywords: magnetohydrodynamic; hybrid nanofluid; finite element method; shape factor;
rotating frame
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1. Introduction

Global warming and environmental pollution are ultimately leading to energy shortages in
the modern world. As a result, engineers and scientists are looking for new advances in energy
for sustainable improvement. Based on current advances in nanotechnology, the improvement
of nanomaterials is considered to be more effective in enhancing the thermal efficiency of base
liquids. Nanomaterials are mostly used as a coolant in industrial, mechanical, and chemical fields.
Liquid cooling is currently a major problem because efficient heat and mass transfer fluids need
to provide appropriate conditions for commercial applications. It can be obtained by immersing
micro-sized nanomaterials in ordinary base liquids. These fluids are classified as nanofluids and can
be commonly used in numerous manufacturing applications such as cooking processing, air condition,
automobile radiators, waste heat recovery, refrigeration, etc. Furthermore, Maxwell [1] proposes
the innovative idea of adding solid particles to heat transfer fluids to rise their thermal conductivity
thermodynamic parameter further discoveries that are put forth by Choi [2] and Kang et al. [3].
They experimented on an empirical model which develop a scope in heat exchange and give researchers
a road map to develop new models for hybrid nanoparticles by the matter of fact that its thermal
conductivity is more than that of the alone nanoparticle. Another phenomenon that which is discussed
here is natural convection which is independent of the motion of fluid over external source such as
pump or suction devices, the parameter that is responsible for the motion of the fluid is generally
natural fluid or we can pronounce it as buoyancy force. The followings are the practical usage of these
parameters. Stagnation point flow of Cu-TiO2/H2O hybrid Nanofluid under the effects of the magnetic
field. Ghadikolai et al. [4] described their investigation on heat transfer and shape factors on stretching
surfaces. The analysis of convective Poiseuille boundary layer flow of Al2O3/C2H6O2 nanofluid over
porous wavy channel has been presented by Zeeshan et al. [5]. Anwar and Rasheed [6] experimented
on non-isothermal boundaries in MHD fractional inertial flow with the help of a finite-difference
scheme and describe the numerical results on heat transfer. The shape factor and thermal influences
on heat transfer and 3D squeezing flow of Ag-Fe3O4/Ethylene.

Dinarvand S et al. [7] investigate the mathematical model name for the Tiwari-Das nanofluid
model based on three different water-based nanofluids (copper, alumina, titanium). This examination is
interested in developed the homotopy analysis of the stagnation-point flow of MHD mixed convection
with electrically conducted permeable vertical stretching/shrinking sheet. Afterward, Mabood et al. [8]
provide mathematical research on the properties of MHD stagnation point flow and heat transfer
expending the Tiwari-Das nanofluid model. In 2017 the Pop et al. [9] also evaluate the free convective
flow of hybrid nanofluid of coper water over the downward-pointing cone through the Tiwari-Das
model. Subsequently, after a short cooling down in 2018 Aghamajidi et al. [10] make a similar
work on the downward-pointing cone with the effect of rotation and natural convection of hybrid
nanofluids. Ghadikolaei et al. [11] performed the Glycol-water nanofluid over the rotating and
stretching channel. The outcomes of this research came to discover the reduction of thermal boundary
layer thickness. Due to this phenomenon, LTNE porous model has been applied to natural convection
of micropolar nanofluid consisting CuO of nanoparticles and H2O base fluid inside a cavity by
Izadi et al. [12]. Xu and Xing [13] described the lattice Boltzmann model for nanofluid natural
convection in a porous cavity. It was found that nanofluid and porous media causes to intensify
natural convection. Shape nanoparticle, joule heating, and thermal radiation impacts on MHD flow of
non-Newtonian micropolar dusty fluid by hybrid nanoparticles discussed by Ghadikolaei et al. [14].
The outcomes of the research lead to conclude that the heat transfer rate is efficiently more than alone
nanoparticles. The study of natural convection heat transfer of glycol-water inside a cavity has been
studied by Solomon et al. [15].

Buongiorno [16] encouraged the important features of the thermophoresis and Brownian motion
for the development of heat transfer aspects allied with nanofluids. Bhatti et al. [17] investigate
and evaluate the thermos-diffusion properties in Williamson nanofluid overwhelmed in the porous
medium by the Buongiorno model. Additionally, Hayat et al. [18] create a dynamic approach
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and apply the Buongiorno model on thixotropic nanofluid along with radiation effects and Joule
heating. Hassan et al. [19] evaluate the Buongiorno model to improve the thermal conductivity in the
Falkner–Skan magnetized nanofluid in the presence of microorganisms. Khan et al. [20] studied the
free convection effect on nanofluid flow using vertical plate geometry.

Magnetohydrodynamics (MHD) engagement has valuable implementations in the area of
medication, astronomy, advanced plane design, successfully deal with the heat transfer rates in
cylinders, numerous machines, energy generators, and turbulent pumps. The MHD effect is discussed
as a magnetic effect upon the electric conductor. It relates to the interaction between magnetic fields
and electric conductor fluids. Nayak [21] deliberated the thermal radiation effects upon the depth of
the molecules and concluded that decreasing the heat transfer is due to thermal radiation and viscous
dissipation. Rasheed and Anwar [22] integrated the MHD viscoelastic fluid flow under the effect of
homogeneous reaction using partial differential equations. Naz et al. [23] illustrated the effects of
MHD flow in a horizontal channel utilizing the Adomian decomposition technique. More work on
magnetohydrodynamics theory is carried out [24–27].

In recent years, the investigation of fluid and heat transport problems in the rotating frame is
an absolutely charming matter. It is a result of their colossal applications in the assembling of crystal
development, computer stockpiling devices, thermal power stations, food handling, diffusive filtration
process, rotating machinery, viscometry, and gas turbine rotors [28,29]. The principal endeavor toward
this path was made by Wang [30]. The impact of magnetohydrodynamics (MHD) in rotating liquid
is studied by Takhar et al. [31]. Nazar et al. [32] examined the unsteady flow in the rotatory frame
incited by the deforming sheet. The influence of variable thermal conductivity on 3D Williamson
rotating fluid is investigated by Khan et al. [33]. Recently, published research articles on rotating flow
are mentioned in [34–37].

