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Abstract: Bat Algorithm (BA) and Artificial Bee Colony Algorithm (ABC) are frequently used in
solving global optimization problems. Many new algorithms in the literature are obtained by
modifying these algorithms for both constrained and unconstrained optimization problems or using
them in a hybrid manner with different algorithms. Although successful algorithms have been
proposed, BA’s performance declines in complex and large-scale problems are still an ongoing
problem. The inadequate global search capability of the BA resulting from its algorithm structure
is the major cause of this problem. In this study, firstly, inertia weight was added to the speed
formula to improve the search capability of the BA. Then, a new algorithm that operates in a hybrid
manner with the ABC algorithm, whose diversity and global search capability is stronger than the
BA, was proposed. The performance of the proposed algorithm (BA_ABC) was examined in four
different test groups, including classic benchmark functions, CEC2005 small-scale test functions,
CEC2010 large-scale test functions, and classical engineering design problems. The BA_ABC results
were compared with different algorithms in the literature and current versions of the BA for each test
group. The results were interpreted with the help of statistical tests. Furthermore, the contribution
of BA and ABC algorithms, which constitute the hybrid algorithm, to the solutions is examined.
The proposed algorithm has been found to produce successful and acceptable results.

Keywords: artificial bee colony algorithm; bat algorithm; continuous optimization; heuristic
algorithms; large-scale optimization

1. Introduction

Meta-heuristic algorithms are often used in the solution of optimization problems. These algorithms
use natural phenomena to achieve a specific purpose. Meta-heuristic algorithms have convergence
features and can guarantee to find a solution close to the exact solution. Furthermore, these algorithms
are frequently preferred for the solution of optimization problems due to their simple structures,
easiness to understand, and realize [1]. Exploration and exploitation concepts are two important
components for meta-heuristic algorithms. Exploration refers to the ability to explore various unknown
regions of the solution space to find the global best value, while exploitation refers to the ability to
use knowledge from previous best results to find better results. To achieve good performance in an
optimization problem, the balance of these two components must be well adjusted [2,3].

The bat algorithm [4] was proposed by Xin-She Yang in 2010. The loudness (A) and pulse emission
rate (r) parameters used in the bat algorithm significantly affect the exploration and exploitation
abilities of the algorithm. As iterations progress, loudness decreases and pulse emission rate increases.
This situation causes the exploitation ability to become prominent in the first iterations in the algorithm
and the exploration ability to become prominent in the further iterations and decreases the probability
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of the inclusion of new solutions found in the following steps of the algorithm to the population.
There are many studies conducted to balance BA’s exploration and exploitation ability and to overcome
the mentioned structural problems. Cai et al. [5] added the optimal forage and random disturbance
strategy concepts to the algorithm to determine the search direction of bats and improve their global
search capability. Meng et al. [6] added the habitat selection and Doppler effect concepts to the bat
algorithm. Thus, the algorithm has begun to imitate bat behaviors further. Cai et al. [7] developed the
algorithm using the triangle-flipping strategy in the speed update formula that affects the global search
capability of the bat algorithm. Zhu et al. [8] proposed a quantum-behaved bat algorithm. In this new
algorithm, the position of each bat is determined by the optimal solution initially available, and by the
mean best position, which can increase the convergence rate of the algorithm in the following iterations.
Ghanem and Jantan [9] have included a special mutation operator that increases the diversity of
the BA in the algorithm. Thus, they overcame the problem of getting stuck in the local minimum,
which is frequently experienced in the bat algorithm. Shan and Cheng [10] proposed an advanced bat
algorithm based on the covariance adaptive evolution process to diversify the direction and population
distribution of the search in BA. Nawi et al. [11] proposed a new algorithm that determines the step size
in BA using the Gaussian distributed random step logic to form sub-optimal solutions encountered in
BA and to overcome the problems experienced in solving large-scale problems. Chakri et al. [12] added
the directional echolocation strategy to the algorithm to overcome the early convergence caused by the
low exploration ability of BA. Al-Betar and Awadallah [13] added the island model strategy to the
algorithm to increase BA’s capability to control diversity. Gan et al. [14] developed the algorithm with
iterative local search and stochastic inertia weight strategies to improve BA’s global search capability
and reduce the risk of getting stuck at the local minimum. Topal and Altun [15] suggested the dynamic
virtual bat’s algorithm. In the algorithm, there are explorer bats that explore the search area and
exploiter bats that are very likely to determine the desired target and search locally, and the roles of the
bats vary depending on their location. Wang et al. [16] proposed a novel bat algorithm that includes
multiple strategies for speed and position determination formulas to overcome BA’s weakness in
solving complex problems.

There are hybrid algorithms proposed in the literature to increase the performance of BA.
Liu et al. [17] made three modifications in the algorithm to improve the performance of BA and
developed a hybrid algorithm with the extremal optimization algorithm. Wang and Guo [18] proposed
a hybrid algorithm that was created by adding the pitch adjustment operation of the harmony search
algorithm as a mutation operator to the bat update process to speed up the convergence of the BA.
Fister et al. [19] added the Differential Evolution Algorithm strategies to the BA to develop the best
available solution that directs the found solutions to better regions of the search space. Imane and
Nadjet [20] proposed a hybrid algorithm where BA’s new solution selection phase is transformed into a
tabu search to detect overlapping communities in social networks. Cincy and Jeba [21] proposed a new
algorithm that hybridizes the BA and ABC algorithm, improves convergence speed, and the optimal
accuracy. Chaudhary and Banati [22] proposed the Swarm Bat Algorithm with Improved Search(SBAIS)
algorithm, which uses BA and the shuffled complex evolution (SCE) algorithm together to improve
the exploration ability of BA. Rauf et al. [23] proposed an algorithm that combines Adaptive inertia
weight and Sugeno-Function Fuzzy Search concepts to overcome the BA’s premature convergence
problem. Yıldızdan and Baykan [24] proposed a new algorithm using the hybrid differential evolution
algorithm with an advanced BA algorithm to overcome the structural problems of BA and increase
its exploration ability. Pan et al. [25] proposed a hybrid algorithm by developing a communication
strategy between BA and ABC. In this hybrid algorithm, first, the population is divided into two
subpopulations, then run in parallel with BA in one of the subpopulations and ABC in the other. At the
end of each iteration, the worst individuals in the BA are replaced with the best individuals in the
ABC; the worst individuals in the ABC are replaced by the best individuals in the BA. In the BA_ABC
algorithm we proposed, dividing the population into two subpopulations and parallel run of BA and
ABC algorithms on the subpopulations are similar to this article. Unlike this article, in the BA_ABC
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algorithm, when a certain number of iterations is completed, the performances of BA and ABC are
evaluated. A certain number of the worst individuals of the failed algorithm are replaced by the best
individuals of the more successful algorithm. Also, when an algorithm reaches a certain ratio in the
exchange of information, the remaining iterations are continued with this algorithm over the entire
population; that is, the parallel run is terminated.