This numeric investigation pertains to the two different hybrid nano liquids rotational flow over
a plane sheet that stretches horizontally. The novelties of the current study are (i) a comparative study
of two hybrid nanofluids with hybrid base fluid and different shape factors, i.e., MoS2-Ag/ethylene
glycol-water (50–50%) and MoS2-Go/ethylene glycol-water (50–50%), (ii) the Buongiorno nanofluid
model is implemented together with Tiwari and Das nanofluid model, (iii) incorporate the chemical
reaction and activation energy, and (iv) the finite element approach for this elaborated problem.
It solves the boundary value problems adequately, rapidly, and precisely [38,39]. Differentiated
outcomes for temperature, Nusselt number, velocity components, skin friction coefficients, nanoparticle
volume fraction, and Sherwood number are evaluated and presented. The numerical procedure (FEM)
has established reliable results as verified through their comparison with those of existing formerly.
Some of the practical engineering utilization of the present investigation might be found in crystal
growing and glass, extrusion processes, paper industry, turbo-mechanics, thinning and drawing
of copper wires, gas turbine rotors, polymer industry, lubrication processes, filtration process, and
relevant to high-temperature nanomaterial processing technology.

2. Statement of the Problem

Unsteady transient three dimensional MHD viscous and an incompressible hybrid nanoparticles
Ag-MoS2 and Go-MoS2 in hybrid base fluid C2H6O2-H2O (50–50%) flow over an extending sheet
along with a rotating frame are considered as shown in Figure 1. The mathematical model is created
through a species type that incorporates the chemical reactions and Arrhenius activation energy.
The Buongiorno nanofluid model is implemented together with Tiwari and Das nanofluid model.
Physically, we assume that the whole framework is at rest in the time t < 0 however for t = 0,
the sheet is stretched along x-direction at z = 0 with angular velocity (Ω). Bo is uniform (magnetic
field) and applied along with z-direction, the incited magnetic field is ignored due to a small magnetic
Reynolds number, and moreover, Ohmic dissipation and Hall’s current impacts are ignored since the
field of magnetic is not too much strong [40]. Moreover, the magnetic force acts normally to x and
y-direction and no effect along z-direction as referred in schematic Figure 1. Further, we assume that
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the thermo-physical properties of hybrid base, single and hybrid nanofluid along with shape factor are
expressed in Table 1 and Table 2, the base fluid and nanoparticles are in thermal equilibrium and no slip
occurs between them, and the agglomeration of nanoparticles is ignored because the hybrid nanofluid
is synthesized as a stable compound. Furthermore, we assume that Tw, Cw are the surface temperature
and concentration, respectively, and C∞, T∞ are the ambient concentration and temperature.
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Figure 1. Schematic configuration with coordinate system.

3. Governing Equations

Considering the above suppositions, the consistent mass, momentum, energy, and conservation
of concentration equations can be written as [41,42]:

∂xu1 + ∂yu2 + ∂zu3 = 0, (1)

ρn f (∂tu1 + u1∂xu1 + u2∂yu1 + u3∂zu1 − 2Ω1u2) = −∂x p + µn f ∂zzu1 − σn f B2
0u1, (2)

ρn f (∂tu2 + u1∂xu2 + u2∂yu2 + u3∂zu2 − 2Ω1u1) = −∂y p + µn f ∂zzu2 − σn f B2
0u2, (3)

ρn f (∂tu3 + u1∂xu3 + u2∂yu3 + u3∂zu3) = −∂z p + µn f ∂zzu3, (4)

∂tT + u1∂xT + u2∂yT + u3∂zT = α̃n f ∂zzT + τ̃∗{D̃B∂zC∂zT +
D̃T

T̃∞
(∂zT)2}, (5)

∂tC + u1∂xC + u2∂yC + u3∂zC = D̃B∂zzC +
D̃T
T∞

∂zzT − k2
r (C− C∞)

(
T

T∞

)m
exp

(
−Ea

kBT

)
. (6)

The Equation (1) represents the mass conservation for incompressible flow. On L.H.S of each of
Equations (2)–(6), the local rate of change is described in the first terms, the second, the third, and fourth
terms represents convection rate of change. The fifth term in Equations (2) and (3) shows the rotation.
The first term on R.H.S of each of the Equations (2)–(4) indicates pressure gradient, the second term
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corresponds to viscous effects and third term in Equations (2) and (3) signified the body force (magnetic
effect). The right hand side of Equation (5), the first term is attributed with thermal diffusion and the
second term exhibits the thermophoresis and Brownian motion phenomena. Similarly, on R.H.S of
Equation (6), the first term stands for solutal diffusion, the second term for thermophoresis, and the
last term in Equation (6), k2

r (C− C∞)( T
T∞ )mexp(−Ea

kBT ) shows the modified Arrhenius equation with
a reaction rate of k2

r and fitted rate constant m. Here, u1, u2, and u3 are velocity component in x, y, z
directions, respectively, T and C are the fluid temperature and nanoparticle volume concentration,
D̃B and D̃T are the Brownian diffusion and thermophoretic diffusion coefficient respectively, ρn f ,
α̃n f , µn f , and σn f are respectively the density, thermal diffusivity, dynamic viscosity, and electrical
conductivity of the nanofluid. The current physical elaborated problem, characterized boundary
conditions are [41,43]:

t < 0 : u1 = 0, u2 = 0, u3 = 0, T = T∞, C = C∞, (7)

t ≥ 0 : u1 = ãx, u2 = 0, u3 = 0, T = Tw, C = Cw, as z = 0, (8)

t ≥ 0 : u1 → 0, u2 → 0, T → T∞, C → C∞, as z→ ∞. (9)

In this current investigation, the authors attempted to utilize another way to enhance the technique
of heat transfer in liquids, which is presently being talked about among researchers and scientists.
The utilization of hybrid nanoparticles instead of single nanoparticles alongside the utilization of
various shapes of nanoparticle and hybrid base liquid is adopted technique by the writers of this
paper. Since hybrid nanoparticles thermal conductivity is greater than single nanoparticles thermal
conductivity (khn f > kn f ), it is an ideal strategy for improving heat trasnferprocess in liquids. In Table 3,
Φ = Φ1 + Φ2 is the nanoparticles volume fraction and s f is the nanoparticles shape factor, respectively.