Many studies have been done on the BA and its performance has been significantly improved.
However, performance decrease due to increased problem complexity and size is still an ongoing
problem. In this study, a hybrid algorithm using the ABC algorithm, which works in parallel with
the BA algorithm and can exchange information with the BA algorithm, was proposed to overcome
the problems predicted in the BA algorithm. The ABC algorithm was preferred due to its features,
such as the fact that its global search capability was stronger than the BA, and it had a mechanism to
get rid of the local minimum. The performance of the hybrid algorithm proposed in this study was
tested on both small and large problems. Its performance on real-world problems was also examined
through tests on selected engineering design problems. The results obtained for each function set from
the proposed hybrid algorithm were compared with the BA and ABC algorithms, recently proposed
algorithms in the literature or the BA versions. Since not all algorithms selected from the literature
contained results for all function sets that we worked with, the algorithms compared for each set of
functions varied.

The rest of this study is organized as follows. In the second section, which includes materials and
methods, information regarding the BA algorithm, the ABC algorithm, and the structure of the proposed
hybrid BA_ABC algorithm is explained, respectively. In the third section, experimental studies and
their results are presented. In the fourth section, the contributions of BA and ABC algorithms to
the hybrid system are examined. In the fifth section, the complexity of BA, ABC, and BA_ABC
algorithms are compared. In the sixth section, the results are discussed. Finally, in the seventh section,
the conclusion and future work are explained.

2. Materials and Methods

2.1. Notations and Nomenclatures

In this section, all notations and nomenclatures used for the bat algorithm, artificial bee colony
algorithm, and the proposed hybrid algorithm are given. Tables 1 and 2 show the notations and
nomenclatures, respectively.

Table 1. Notations of Bat Algorithm (BA), Artificial Bee Colony (ABC), and BA_ABC.

BA Notations

N The number of individuals vt−1
i The velocity of the ith bat in the previous iteration

t The iteration number xt
i The current location of the ith bat

vi The speed of the ith bat xt+1
i The new location of the ith bat

xi The location of the ith bat xold A solution among the best solutions
A Loudness x* Global best value
r Pulse emission rate ε A random value in the range [−1,1]

A0 The max value of loudness α Constant
Amin The min value of loudness γ Constant

fi The frequency of the ith bat At
i The current loudness of the ith bat

fmin The min value of frequency At+1
i The new loudness of the ith bat

fmax The max value of frequency At The average of loudness values of all bats
β A random value in the range [0,1] r0

i The initial value of the pulse emission rate of ith bat
vt

i The current velocity of the ith bat rt
i The current pulse emission rate of ith bat

ABC Notations

FN The number of food source vi,j The jth parameter value of the new food source
D The number of parameters(dimension) k A random value in the range [1, FN]

ubj The upper limit value of the jth parameter xk,i A randomly selected food source
lbj The lower limit value of the jth parameter φ A random value in the range [−1,1]
xi ith food source fi The value of the objective function
vi A new food source located around the ith food source pi The probability value of the ith food source
xi,j The jth parameter value of the ith food source fitnessi The fitness value of the ith food source



Mathematics 2020, 8, 1749 4 of 35

Table 1. Cont.

BA_ABC Notations

w The inertia weight coefficient max_iteration The number of maximum iteration
xnew A new location located around the bat f(xnew) The fitness value of the new location
f(x*) The fitness value of the global best

Table 2. Nomenclatures of BA, ABC, and BA_ABC.

BA Nomenclatures

echolocation It is the biological sonar used by some mammals such as bats, dolphins, and whales.
sonar The system detects the location and condition of an object with sound waves.
prey The optimal solution the bats want to find
loudness The intensity of the bat’s sound when the bat is approaching prey
pulse emission rate The spread rate of sound produced by bats during echolocation
global best value The individual with the best fitness value in the population
step Amount of progress in solution space
location A possible solution for the problem
population Set of possible solutions for the problem

ABC Nomenclatures

food source A possible solution for the problem
the amount of nectar The quality of the solution
scout bee Bees looking for a random food source in the environment
employed bee A bee responsible for a food source and carrying information about that food source to the hive
onlooker bee A bee waiting in the hive and selecting a food source depending on the nectar quality and searching around
fitness value The value of the objective function
greedy selection Selecting the one that is possible and closest to the result

BA_ABC Nomenclatures

inertia weight Coefficient determining the contribution of the previous speed
benchmark functions The function which is used to test the performance of any optimization problem

2.2. Bat Algorithm

The Bat Algorithm (BA) is an algorithm proposed by Xin-She Yang [4] in 2010, based on the
detection of direction and distance (echolocation behavior) of an object/prey, using sound reverberation.
Bats can detect their prey/obstacles through echolocation.

According to Yang, the bat algorithm takes place according to the following rules [26].

• Each bat uses echolocation to measure how far the prey is.
• Bats fly with speed vi to location xi at a fixed frequency range [fmin,fmax], emitting signals at various

wavelengths (λ) and loudnesses (A) to detect their prey.
• When bats calculate the distance to their prey, they can adjust the pulse emission rate (r) along

with the wavelength of the signal they send.
• Despite the variation in loudness, it is assumed that value A decreases from A0 with a large value

to a fixed minimum value (Amin).

fi = fmin + ( fmax − fmin)β (1)

vt
i = vt−1

i + (xt
i − x∗) fi (2)

xt+1
i = xt

i + vt
i (3)

In the algorithm, the frequency, speed, and position values for the bat are calculated according to
Equations (1)–(3). Frequency determines the step size in the algorithm. β refers to a random value in
the range [0,1], and x* refers to the global best value.

xt+1
i = xold + εAt (4)

In the local search section of the algorithm, a new solution is created for each bat by local random
step around this solution by selecting a solution among the best solutions available (xold). This is
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done according to Equation (4). In this equation, provided that ε ∈ [−1,1], ε is a random number that
expresses the magnitude and direction of the step. At refers to the average of the current loudness
values of all bats.

At+1
i = αAt

i (5)

rt
i = r0

i [1− exp(−γt)] (6)

As bats approach their prey, loudness decreases, pulse emission rate increases (Equations (5) and
(6)). α and γ values are also constant (α = γ = 0.9).

2.3. Artificial Bee Colony Algorithm

The Artificial Bee Colony algorithm (ABC) is a swarm intelligence based optimization algorithm
proposed by Karaboga [27] in 2005. This algorithm was created with inspiration from the foraging
behavior of honeybees. Bees in this algorithm are named as scouts, employed bees, and onlooker bees
according to their duties. In the algorithm, the number of employed bees is generally equal to the total
number of food sources. The employed bee of the source becomes a scout bee when the nectar in the
source runs out. In the ABC algorithm, the locations of food sources represent possible solutions to the
optimization problem, and the amount of nectar refers to the quality of the solution [28]. The steps of
the ABC algorithm can be listed as follows.

2.3.1. Beginning

At this step, scout bees begin to search for food sources randomly. The initial food sources
are produced according to Equation (7) between the lower (lbj) and upper limit (ubj) values of
each parameter.

xi, j = lb j + rand(0, 1) × (ub j − lb j) (7)

In Equation (7), i = 1,2, . . . ,FN, j = 1,2, . . . ,D, where D is the number of parameters, and FN is the
number of food sources. A counter that is used to indicate whether the amount of nectar of a food
source has been exhausted is defined. This control parameter is called “limit”. The defined number of
limits is an important control parameter in the algorithm [29].

2.3.2. The Employed Bee Phase

The employed bee searches for a new food source around the current food source. It evaluates the
food source found. If the amount of nectar in the new food source is better, it saves the new source and
deletes the old food source. The new food source is calculated according to Equation (8).

vi, j = xi, j + ϕ ×
(
xi, j − xk, j

)
(8)

In the equation, provided that k ∈ {1,2, . . . ,FN}, where k is a randomly selected food source, and φ
is a random number in the range [−1,1]. After the quality (objective function value) of the source found
is calculated, the fitness value of the source is assigned.

f itnessi =

1/1 + fi fi ≥ 0

1 +
∣∣∣ fi∣∣∣ fi < 0

(9)

In Equation (9), fi represents the value of the objective function, that is, the quality of the source
solution. When choosing between the existing food source and the new food source, the greedy
selection method is applied depending on the fitness value. If food source vi is better quality than
existing source xi, vi is used as the new source and the limit counter is reset. Otherwise, the process
continues with source xi, and the limit counter is increased by one.
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2.3.3. The Onlooker Bee Phase

Onlooker bees gather the sources information they obtained from employed bees. Onlooker bees
choose a source in line with the probabilities proportional to the fitness values. For each source,
a probability value is calculated according to Equation (10).

pi = f itnessi/
FS∑

k=1

f itnessk (10)

In Equation (10), pi is the probability of the source i, and the fitnessi is expressed the fitness value
of the source i. If the probability value calculated for each source is less than a random value produced
between [0,1], onlooker bees produce a new source according to Equation (8). The existing source and
the newly produced source are evaluated according to the greedy selection method.

2.3.4. The Scout Bee Phase

If a food source has been exhausted or if a solution has not been developed during a trial number
(limit) determined for this source, the employed bee of the source becomes scout bee, and a new food
source is generated randomly according to Equation (7) instead of source xi.

2.4. The Proposed Hybrid Algorithm (BA_ABC)

In the bat algorithm, r and A parameters are determinative in establishing the balance of exploitation
and exploration. As the iteration progresses, the pulse emission rate increases, and loudness decreases
due to the nature of the algorithm. The expression that performs the local search in the algorithm
(Equation (4)) is executed depending on the condition that the parameter r is lower than a randomly
generated number in the range [0,1]. Therefore, the increase in r value causes to perform a local search
in the initial steps of the iteration and a global search in the next iterations. The inclusion of new and
better solutions in the algorithm is done depending on the condition that parameter A is greater than a
randomly generated number in the range [0,1]. As iterations progress, the decrease in A significantly
lowers the possibility of including new solutions in the population towards the end of the iteration.
In this study, a new hybrid algorithm has been proposed to overcome these structural problems of the
BA and to improve global search capability.

In the literature, the inertia weight coefficient previously used in BA [24,30–32] was used in the
velocity formula to improve the search capability of the bat algorithm in this study.

vt
i = w× vt−1

i +
(
xt

i − x∗
)
× fi (11)

Accordingly, as seen in Equation (11), the inertia weight coefficient (w) was added to the velocity
formula and used by reducing it chaotically [33] in the range of [0.9, 0.4].

As explained in Section 2.3, the ABC algorithm generates new solutions just by making changes in
a randomly selected dimension during the new solution-searching process. This approach provides a
more detailed search around the current solution and prevents rapid convergence towards the current
solution. With this structure, the ABC algorithm is a stronger algorithm than the BA algorithm in
terms of variety and global search capability. In this study, a hybrid algorithm (BA_ABC), in which
BA and ABC are operated in parallel, is proposed to benefit from these capabilities of the ABC. In the
hybrid algorithm, the population is divided into two. New solutions are produced by applying the
BA algorithm to individuals in the first half of the population and applying the ABC algorithm to
individuals in the second half. The best solution value (x*) is updated with new solutions as better
solutions are found by the algorithms. When each certain number of iterations (sc) is completed,
the performances of the algorithms are examined. In other words, when they find a better solution
than the solution defined for BA and ABC and the best solution available, the increased counters (ba_ni
or bee_ni) are checked. In the past process, whichever algorithm has produced more new solutions
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(i.e., whichever counter reaches a larger number), some of the individuals with the best fitness values
in the population of that algorithm (as many as the number of ac’s) supersede the same number of
individuals in the other algorithm with the worst fitness values. Thus, an exchange of information
between the algorithms is provided. After each information exchange, the counter of the successful
algorithm (ba_sn or bee_sn), which has produced more new solutions, is increased. When any of these
counters reach the maximum number of changes (mnc), the algorithm of the counter is considered
to be more successful for that problem, and the remaining iterations are continued by executing this
algorithm on the entire population.