Table 1. Thermo-physical properties of hybrid base fluid and nanoparticles [11,44].

Physical Properties C2H6O2-H2O MoS2 Ag Go

ρ(kg·m3) 1063.80 5060.0 10, 490.0 1800.0
Cp(J(kg · °k)) 3630.00 397.21 235.000 717.0
σ(Ω ·m) 9.75× 10−4 02.09× 104 6.30× 107 6.30× 107

κ(W(m · °k) 0.387 904.4 429 5000.0

We offer a following set of transformation variables to proceed the analysis (see [41,45,46]):

η =

√
ãx
ζν f

z, f ′(ζ, η) =
u1

ãx1
, g(ζ, η) =

u2

ãx
, f (ζ, η) =

u3

−
√

ãνζ
, ζ = 1− e−τ ,

τ = ãt, θ(ζ, η)(Tw − T∞) = (T − T∞), φ(ζ, η)(Cw − C∞) = (C− C∞).

 (10)
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Table 2. Nanoparticles shape with shape factor [47,48]

Nanoparticles Type Shape Shape Factor

Bricks 3.7

Cylinders 4.9

Platelets 5.7

Blades 8.9

Table 3. Thermo-physical properties of hybrid nanofluid [48,49].

Properties Nanofluid Hybrid Nanofluid

µ(viscosity) µn f =
µ f

(1−Φ)2.5 µhn f =
µ f

(1−Φ1)2.5(1−Φ2)2.5

ρ(density) ρn f = ρ f ((1−Φ) + Φ ρs
ρ f

ρhn f = ρ f (1−Φ2)((1−Φ1) + Φ1
ρs1
ρ f
) + Φ2ρs2

ρCp(Heat capacity) (ρCp)n f=(ρCp) f ((1−Φ)+Φ
(ρCp )s
(ρCp ) f

(ρCp)hn f =(ρCp) f (1−Φ2)((1−Φ1)+Φ1
(ρCp )s1
(ρCp ) f

)+Φ2(ρCp)s2

κ(Thermal conductivity) κn f
κ f

=
κs+(s f−1)κ f−(s f−1)Φ(κ f−κs)

κs+(s f−1)κ f +Φ(κ f−κs)

κhn f
κb f

=
κs2+(s f−1)κb f−(s f−1)Φ2(κb f−κs2)

κs2+(s f−1)κb f +Φ(κb f−κs2)

where κb f
κ f

=
κs1+(s f−1)κ f−(s f−1)Φ1(κ f−κs1)

κs1+(s f−1)κ f +Φ(κ f−κs1)

σ(Electrical conductivity) σn f
σf

= 1 + 3(σ−1)Φ
(σ+2)−(σ−1)Φ

σhn f
σb f

= 1 + 3Φ(σ1Φ1+σ2Φ2−σb f (Φ1+Φ2))

(σ1Φ1+σ2Φ2+2Φσb f )−Φσb f ((σ1Φ1+σ2Φ2)−σb f (Φ1+Φ2))

The continuity Eqaution (1) is satisfied identically using above similarity transformations. In light
of Eqaution (10), the Eqautions (2)–(9) reduce into following non-linear PDEs in the transformed
coordinate system (ζ, η).

1
χ1χ2

f ′′′ +
1
2
(1− ζ)η f ′′ + ζ( f ′′ − f ′2 + 2λg− χ3

χ2
M2 f ′) = ζ(1− ζ)

∂ f ′

∂ζ
, (11)

1
χ1χ2

g′′ +
1
2
(1− ζ)ηg′ + ζ( f g′ − f ′g− 2λ f ′ − χ3

χ2
M2g) = ζ(−ζ)

∂g
∂ζ

, (12)

χ4

χ5
θ′′ +

1
2
(1− ζ)ηPrθ′ + Prζ f θ′ + NbPrθφ + NtPrθ′2 = Prζ(1− ζ)

∂θ

∂ζ
, (13)

φ′′ +
Le
2
(1− ζ)ηφ′ + Leζ f φ′ +

Nt
Nb

θ′′ − LeΓζ(1 + δθ)m exp(− EE
1 + δθ

)φ = Leζ(1− ζ)
∂φ

∂ζ
, (14)
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f (ζ, η) = 0, f ′(ζ, η) = 1, g(ζ, η) = 0, θ(ζ, η) = 1, φ(ζ, η) = 1, ζ ≥= 0, at η = 0,

f ′(ζ, ∞)→ 0, g(ζ, ∞)→ 0, θ(ζ, ∞)→ 0, φ(ζ, ∞)→ 0, ζ ≥ 0, as η → ∞.

}
(15)

where

χ1 = (1−Φ1)
2.5(1−Φ2)

2.5, χ2 = (1−Φ2)

{
(1−Φ1) + Φ1

ρs1

ρ f

}
+ Φ2

ρs2

ρ f
,

χ3 =

{
1 +

3(s f − 1)( σ2
σf
− 1)Φ2

( σ2
σf

+ 2)− ( σ2
σf
− 1)(s f − 1)Φ2

+
3(s f − 1)( σ1

σf
− 1)Φ1

( σ1
σf

+ 2)− ( σ1
σf
− 1)(s f − 1)Φ1

}
σf ,

χ4 =
κs2 + (s f − 1)κb f − (s f − 1)Φ2(κb f − κs2)

κs2 + (s f − 1)κb f + Φ2(κb f − κs2)
.
κs1 + (s f − 1)κ f − (s f − 1)Φ1(κ f − κs1)

κs1 + (s f − 1)κ f + Φ1(κ f − κs1)
,

χ5 = (1−Φ2)