Thanks to the proposed hybrid algorithm, the BA algorithm gains abilities such as developing
global search capability, increasing diversity, and conducting detailed research around the optimal
solution with the algorithm that is more successful towards the end of the iterations. The pseudo-code
of the proposed algorithm is given in Algorithm 1. Some parameters used in the pseudo-code of the
BA_ABC can be explained as follows.

x*: It is the individual with the best fitness value in the population.
Bat_new_individual (ba_ni) and bee_new_individual (bee_ni): These are the counters that keep

records of how many new solutions are created by BA and ABC, respectively.
Success control (sc): It is a predetermined number of iterations. When iterations equal to each sc

value are completed, the performance of the algorithms is examined. In other words, the number of
new solutions produced by BA and ABC is checked. Accordingly, the direction of the information
exchange is determined. In the study, sc value was chosen equal to the limit value, which is an
important parameter in the ABC algorithm.

Bat_success_number (ba_sn) and bee_success_number (bee_sn): This is the counter that keeps
track of how many times BA and ABC have been successful in the exchange of information.

Amount of change (ac): It is the number that determines how many individuals with good fitness
values in the population of the algorithm with high success will supersede the individuals with bad
fitness values in the population of the other algorithm when the iterations as many as the sc value
are completed (in this study, this number was determined as 10% of the number of individuals in the
population).

Maximum number of change (mnc): It is the number that determines how many times the
information exchange will be made between populations. This number is calculated according to
Equation (12) in the study.

mnc =
(
max f () _iteration/ sc ) × 0.6 (12)

The 0.6 multiplier in this equation was determined as a result of the tests performed. In the test
performed, for the multiplier values of [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1], five general cycle
averages were taken on the CEC2010 test functions and compared. According to these results, it was
determined as 0.6. Accordingly, if an algorithm has been successful in 60% of the total number of
changes, the remaining iterations are continued with this algorithm on the entire population.

Algorithm 1: The pseudo-code of BA_ABC

Input parameters: Population size (N), general number of cycles (gc), maximum iteration (max_i), dimension
(D)
Output: Result of x*

1. Determine population size (N), general number of cycles (gc), maximum iteration (max_i), dimension (D)
2. Set target function f (x).
3. Construct the initial population of D-dimensional N individuals. x=(x1,x2, . . . ,xN)D

4. Define the parameters of BA and ABC algorithms and bring them to the initial state.
5. Find the best value of the population x*

6. Set the sc value.
7. Determine the mnc value according to Equation (12).
8. G = 1
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9. While (G ≤ gc)
10. ba_ni = 0, bee_ni = 0, ba_sn = 0, bee_sn = 0
11. For t = 1: max_i
12. If (ba_sn < mnc and bee_sn < mnc)
13. For i = 1:N/2
14. Generate a new solution xnew according to BA.
15. If (f (xnew) < f (x*))
16. Accept the new solution.
17. Update x*

18. ba_ni = ba_ni + 1;
19. End if
20. End For
21. For i = (N/2 + 1):N
22. Generate a new solution xnew according to ABC.
23. If (f (xnew) < f (x*))
24. Accept the new solution.
25. Update x*

26. bee_ni = bee_ni + 1;
27. End if
28. End For
29. If (mod (t, sc) = = 0)
30. If (ba_ni ≥ bee_ni)
31. Write the individuals as many as ac with the best fitness values in BA in the place of the same number of
individuals with the worst fitness values in the ABC population.
32. ba_sn = ba_sn + 1;
33. Else
34. Write the individuals as many as ac with the best fitness values in ABC in the place of the same number of
individuals with the worst fitness values in the BA population.
35. bee_sn = bee_sn + 1;
36. End if
37. bee_ni = 0; ba_ni = 0;
38. End if
39. Else If (ba_sn ≥mnc)
40. Find the remaining number of iterations for BA (t_BA)
41. For t1 = 1:t_BA
42. For i = 1: N
43. Generate a new solution xnew according to BA.
44. If (f (xnew) < f (x*))
45. Accept the new solution.
46. Update x*

47. End if
48. End For
49. End For
50. Break;
51. Else
52. Find the remaining number of iterations for ABC (t_ABC)
53. For t2 = 1:t_ABC
54. For i = 1:N
55. Generate a new solution xnew according to ABC.
56. If (f (xnew) < f (x*))
57. Accept the new solution.
58. Update x*

59. End if
60. End For
61. End For
62. Break;
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63. End if
64. End For
65. G = G + 1
66. End While
67. Display the results

The computational complexity of BA_ABC is calculated as follows. Since the algorithm is a hybrid
algorithm, it is necessary to consider the complexity of BA and ABC algorithms separately. Since there
are no extra loops in the BA and ABC algorithms used in the BA_ABC algorithm, the algorithms have
same computational complexity as the standard algorithms. For a P problem, let the computational
complexity of its fitness evaluation function be O(P). Accordingly, the worst-case complexity of the
standard BA is calculated as O(P × N), where N is the population size [7]. Similarly, the computational
complexity of the standard ABC is also O (P ×N). Additionally, two scenarios should be considered
when calculating the complexity of the proposed hybrid algorithm. The first is the parallel run of BA
and ABC in different halves of the population until the total number of iterations (t) is completed.
In this case, the computational complexity of BA_ABC is t × (O(P ×N/2) + O(2× P ×N//2)). The second
is that the algorithms work in parallel at the beginning, then one of the algorithms becomes more
successful, and the remaining iterations continue with that algorithm. In this case, the complexity of
BA_ABC is t1 × O(P × N/2) + t2 × O(2 × P × N/2), where t1 and t2 are the iteration number of BA and
ABC, respectively, and t = t1 +t2.

3. Experimental Studies

In this section, the performance of the proposed algorithm on different test sets was examined
and the results obtained were interpreted. The best mean values in the tables were highlighted in
bold. In the first part, the performance of BA_ABC on 10 selected benchmark test functions was
examined for different dimensions. In the second part, the performance of BA_ABC on CEC2005
small-scale test functions [34] was evaluated. The obtained results were compared to the BA versions.
In the third section, the performance of BA_ABC on CEC2010 large-scale test functions [35] was
examined. The obtained results were compared with the results of different algorithms proposed in
recent years in the literature. Also, in the fourth section, the performance of BA_ABC on classical
engineering design problems was tested and compared with different algorithms selected from the
literature. Results were statistically interpreted with Wilcoxon signed-rank and Friedman tests [36,37].
These are non-parametric tests. Wilcoxon signed-rank test evaluates the differences between the paired
results and determines whether there is a significant difference between the results. The Friedman
test determines the differences between two or more algorithms and sorts the algorithms according to
mean rank values [38].

The common parameter values used in all test sets for BA, ABC, and BA_ABC are as follows.
The number of individuals (N) varies depending on dimension but is generally chosen between 10 and
100. fmin = 0, fmax = 1, r = 0.5, A = 0.9. The number of general cycles, dimensions, and the number of
function evaluations (FEs) were chosen according to the rules of the function set (if any) or according
to the most frequently used values in the literature. In addition, these parameters were the same for all
of the compared algorithms for each function set.

In this study, ABC’s limit value was chosen as 100 for small-scale problems and 2000 for large- scale
problems. Since the ABC algorithm produces a new solution by making changes in one dimension,
using a limit value similar to the small size in large-scale problems prevents a detailed search around
the current solution. It often leads to the search for a new solution from a random point of the research
space without much research. Therefore, it will be useful to increase the limit value depending on
the dimension.
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3.1. Performance of BA_ABC on Classic Benchmark Test Functions

The increase in the dimension of the problem is an important factor affecting the performance
of metaheuristic algorithms. The performance of an algorithm that produces successful solutions for
small scale problems usually decreases with the increase in dimension. In this section, the effect of
dimension increase on the performance of the proposed algorithm is examined. The performance of
the algorithm proposed was tested for different dimensions (10, 30, 50, 100, and 1000) on 10 classic
benchmark functions that are frequently used in the literature. The maximum number of evaluations
(FEs) was determined as 10,000 × D, and the number of general cycles as 25. The properties of the
selected benchmark functions are given in Table 3.

The results obtained from BA_ABC were compared with standard BA and standard ABC
algorithms for all dimensions. Comparison results are given in Table 4. Table 4 shows the mean
value, standard deviation value, and statistical test results obtained for each dimension. In the Test (T)
column, whether there was a significant difference between BA_ABC, and BA and ABC algorithms
were examined by applying the Wilcoxon signed-rank test at α < 0.05 significance level. The results of
this test were shown with the symbols +, =, and −, which means that one algorithm is significantly
better, equal, and worse than another algorithm, respectively. The numbers in parentheses indicate the
total number of functions where BA_ABC produced better, worse, and equal solutions compared to
other algorithms, respectively. The table also includes mean rank values that express the Friedman
test-based ordering of the results obtained from BA, ABC, and BA_ABC algorithms for each dimension.
When the Wilcoxon sign rank test results were analyzed for all dimensions, a significant difference
was found between BA_ABC and the other algorithms in 89 of the total comparisons. The other
algorithms were more successful than BA_ABC in 13 of the remaining comparisons, and no significant
difference was found between the compared algorithms in the 18. According to the Friedman test
mean rank values given for each dimension, the BA_ABC algorithm ranked first in all dimensions,
the ABC algorithm ranked second, and the BA algorithm ranked third. In general, the number of
errors obtained from the algorithms was observed to have increased due to the increase in dimensions.
However, optimum results were obtained from the BA_ABC algorithm in all dimensions.

Similar studies in the literature for the classical functions used in this section are generally
conducted for small dimensions. Therefore, the BA_ABC algorithm was compared with the algorithms
selected from the literature for D = 30. The mean and standard deviation values of the results are
given in Table 5. The results obtained for 30 dimensions were compared with the method used in
the study of Fister Jr et al. (HSABA) [19], and with the results from BA (Bat Algorithm), FA (Firefly
Algorithm), DE (Differential Algorithm), and ABC (Artificial Bee Colony) in the same study and
those from the recently proposed Modified Bat Algorithm hybridizing by Differential Evolution
algorithm(MBADE) [24]. When Table 5 was examined, it was found that the proposed method
produced the best average values in six functions. Wilcoxon test revealed that there was no significant
difference between this method and the hybrid versions of BA like HSABA and MBADE; however,
there was a significant difference between this method and other well-known algorithms. According to
the results of the Friedman test, BA_ABC ranked first with a mean rank value of 1.8; the MBADE
algorithm ranked second with a mean rank value of 2.3.
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Table 3. Classic benchmark function.

Function Name Definition Domain/Characterisric f *

F1 Griewangk’s function f (x) = 1/4000
∑n

i=1 x2
i −

∏n
i=1 cos (xi/(i)

1/2) + 1 [−600, 600]/M
0

F2 Rastrigin’s function f (x) = 10 ∗ n +
∑n

i=1 (x
2
i − 10 ∗ cos(2λxi)) [−15, 15]/M

0

F3 Rosenbrock’s function f (x) =
∑n−1

i=1 (100(xi+1 − x2
i )

2
+ (xi − 1)2) [−15, 15]/M

0

F4 Ackley’s function f (x) =
∑n−1

i=1 (20 + exp(−20) exp(−0.2
√

0.5(x2
i+1 + x2

i )) − exp(0.5(cos(2λxi+1) + cos(2λxi)))) [−32.768, 32.768]/M
0

F5 Schwefel’s function f (x) = 418.9829 ∗ n−
∑n

i=1

[
−xi sin(|xi|

1/2)
]

[−500, 500]/M
0

F6 Sphere function f (x) =
∑n

i=1 x2
i [−600, 600]/U

0

F7 Easom’s function f (x) = −(−1n)(
∏n

i=1 cos2(xi)) exp
[
−
∑n

i=1 (xi − λ)
2
]

[−2λ, 2λ]/U
−1

F8 Michalewicz’s function f (x) = −
∑n

i=1 sin(xi)
[
sin

(
ix2

i /λ
)]20 [0, λ]/M

*

F9 Xin-She Yang’s function f (x) =
(

n∑
i=1
|xi|

)
exp

[
−

n∑
i=1

sin(x2
i )

]
[−2λ, 2λ]/M

0

F10 Zakharov’s function f (x) =
∑n

i=1 x2
i +

(
(1/2)

∑n
i=1 ixi

)2
+

(
(1/2)

∑n
i=1 ixi

)4 [−5, 10]/U
0

f *: optimal solution *: depending on the size (f * = −1.8013 for 2D). U: unimodal function. M: multimodal function.
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Table 4. Results of BA, ABC, and BA_ABC algorithms in classical benchmark test function.