{
(1−Φ1) + Φ1

ρs1

ρ f

}
+ Φ2

ρs2

ρ f
.

and primes (′,′′ ,′′′) denote the d.r.t η. The come into view parameters in Eqautions (11)–(14) are
defined as:

λ =
Ω1

ã
, M =

√
σf B2

o

ρ f ã
, Pr =

ν f (ρCp) f

κ f
, Le =

ν

D̃B
, Nb = ν−1τ̃∗D̃B(C̃w − C̃∞),

Nt =
τ̃∗D̃T(T̃w − T̃∞)

νT̃∞
, Γ =

k2
r
a

, δ =
Tw − T∞

T∞
, EE =

Ea

κBT∞
.

where λ, M, Pr, Le, Nb, Nt, Γ, δ, and EE are the rotating parameter, magnetic parameter, Prandtl
number, Lewis number, Brownian motion, thermophoresis parameter, chemical reaction rate,
temperature difference, and activation energy respectively. When τ → ∞, ζ = 1, then the
Eqautions (11)–(14) become:

1
χ1χ2

f ′′′ + f f ′′ − f ′2 + 2λg− χ3

χ2
M2 f ′ = 0, (16)

1
χ1χ2

g′′ + f g′ − f ′g− 2λ f ′ − χ3

χ2
M2g = 0, (17)

χ4

χ5
θ′′ + Pr f θ′ + NbPrθφ + NtPrθ′2 = 0, (18)

φ′′ + Le f φ′ +
Nt
Nb

θ′′ − LeΓ(1 + δθ)m exp(− EE
1 + δθ

)φ = 0. (19)

subject to the boundary conditions (15)
Skin friction coefficient expressions, local Nusselt number, and Sherwood number are defined as:

C f x =
τx

w

ρũ2
1

, C f y =
τ

y
w

ρũ2
1

, Nu =
xqw

κ(T̃w − T̃∞)
, Shr =

xqm

D̃B(C̃w − C̃∞)
. (20)
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where the skin friction tensor at wall are τx
w = µn f (∂u1/∂z)z=0 (x-direction) and τ

y
w = µn f (∂u2/∂z)z=0

(y-direction), the wall heat transfer is qw = −κn f (∂T̃1/∂z1)z1=0, and the mass flux from the sheet is
qm = −D̃B(∂C̃1/∂z1)z1=0. By the aid of similarity transformation Equation (10), we get

C fxRex
1/2 =

f ′′(0)
χ1χ2

√
ζ

, C fyRex
1/2 =

h′(0)
χ1χ2

√
ζ

,

NuxRex
1/2 = − [χ4θ′(0)]√

ζ
, ShrxRex

1/2 = − [φ′(0)]√
ζ

.
(21)

4. Finite Element Method Solutions

The set of PDEs (partial differential equations) Equations (11)–(14) cannot be solved analytically
due to highly non-linearity. The transformed set of non-linear PDEs Equations (11)–(14) is solved
numerically utilizing the variational finite element method along with boundary conditions
(Eqaution (15)). This technique is an excellent numerical computational strategy valuable to solve the
different real word and engineering analysis problems such as fluids with heat transfer, structural
engineering, Bio-materials, chemical processing, rigid body dynamics, and different territories [50].
In present-day engineering analysis, it tends to be applied for solving integral equations and amazingly
efficient technique to solve various nonlinear problems [51–54]. Reddy [55] outlined an excellent
general description of the variational finite elements method and [56] summarized the basic steps
involved in the FEM. Basically the technique is comprised of continuous piecewise function for the
solution and to get the function’s parameters in a systematic manner that minimizes the error [57].
The FEM solves boundary value problem adequately, rapidly and precisely [58,59]. To reduce the
order of nonlinear differential Equations (11)–(15), firstly we consider:

f ′ = q, (22)

The set of Eqautions (11)–(15) thus reduces to

1
χ1χ2

q′′ +
1
2
(1− ζ)ηq′ + ζ( f q′ − q2 + 2λg− χ3

χ2
M2q) = ζ(1− ζ)

∂q
∂ζ

, (23)

1
χ1χ2

g′′ +
1
2
(1− ζ)ηg′ + ζ( f g′ − qg− 2λq− χ3

χ2
M2g) = ζ(1− ζ)

∂g
∂ζ

, (24)

χ4

χ5
θ′′ +

1
2
(1− ζ)Prηθ′ + Prζ f θ′ + NbPrθ′φ′ + NtPrθ′2 = Prζ(1− ζ)

∂θ

∂ζ
, (25)

φ′′ +
Le
2
(1− ζ)ηφ′ + Leζ f φ′ +

Nt
Nb

(θ′′)2 − LeΓζ(1 + δθ)m exp(− EE
1 + δθ

)φ = Leζ(1− ζ)
∂φ

∂ζ
, (26)

f (ζ, η) = q(ζ, η) = g(ζ, η) = 0, θ(ζ, η) = φ(ζ, η) = 1, at η = 0,

q(ζ, η)→ 0, g(ζ, η)→ 0, θ(ζ, η)→ 0, φ(ζ, η)→ 0, as η → ∞.

}
(27)
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4.1. Variational Formulations

Over a typical rectangular element Ωe, the associated variational form with Eqautions (22)–(26) is
given by

∫
Ωe

w f 2

{
1

χ1χ2
q′′ +

1
2
(1− ζ)ηq′ + ζ( f q′ − q2 + 2λg− χ3

χ2
M2q)− ζ(1− ζ)

∂q
∂ζ

}
dΩe = 0, (28)

∫
Ωe

w f 3

{
1

χ1χ2
g′′ +

1
2
(1− ζ)ηg′ + ζ( f g′ − qg− 2λq− χ3

χ2
M2g)− ζ(1− ζ)

∂g
∂ζ

}
dΩe = 0, (29)

∫
Ωe

w f 4

{
χ4

χ5
θ′′ +

Pr
2
(1− ζ)ηθ′ + Prζ f θ′ + NbPrθ′φ′ + NtPrθ′2 − Prζ(1− ζ)

∂θ

∂ζ

}
dΩe = 0, (30)

∫
Ωe

w f 5

{
φ′′ +

Le
2
(1− ζ)ηφ′ + Leζ f φ′ +

Nt
Nb

θ′′2 − Leζ(1− ζ)
∂φ

∂ζ

−LeΓζ(1 + δθ)m exp(− EE
1 + δθ

)φ

}
dΩe = 0. (31)

where w f s(s = 1, 2, 3, 4, 5) are arbitrary weight functions or trial functions.