D = 10 D = 30 D = 50
Mean Std T (+, −, =) Mean Std T (+, −, =) Mean Std T (+, −, =)

F1
BA 2.92 × 101 1.25 × 101 +(25,0,0) 1.92 × 10−1 4.29 × 10−1 +(25,0,0) 5.14 × 103 6.20 × 103 +(25,0,0)

ABC 4.70 × 10−3 5.19 × 10−3 −(22,3,0) 2.83 × 10−14 1.33 × 10−13 +(24,0,1) 5.34 × 10−14 2.58 × 10−13 +(25,0,0)
BA_ABC 8.80 × 10−3 8.16 × 10−3 1.07 × 10−16 1.49 × 10−16 2.26 × 10−16 2.25 × 10−16

F2
BA 5.46 × 101 1.89 × 101 +(25,0,0) 2.00 × 102 4.67 × 101 +(25,0,0) 3.75 × 102 7.69 × 101 +(25,0,0)

ABC 0 0 =(0,0,25) 5.68 × 10−14 4.02 × 10−14 =(11,3,11) 1.57 × 10−12 2.60 × 10−12 +(21,0,4)
BA_ABC 0 0 3.87 × 10−14 3.92 × 10−14 8.87 × 10−14 5.46 × 10−14

F3
BA 1.12 × 101 3.34 × 101 +(24,1,0) 3.25 × 101 2.75 × 101 +(25,0,0) 4.23 × 101 3.30 × 100 +(25,0,0)

ABC 1.58 × 10−1 1.73 × 10−1 =(13,12,0) 5.92 × 10−2 6.45 × 10−2 +(23,2,0) 3.96 × 10−2 6.14 × 10−2 +(23,2,0)
BA_ABC 3.37 × 10−2 5.13 × 10−1 5.38 × 10−3 1.92 × 10−2 5.29 × 10−3 1.24 × 10−2

F4
BA 1.42 × 102 1.05 × 100 +(25,0,0) 4.74 × 102 7.58 × 100 +(25,0,0) 8.19 × 102 8.44 × 100 +(25,0,0)

ABC 1.40 × 102 4.65 × 10−4 +(25,0,0) 4.50 × 102 2.37 × 10−2 +(23,2,0) 7.61 × 102 5.32 × 10−2 +(24,1,0)
BA_ABC 1.40 × 102 1.12 × 10−4 4.50 × 102 1.84 × 10−2 7.60 × 102 6.65 × 10−2

F5
BA 1.72 × 103 4.68 × 102 +(25,0,0) 5.36 × 103 8.24 × 102 +(25,0,0) 9.38 × 103 9.33 × 102 +(25,0,0)

ABC 1.27 × 10−4 3.96 × 10−13 =(0,0,25) 3.82 × 10−4 2.18 × 10−9 =(1,0,24) 1.32 × 10−1 4.58 × 10−1 +(25,0,0)
BA_ABC 1.27 × 10−4 2.52 × 10−13 3.82 × 10−4 1.23 × 10−12 6.36 × 10−4 1.10 × 10−11

F6
BA 7.83 × 103 7.49 × 103 +(25,0,0) 6.77 × 102 2.58 × 103 +(25,0,0) 3.73 × 10−4 7.18 × 10−5 +(25,0,0)

ABC 8.3 × 10−17 2.49 × 10−17 +(25,0,0) 5.73 × 10−16 8.52 × 10−17 +(25,0,0) 1.19 × 10−15 1.72 × 10−16 +(25,0,0)
BA_ABC 2.86 × 10−17 1.73 × 10−17 2.07 × 10−16 7.49 × 10−17 4.09 × 10−16 1.26 × 10−16

F7
BA −9.92 × 10−1 4.77 × 10−3 +(25,0,0) −5.72 × 10−1 4.92 × 10−1 −(11,14,0) −7.27 × 10−3 1.27 × 10−2 −(7,18,0)

ABC −7.16 × 10−3 1.29 × 10−2 +(25,0,0) −6.07 × 10−108 3.04 × 10−107 +(25,0,0) −2.54 × 10−255 0 +(25,0,0)
BA_ABC −1 1.05 × 10−4

−2.14 × 10−1 4.01 × 10−1 −4.15 × 10−2 2.00 × 10−1

F8
BA −5.89 × 100 4.04 × 10−1 +(25,0,0) −1.04 × 101 8.39 × 10−1 +(25,0,0) −1.42 × 101 9.63 × 10−1 +(25,0,0)

ABC −9.66 × 100 1.56 × 10−7 +(5,0,20) −2.96 × 101 8.66 × 10−3 =(19,6,0) −4.95 × 101 2.05 × 10−2 +(23,2,0)
BA_ABC −9.66 × 100 2.51 × 10−13 −2.96 × 101 1.92 × 10−2 −4.96 × 101 1.48 × 10−2

F9
BA 2.33 × 10−3 4.94 × 10−4 +(25,0,0) 2.06 × 10−11 8.60 × 10−12 +(25,0,0) 7.34 × 10−20 4.18 × 10−20 =(9,16,0)

ABC 5.66 × 10−4 1.65 × 10−16 =(0,0,25) 3.51 × 10−12 6.71 × 10−16 +(24,1,0) 1.96 × 10−17 2.20 × 10−18 +(25,0,0)
BA_ABC 5.66 × 10−4 1.07 × 10−16 3.51 × 10−12 2.40 × 10−16 1.15 × 10−19 8.52 × 10−20

F10
BA 2.56 × 10−3 1.93 × 10−3 +(25,0,0) 2.94 × 10−2 6.67 × 10−3 +(25,0,0) 1.07 × 10−1 1.68 × 10−2 +(25,0,0)

ABC 3.90 × 101 3.65 × 101 +(25,0,0) 2.49 × 103 3.29 × 102 +(25,0,0) 5.09 × 103 2.87 × 102 +(25,0,0)
BA_ABC 1.41 × 10−4 8.86 × 10−5 9.12 × 10−4 3.29 × 10−4 2.74 × 10−3 6.03 × 10−4

Mean Rank
BA ABC BA_ABC BA ABC BA_ABC BA ABC BA_ABC
2.80 1.85 1.35 2,70 2.00 1.30 2.60 2.30 1.10
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Table 4. Cont.