4.2. Finite Element Formulations

Let it divide the rectangular domain (Ωe) into 4-noded (rectangular element) and (ζi, ηj) be
the domain grid points (see Figure 2). The length of plate and thickness of boundary layer is
fixed at ζmax = 1, ηmax = 5, respectively. The finite model of the element can be obtained from
Equations (28)–(31) by replacing the following form of finite element approximations:

f =
4

∑
j=1

f jΨj(ζ, η), q =
4

∑
j=1

qjΨj(ζ, η), g =
4

∑
j=1

gjΨj(ζ, η), θ =
4

∑
j=1

θjΨj(ζ, η), φ =
4

∑
j=1

φjΨj(ζ, η). (32)

here, Ψj (j = 1, 2, 3, 4) are the linear interpolation functions for a rectangular element Ωe (see Figure 2)
and are given by:

Ψ1 =
(ζe+1 − ζ)(ηe+1 − η)

(ζe+1 − ζe)(ηe+1 − ηe)
, Ψ2 =

(ζ − ζe)(ηe+1 − η)

(ζe+1 − ζe)(ηe+1 − ηe)
,

Ψ3 =
(ζ − ζe)(η − ηe)

(ζe+1 − ζe)(ηe+1 − ηe)
, Ψ4 =

(ζe+1 − ζ)(η − ηe)

(ζe+1 − ζe)(ηe+1 − ηe)
. (33)

the model of finite elements of the equations thus developed is given by:
[L11] [L12] [L13] [L14] [L15]

[L21] [L22] [L23] [L24] [L25]

[L31] [L32] [L33] [L34] [L35]

[L41] [L42] [L43] [L44] [L45]

[L51] [L52] [L53] [L54] [L55]




{ f }
{q}
{h}
{θ}
{φ}

 =


{r1}
{r2}
{r3}
{r4}
{r5}

 (34)
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where [Wmn] and [bm] (m, n = 1, 2, 3, 4, 5) are defined as:

L11
ij =

∫
Ωe

Ψi
dΨj

dη
dΩe, L12

ij = −
∫

Ωe

ΨiΨjdΩe, L13
ij = L14

ij = L15
ij = L21

ij = 0

L22
ij = − 1

χ1χ2

∫
Ωe

dΨi
dη

dΨj

dη
dΩe +

1
2
(1− ζ)η

∫
Ωe

Ψi
dΨj

dη
dΩe + ζ

∫
Ωe

f̄ Ψi
dΨj

dη
dΩe − ζ

∫
Ωe

q̄ΨiΨjdΩe

− ζ3
ζ2

M2
∫

Ωe

ζΨiΨjdΩe − ζ(1− ζ)
∫

Ωe

Ψi
dΨj

dζ
dΩe, L23

ij = −2λζ
∫

Ωe

ΨiΨjdΩe, L24
ij = L25

ij = W31
ij = 0,

W32
ij = −2λζ

∫
Ωe

ΨiΨjdΩe,

L33
ij = − 1

χ1χ2

∫
Ωe

dΨi
dη

dΨj

dη
dΩe +

1
2
(1− ζ)η

∫
Ωe

Ψi
dΨj

dη
dΩe + ζ

∫
Ωe

f̄ Ψi
dΨj

dη
dΩe − ζ

∫
Ωe

q̄ΨiΨjdΩe

− χ3
χ2

M2
∫

Ωe

ζΨiΨjdΩe − ζ(1− ζ)
∫

Ωe

Ψi
dΨj

dζ
dΩe, L34

ij = L35
ij = L41

ij = L42
ij = L43

ij = 0,

L44
ij = −χ4

χ5

∫
Ωe

dΨi
dη

dΨj

dη
dΩe +

Pr
2
(1− ζ)η

∫
Ωe

Ψi
dΨj

dη
dΩe + Prζ

∫
Ωe

f̄ Ψi
dΨj

dη
dΩe + PrNb

∫
Ωe

φ̄′Ψi
dΨj

dη
dΩe

+ PrNt
∫

Ωe

θ̄′Ψi
dΨj

dη
dΩe − Prζ(1− ζ)

∫
Ωe

Ψi
dΨj

dζ
dΩe, L45

ij = L51
ij = L52

ij = 0,

L53
ij = − Nt

Nb

∫
Ωe

dΨi
dη

dΨj

dη
dΩe, L55

ij = −
∫

Ωe

dΨi
dη

dΨj

dη
dΩe +

Le
2
(1− ζ)η

∫
Ωe

Ψi
dΨj

dη
dΩe

+ Leζ
∫

Ωe

f̄ Ψi
dΨj

dη
dΩe − Leξ(1− ζ)

∫
Ωe

Ψi
dΨj

dζ
dΩe −

∫
Ωe

(1 + γθ̄)m exp(
−EE

1 + γθ̄
)ΨiΨjdΩe

and

r1
i = 0, r2

i = − 1
χ1χ2

∮
Γe

Ψinη
∂q
∂η

ds, r3
i = − 1

χ1χ2

∮
Γe

Ψinη
∂g
∂η

ds, r4
i = − χ4

χ5

∮
Γe

Ψinη
∂θ

∂η
ds,

r5
i = −

∮
Γe

Ψinη
∂φ

∂η
ds− Nt

Nb

∮
Γe

Ψinη
∂θ

∂η
ds. (35)

where, the known values are to be considered f̄ = ∑4
j=1 f̄ jΨj, q̄ = ∑4

j=1 q̄jΨj, ḡ = ∑4
j=1 ḡjΨj,

θ̄′ = ∑4
j=1 θ̄′jΨj, and φ̄′ = ∑4

j=1 φ̄′jΨj. The flow domain is divided into 101× 101 rectangular elements
of similar size of grid points. Five functions can be assessed at each node, and 51, 005 equations are
obtained after assembly of all element equations. The obtained equations are non-linear after applying
boundary conditions which are solved by utilizing the Newton–Raphson method with the required
precision of 0.000005.
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Figure 2. Finite element grid and finite element mesh of rectangular element.

5. Results and Discussion

The outcomes of this work are evaluated by solving the transformed two dimensional PDEs
(Eqautions (11))–(14)) along with initial and boundary conditions (Eqaution (15)). This set of non
linear equations involves four dependent variables f ′, g, θ and φ and two independent variables ζ, η.
A variational finite element simulation is performed for suitable ranges of the influential entities that
help to understand the varying behaviors of the physical quantities. Before plotting the outcomes,
we have approved our outcomes with the already published research articles through Tables 4–6.
An excellent coincidence has been achieved which confirms the accuracy of the FEM Matlab code.
The estimation of present analysis is made by putting the values for involved parameters: Nb = 0.3,
Nt = 0.3, λ = 1.0, Pr = 6.2 (water-based nanofluid), M = 1.0, Le = 10.0, S f = 2.0, Φ1 = Φ2 = 0.2.

Table 4. g′(0) and f ′′(0) value along with diverse values of λ at ζ = 1 when remaining parameters are zeros.

λ
Nazar et al. [32] Wang [30] FEM (Our Results)

− f ′′(0) −h′(0) − f ′′(0) −h′(0) − f ′′(0) −h′(0)

0.0 1.0000 0.0000 1.0000 0.0000 1.00000 0.00000
0.5 1.1384 0.5128 1.1384 0.5128 1.13844 0.51283
1.0 1.3250 0.8371 1.3250 0.8371 1.32501 0.83715
2.0 1.6523 1.2873 1.6523 1.2873 1.65232 1.28732
5.0 - - - - 2.39026 2.15024

Table 5. −θ′(0) value along with diverse values of λ at ζ = 1 when remaining parameters are zeros.

λ
Adnan et al. [60] FEM (Our Results)

Pr = 0.7 Pr = 2.0 Pr = 7.0 Pr = 0.7 Pr = 2.0 Pr = 7.0

0.0 0.455 0.911 1.894 0.4552 0.9108 1.8944
0.5 0.390 0.853 1.850 0.3901 0.8525 1.8500
1.0 0.321 0.770 1.788 0.3214 0.7703 1.7877
2.0 0.242 0.638 1.664 0.2420 0.6381 1.6642
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Table 6. −θ′(0) value along with diverse values of λ at ζ = 1 and Pr = 2.0 when remaining parameters are zeros.

λ
Abbas et al. [41] FEM (Our Results)

M = 0.5 M = 1.0 M = 2.0 M = 0.5 M = 1.0 M = 2.0

0.0 0.886 0.823 0.668 0.8862 0.8230 0.6682
0.5 0.841 0.800 0.663 0.8408 0.8003 0.6627
1.0 0.768 0.750 0.648 0.7684 0.7501 0.6483
2.0 0.641 0.643 0.603 0.6411 0.6429 0.6030
5.0 0.447 0.449 0.461 0.4467 0.4494 0.4612

The impact of magnetic parameter M on primary velocity f ′, secondary velocity g, temperature
θ and nanoparticle concentration φ is plotted respectively in Figure 3a–d. It is revealed that
velocity component f ′(ζ, η) decreases monotonically and the magnitude of velocity component g(ζ, η)

diminishes significantly when parameter M is incremented. This depreciation in the velocities is
associated with the enhancement in the resistive force known as Lorentz force which is produced
during the interaction of magnetic and electric fields. This phenomenon helps to control the boundary
layer thickness. It is also seen that cross-flow effects create reverse flow. The flow along the x-axis
seems to dominate the reverse flow because of the stretch in boundary but the reverse flow prevails
in the y-direction and the velocity g(ζ, η) attains negative values. It is also observed that velocity
f ′(ζ, η) is slightly faster for hybrid phase Go-MoS2 than hybrid phase Ag-MoS2 but the velocity
g(ζ, η) presents contrary behavior for the two nano phases. Figure 3c exhibits a monotonic increase in
temperature θ(ζ, η) with the progressive strength of parameter M. This is because the flow is halted
and the dissipation adds to the thermal energy of nano liquids. Figure 3d illustrates the steadily rising
trend of nanoparticle concentration φ(ζ, η) with exceeding values of M. The concentration values for
hybrid nano liquids Go-MoS2 is lesser as compared with that of hybrid liquids Ag-MoS2.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

f' ( ,

(a) MoS2 + Ag: Hybrid-nanofluid

MoS2 + Go: Hybrid-nanofluid

M = 1.0, 2.0, 3.0, 4.0, 5.0
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,
)
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(b)

M = 5.0, 4.0, 3.0, 2.0, 1.0

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8
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MoS2 + Go: Hybrid-nanofluid

MoS2 + Ag: Hybrid-nanofluid(c)
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1

 (
,

)

MoS2 + Go: Hybrid-nanofluid

MoS2 + Ag: Hybrid-nanofluid(d)

M = 1.0, 2.0, 3.0, 4.0, 5.0

Figure 3. Fluctuation of f ′(ζ, η), g(ζ, η), θ(ζ, η), and φ(ζ, η) along with M (magnetic field) at ζ = 1.
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Figures 4a,b are sketched to describe the retarding impacts of rotational parameter lambda on
velocity components f ′(ζ, η) and g(ζ, η). There is significant decrease in f ′ against the parameter λ,
this velocity attains its peak value when λ = 0 (no rotation). The plots for g(ζ, η) acquire negative
orientation and oscillatory patterns and its magnitude goes on decreasing when the input values of
λ become higher. This bidirectional decelerated motion of nano liquids is a consequence of Coriolis
forces 2ζλg and −2ζλ f ′ incorporated respectively in Eqautions (11) and (12). The two terms are
negative (because g < 0) and thus they offer resistance to the flow. However, the resistive force along
the horizontal direction is overcome by the stretching effect and a meager fluctuation in f ′(ζ, η) occurs
away from the sheet but the velocity g(ζ, η) is influenced significantly with prominent fluctuations
under the opposing force in the y-direction. The temperature of nano liquids θ(ζ, η) and nanoparticle
concentration φ(ζ, η) are enhanced directly with incremental values of λ as depicted from Figure 4c,d.
The development in thermal and concentration boundary layers is justified on the basis of enhanced
diffusion processes due to increased rotation.
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0.8