D = 100 D = 1000
Mean Std T ( +, − , =) Mean Std T (+, − , =)

F1
BA 1.84 × 10−1 7.05 × 10−1 +(25,0,0) 1.91 × 10−3 1.93 × 10−3 +(25,0,0)

ABC 6.83 × 10−15 6.19 × 10−15 +(25,0,0) 1.38 × 10−14 7.46 × 10−16 +(23,2,0)
BA_ABC 7.42 × 10−16 6.59 × 10−16 4.26 × 10−15 8.36 × 10−15

F2
BA 9.83 × 102 1.23 × 102 +(25,0,0) 1.18 × 104 3.13 × 103 +(25,0,0)

ABC 4.66 × 10−5 1.77 × 10−4 +(25,0,0) 2.84 × 101 1.47 × 100 +(25,0,0)
BA_ABC 3.91 × 10−13 2.77 × 10−13 5.73 × 100 1.53 × 100

F3
BA 9.42 × 101 1.44 × 101 +(20,5,0) 1.05 × 103 3.58 × 101 +(25,0,0)

ABC 2.88 × 10−2 2.65 × 10−2 −(1,24,0) 1.21 × 102 4.53 × 101 =(14,11,0)
BA_ABC 4.30 × 101 6.46 × 101 1.50 × 102 1.08 × 102

F4
BA 1.60 × 103 6.94 × 101 +(25,0,0) 1.55 × 104 7.95 × 10−2 −(0,25,0)

ABC 1.54 × 103 1.87 × 10−1 +(25,0,0) 1.55 × 104 1.26 × 10−1 +(25,0,0)
BA_ABC 1.54 × 103 2.40 × 10−1 1.55 × 104 1.75 × 10−1

F5
BA 1.90 × 104 1.43 × 103 +(25,0,0) 2.00 × 105 4.34 × 103 +(25,0,0)

ABC 1.87 × 102 9.32 × 101 −(6,19,0) 1.30 × 104 5.45 × 102 +(25,0,0)
BA_ABC 4.12 × 102 2.30 × 102 7.37 × 103 1.64 × 103

F6
BA 5.26 × 101 1.81 × 102 +(25,0,0) 1.31 × 104 2.40 × 104 +(25,0,0)

ABC 3.60 × 10−15 5.56 × 10−16 +(25,0,0) 3.80 × 10−14 3.10 × 10−15 =(19,6,0)
BA_ABC 1.23 × 10−15 4.49 × 10−16 6.76 × 10−14 9.05 × 10−14

F7
BA 0 0 =(0,0,25) 0 0 =(0,0,25)

ABC 0 0 =(0,0,25) 0 0 =(0,0,25)
BA_ABC 0 0 0 0

F8
BA −2.25 × 101 1.22 × 100 +(25,0,0) −1.49 × 102 4.27 × 100 +(25,0,0)

ABC −9.91 × 101 5.52 × 10−2 +(24,1,0) −9.68 × 102 5.81 × 10−1 +(25,0,0)
BA_ABC −9.93 × 101 6.64 × 10−2 −9.80 × 102 4.60 × 10−1

F9
BA 3.89 × 10−41 3.40 × 10−41 =(11,14,0) 0 0 =(0,0,25)

ABC 1.56 × 10−17 2.04 × 10−18 +(25,0,0) 3.02 × 10−73 7.60 × 10−73 +(25,0,0)
BA_ABC 3.50 × 10−41 2.93 × 10−41 0 0

F10
BA 1.14 × 10−1 3.62 × 10−2 +(25,0,0) 1.30 × 104 8.67 × 102 +(25,0,0)

ABC 1.19 × 104 4.77 × 102 +(25,0,0) 1.59 × 105 1.12 × 103 +(25,0,0)
BA_ABC 1.14 × 10−2 1.72 × 10−3 1.43 × 103 1.29 × 102

Mean Rank
BA ABC BA_ABC BA ABC BA_ABC
2.70 1.95 1.35 2.55 2.00 1.45
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Table 5. Comparison with the other evolutionary algorithm (D = 30).

Function BA_ABC BA FA DE ABC HSABA MBADE

F1
Mean 1.07 × 10−16 1.16 × 100 6.65 × 10−1 1.05 × 100 1.09 × 100 7.71 × 10−2 6.39 × 10−3

Std 1.49 × 10−16 1.15 × 100 6.40 × 10−1 2.22 × 10−2 1.23 × 10−1 2.85 × 10−2 1.12 × 10−2

F2
Mean 3.87 × 10−14 9.28 × 102 2.44 × 102 2.28 × 102 7.33 × 101 4.63 × 101 8.23 × 100

Std 3.92 × 10−14 8.90 × 102 2.35 × 102 1.33 × 101 2.24 × 101 2.99 × 101 4.10 × 100

F3
Mean 5.38 × 10−3 2.84 × 106 1.12 × 102 4.57 × 102 5.18 × 102 1.02 × 102 1.14 × 101

Std 1.92 × 10−2 2.95 × 106 1.01 × 102 2.27 × 102 4.72 × 102 1.41 × 101 1.25 × 101

F4
Mean 4.50 × 102 2.00 × 101 2.11 × 101 1.77 × 100 7.17 × 100 9.44 × 100 4.56 × 102

Std 1.84 × 10−2 2.00 × 101 2.11 × 101 3.17 × 10−1 1.03 × 100 6.62 × 100 1.16 × 100

F5
Mean 3.82 × 10−4 9.45 × 103 6.78 × 103 7.57 × 103 2.64 × 103 2.70 × 102 1.17 × 102

Std 1.23 × 10−12 9.52 × 103 6.75 × 103 4.40 × 102 3.30 × 102 3.06 × 101 1.55 × 102

F6
Mean 2.07 × 10−16 5.87 × 10−2 5.19 × 100 1.77 × 102 1.63 × 102 2.63 × 10−2 2.65 × 10−20

Std 7.49 × 10−17 6.53 × 10−5 5.14 × 100 7.12 × 101 1.96 × 102 1.29 × 10−13 2.91 × 10−20

F7
Mean −2.14 × 10−1 0 −3.81 × 10−30

−2.76 × 10−175
−1.76 × 10−136 0 −1

Std 4.01 × 10−1 0 −3.73 × 10−30 0 8.79 × 10−136 0 3.20 × 10−17

F8
Mean −2.96 × 101

−8.62 × 100
−5.15 × 100

−1.07 × 101
−2.30 × 101

−1.30 × 101
−2.56 × 101

Std 1.92 × 10−2
−8.39 × 100

−5.35 × 100 6.70 × 10−1 6.98 × 10−1
−1.36 × 101 4.91 × 10−1

F9
Mean 3.51 × 10−12 1.57 × 10−11 1.70 × 10−4 2.46 × 10−11 1.10 × 10−11 6.06 × 10−12 6.81 × 10−12