1
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,
)

MoS2 + Ag: Hybrid-nanofluid
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0

g
(

,
)

(b) MoS2 + Ag: Hybrid-nanofluid

MoS2 + Go: Hybrid-nanofluid

 = 5.0, 4.0, 3.0, 2.0, 1.0, 0.0

0 1 2 3 4 5
0
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0.6

0.8

1

(
,
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MoS2 + Go: Hybrid-nanofluid

MoS2 + Ag: Hybrid-nanofluid(c)

 = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0
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0
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0.6

0.8

1

(
,

)

MoS2 + Go: Hybrid-nanofluid

MoS2 + Ag: Hybrid-nanofluid

 = 0.0, 1.0, 2.0, 3.0, 4.0, 5.0

(d)

Figure 4. Fluctuation of f ′(ζ, η), g(ζ, η), θ(ζ, η), and φ(ζ, η) along with λ (rotating parameter) at ζ = 1.

From the Figure 5a,b, it is manifested that velocity curves for f ′(ζ, η) and g(ζ, η) decline against
the incremented variation of unsteady parameter τ. Figure 5c demonstrate temperature escalation
with improved values of τ. The nanoparticle concentration φ(ζ, η) undergoes a fluctuating distribution
with increment in τ as illustrated from Figure 5d. It recedes near the plane sheet when η < 1, then
it increases for η = 3. Figure 6a,b reveal that the monotonic increase in nano liquid temperature
distribution is established when Brownian motion parameter Nb and thermophoresis parameter Nt
are progressed. Actually, these two factors are of fundamental importance for the nanofluid model.
Thermophoresis implies the movement of nanoparticles from hot to cold segments of nano liquid and
Brownian motion exemplify the random motion of nanoparticles. Thus both the parameters contribute
to diffusion processes and hence raise the temperature.
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Figure 5. Fluctuation of f ′(ζ, η), g(ζ, η), θ(ζ, η), and φ(ζ, η) along with τ (unsteady parameter) at ζ = 1.
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Figure 6. Fluctuation of θ(ζ, η) along with Nb (Brownian motion) and Nt (thermophoresis) at ζ = 1.

In the same way, the shape function S f and nanoparticle volume fraction Φ2 have also raised
the temperature θ(ζ, η) as sketched in Figure 7a,b. Further, it is seen that the factor S f has marked
significant impact on θ(ζ, η). It is mentionable that temperature for hybrid nano liquids Ag-MoS2
attains higher values than the hybrid-nano fluid Go-MoS2 for all cases discussed above. This finding
is a manifestation of our principal objective for the current study. Physically, thermal conductivity is
enhanced for hybrid nanofluids Ag-MoS2 than the hybrid-nano fluids Go-MoS2 and hence the efficient
thermal transportation can be acquired to meet the growing need of various techno processes.

Figure 8a,b discloses that nanoparticle concentration φ(ζ, η) develops meagerly near the boundary
of sheet (η = 0.5), then it rises vividly within boundary layer (η > 0.5) against Nt. It is also noticed
that nanoparticle concentration φ(ζ, η) reduces monotonically when Lewis number Le attains higher
input. The reason for this outcome lies in the fact that Lewis’s number is reciprocal to Brownian
diffusion and hence its larger values are responsible to reduce the diffusion of nanoparticles. Moreover,
the nanoparticle concentration for hybrid phase Go-MoS2 is lesser than that of hybrid phase Ag-MoS2.
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The incremented activation energy parameter (EE) boosts the concentration φ(ζ, η) as displaced in
Figure 9a. In addition, Figure 9b is presented to disclose the lowering of concentration φ(ζ, η) when
the chemical reaction parameter Γ is allotted higher input values.

Figure 10a,b demonstrate the variation of the coefficients of skin friction (C fxRe1/2
x , C fyRe1/2

y )
along x- and y- directions respectively under the variation of ζ and λ and the Figure 11a,b depict these
quantities against magnetic parameter M and ζ. One can notice that for exceeding λ and M the skin
friction coefficients in both the directions are augmented notably for ζ < 0.15 and for ζ > 0.15 (nearly)
these quantities become uniform for a given λ and M. However, the quantity C fyRe1/2

y undergoes
some fluctuation for larger values of λ but it remains smooth for varying values of M. It means the
application of magnetic field provides sufficient control to the flow.
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Figure 7. Fluctuation of θ(ζ, η) along with S f (shape factor parameter) and Φ2 (nanoparticles volume
fraction) at ζ = 1.
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Figure 8. Fluctuation of φ(ζ, η) along with Nt (thermophoresis) and Le (Lewis number) at ζ = 1.
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Figure 9. Fluctuation of φ(ζ, η) along with EE (activation energy) and Γ (chemical reaction rate) at ζ = 1.
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y along with λ (rotating parameter).
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Figure 11. Fluctuation of C fxRe1/2
x , C fyRe1/2

y , NuxRe1/2
x , and ShxRe1/2

x along with M (magnetic field).

The NuxRe1/2
x (reduced Nusselt number ) and ShrxRe1/2

x (reduced Sherwood number) are plotted
respectively in Figure 11c,d against ζ and M. Both the quantities NuxRe1/2

x and ShrxRe1/2
x are reduced

sharply against the incremental values of M when ζ < 0.2 then the decayed value become uniform for
ζ > 0.2. It is to be noted that NuxRe1/2

x is lesser in values for hybrid nano liquid than nano liquids
but ShrxRe1/2

x exhibit contrary trend. Figure 12a,b are drawn to indicate the variation in NuxRe1/2
x

and ShrxRe1/2
x when the parameters Nt, Nb and M are given variant inputs. The quantity NuxRe1/2

x
undergoes a notable reduction with small increments in equal values of Nb and Nt but in contradiction
ShrxRe1/2

x attains higher values in this case. In Figure 13a,b sketches for NuxRe1/2
x and ShrxRe1/2

x as
delineated against Nt, Nb and λ exhibit the same trend as in Figure 12a,b.
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(magnetic field).

Figure 14a,b shows the consolidated impact of the Nb (Brownian motion) and Nt (thermophoresis)
on the reduced Nusselt number for two cases of Prandtl number, which is, Pr = 2 and Pr = 10,
respectively. It is revealed that increments in thermophoresis and Brownian motion parameters recedes
the wall heat transfer rate but Pr = 10.0 boost the wall heat transfer rate. At Pr = 2.0, Figure 14a
demonstrate linear decay, however, monotonic decays are seen with higher value of Pr = 10.0
(see Figure 14b).
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6. Conclusions

The finite element procedure is employed to examine the enhancement of thermal distribution
for the magnetohydrodynamic rotational flow of hybrid nanofluids over a stretching plane.
Numerical findings for velocity components, skin friction coefficients, temperature, Nusselt number,
nano-particle volume fraction, and Sherwood number are computed for the hybrid phase and
nanophase. Some of the major outcomes are reported below:

• The primary velocity component f ′(ζ, η) decreases monotonically and the magnitude of
secondary velocity component g(ζ, η) diminishes significantly when magnetic parameter M,
rotational parameter λ and unsteadiness parameter τ are incremented.

• It is also observed that velocity f ′(ζ, η) is slightly faster for hybrid phase Go-MoS2 than hybrid
phase Ag-MoS2 but the velocity g(ζ, η) presents contrary behavior for the two nano phases.

• The incremental inputs of parameters M, Nt, λ, Nb, τ, and S f have augmented the temperature
of nanofluid.

• It is mentionable that temperature for hybrid nano liquids Ag-MoS2 attains higher values than
the hybrid fluid Go-MoS2.

• The nanoparticle concentration φ(ζ, η) is incremented with exceeding values of M, Nt, and
Nb but it reduces against Lewis number Le. The nao particle concentration φ(ζ, η) undergoes
a fluctuating distribution with increment in τ.

• The concentration values for hybrid nano liquids Go-MoS2 is lesser as compared with that of
hybrid liquids Ag-MoS2.

• The coefficients of skin friction (C fxRe1/2
x , C fyRe1/2

y ) along x- and y-directions respectively are
augmented notably for ξ < 0.15 and for ξ > 0.15 (nearly) these quantities become uniform for
a given λ and M.

• The NuxRe1/2
x (reduced Nusselt number) and ShrxRe1/2

x (reduced Sherwood number) are reduced
sharply against the incremental values of M when ζ < 0.2 then the decayed value become uniform
for ζ > 0.2.

• It is to be noted that NuxRe1/2
x and ShrxRe1/2

x are lesser in values for hybrid nanofluids Ag-MoS2
than hybrid liquids Go-MoS2.

Through this computational effort, we have successfully elucidated the parametric impacts on the
flow of two hybrid phases. The monotonic differences of the results for two-hybrid phases are clearly
observed. This study may be extended for three or more hybrid phases to point out the most effectual
among them.

Author Contributions: B.A. and R.A.N. modeled the problem and wrote the manuscript. D.H. complete
the formal analysis and revision. O.M.A. and S.H. thoroughly checked the mathematical modeling, English
corrections, formal analysis, and revision. B.A. solved the problem using MATLAB software. D.H. and R.A.N.:
writing—review and editing. All authors finalized the manuscript after its internal evaluation. All authors have
read and agreed to the published version of the manuscript.

Funding: Researchers supporting project number (RSP-2020/61), King Saud University, Riyadh, Saudi Arabia.

Acknowledgments: This work is supported by the KIAS (Research Number: CG076601) and in part by Sejong
University Faculty Research Fund.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2020, 8, 1730 19 of 22

Nomenclature

T non-dimensional temperature, K Tw Temperature at surface, K
C non-dimensional nanoparticles concentration Cw Concentration at surface
T∞ temperature away from the surface, K GO Graphene oxide
C∞ concentration away from the surface Ω angular velocity, s−1

C fx skin friction at x-direction (u1, u2, u3) Velocity components
C fy skin friction at y-direction uw velocity of stretching sheet, ms−1

Nux Nusselt number Shx Sherwood number
νn f Kinematic viscosity of nanofluid, m−2s−1 Nb Brownian motion parameter
Nt thermophoresis parameter ρn f Density of nanofluid, Kgm−3

D̃T Thermophoretic diffusion coefficient D̃B Brownian diffusion coefficient
Cp specific heat at constant pressure, JKg−1K−1 B0 Uniform magnetic field
σn f Electrical conductivity of nanofluid, Kg−1m3A2 p pressure, Kgm−1s−1

Φ1 first nanoparticle’s volume fraction MoS2 Molybdenum disulfide
Φ2 second nanoparticle’s volume fraction (x, y, z) Cartesian co-ordinates
Φ volume fraction Ag Silver
E Activation energy Pr Prandtl number
s f empirical shape factor of nanoparticles m Fitted rate constant
µn f dynamic viscosity of nanofluid, Kgm−1s−1 λ rotation parameter
κ thermal conductivity, Wm−1K−1 t time, s−1

qw surface heat flux, Wm−2 Le Lewis number
κn f thermal conductivity of the nanofluid, Wm−1K−1 η dimensionless variable
κ f thermal conductivity of the fluid, Wm−1K−1 M2 magnetic parameter
n f stands for nanofluid hn f stands for hybrid nanofluid
κhn f thermal conductivity of hybrid nanofluid κb f thermal conductivity of base liquid
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