Std 2.40 × 10−16 1.03 × 10−11 4.72 × 10−5 1.20 × 10−12 1.91 × 10−12 3.85 × 10−12 4.42 × 10−13

F10
Mean 9.12 × 10−4 2.76 × 102 1.32 × 104 3.78 × 101 2.53 × 102 2.72 × 101 1.46 × 10−9

Std 3.29 × 10−4 2.82 × 102 1.32 × 104 8.74 × 100 3.15 × 101 1.37 × 100 3.13 × 10−9

Wilcoxon Test

+ 9 9 9 9 9 7
- 1 1 1 1 1 3
= 0 0 0 0 0 0
P 0.037(+) 0.047(+) 0.047(+) 0.047(+) 0.074(≈) 0.059(≈)

Friedman Test

Mean Rank 1.80 5.90 5.60 4.80 4.30 3.30 2.30

3.2. Performance of BA_ABC on CEC2005 Test Functions

In this section, the performance of BA_ABC on CEC2005 test functions [34] is examined.
CEC2005 functions consist of 25 functions with different characteristics. These functions were modified
and made more complex by performing operations such as translation, rotation, or hybridization.
CEC2005 functions and features were given in Table 6. Under CEC2005 rules, the number of general
cycles was determined as 25. The maximum number of evaluations was chosen as 10,000×D. After each
cycle, the function error f (x) − f (x*) was recorded and sorted in descending order. The 1st (best), 7th,
13th (median), 19th, and 25th (worst) values of the function error were taken, and mean and standard
deviation values were calculated using all function error values.

Results of BA, ABC, and BA_ABC on CEC2005 test functions for D = 10 are given in Table 7.
According to Table 7, BA, ABC produced the best mean values in 22 of 25 functions and BA in the
remaining three. Again, BA_ABC produced better mean values in all functions than ABC. When BA
and ABC were compared, it was seen that BA produced better mean values than ABC in 22 functions.
When compared by the test line in the table, BA_ABC performed better in 22 functions compared to
BA, and a significant difference was found between them. BA_ABC had an equal performance to that
of BA in one of the remaining functions, and worse performance than that of BA in two functions.
According to test results between ABC_BA and ABC, BA_ABC performed better in all functions,
and there was a significant difference between them. According to the results of the Friedman test
given at the bottom of Table 7, the BA_ABC algorithm ranked first with a mean rank value of 1.12,
the BA algorithm ranked second with a mean rank value of 1.96, and the ABC algorithm ranked third
with a mean rank value of 2.92.
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Table 6. CEC2005 benchmark functions.

Function Name Bound f min

Unimodal Functions

F1 Shifted Sphere Function [−100, 100] −450
F2 Shifted Schwefel’s Problem 1.2 [−100, 100] −450
F3 Shifted Rotated High Conditioned Elliptic Function [−100, 100] −450
F4 Shifted Schwefel’s Problem 1.2 with Noise in Fitness [−100, 100] −450
F5 Schwefel’s Problem 2.6 with Global Optimum on Bounds [−100, 100] −310

Multimodal functions

F6 Shifted Rosenbrock’s Function [−100, 100] 390
F7 Shifted Rotated Griewank’s Function without Bounds [0, 600] −180
F8 Shifted Rotated Ackley’s Function with Global Optimum on Bounds [−32, 32] −140
F9 Shifted Rastrigin’s Function [−5, 5] −330
F10 Shifted Rotated Rastrigin’s Function [−5, 5] −330
F11 Shifted Rotated Weierstrass Function [−0.5, 0.5] 90
F12 Schwefel’s Problem 2.13 [−λ,λ] −460

Expanded functions

F13 Expanded Extended Griewank’s plus Rosenbrock’s Function (F8F2) [−3, 1] −130
F14 Expanded Rotated Extended Scaffe’s F6 [−100, 100] −300

Hybrid composition functions

F15 Hybrid Composition Function 1 [−5, 5] 120
F16 Rotated Hybrid Composition Function 1 [−5, 5] 120
F17 Rotated Hybrid Composition Function 1 with Noise in Fitness [−5, 5] 120
F18 Rotated Hybrid Composition Function 2 [−5, 5] 10
F19 Rotated Hybrid Composition Function 2 with a Narrow Basin for the Global Optimum [−5, 5] 10
F20 Rotated Hybrid Composition Function 2 with the Global Optimum on the Bounds [−5, 5] 10
F21 Rotated Hybrid Composition Function 3 [−5, 5] 360
F22 Rotated Hybrid Composition Function 3 with High Condition Number Matrix [−5, 5] 360
F23 Non-Continuous Rotated Hybrid Composition Function 3 [−5, 5] 360
F24 Rotated Hybrid Composition Function 4 [−5, 5] 260
F25 Rotated Hybrid Composition Function 4 without Bounds [2, 5] 260

BA_ABC was also compared with other BA versions in the literature. Accordingly, BA_ABC was
compared with the recently proposed SBAIS [22], MBADE [24], a Novel Bat Algorithm with habitat
selection and doppler effect in echoes (NBA) [6], Island Bat Algorithm (iBA) [13], Bat Algorithm based
on Iterative Local Search and Stochastic Inertia Weight (ILSSIWBA) [14], and Global-best Bat-inspired
Algorithm(GBA), Tournament Bat-inspired Algorithm (TBA), Proportional Bat-inspired Algorithm
(PBA), Linear rank Bat-inspired Algorithm (LBA), Exponential rank Bat-inspired Algorithm (EBA),
and Random Bat-inspired Algorithm (RBA) versions [26] proposed in the same study. The mean
values of these algorithms are given in Table 8. Accordingly, BA_ABC produced the best mean values
in five functions. According to the Wilcoxon test results, it was determined that BA_ABC had an
equal performance to the MBADE, ILSSIWBA, TBA, and EBA algorithms, and there was no significant
difference between them. BA_ABC performed worse than the SBAIS algorithm and better than the
remaining algorithms, and there was a significant difference between them. According to Friedman test
results, the SBAIS algorithm ranked first with a mean rank value of 2.78, and the MBADE algorithm
ranked second with a mean rank value of 4.16. In addition, the BA_ABC ranked fourth with a mean
rank value of 5.22.
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Table 7. CEC2005 test results of BA, ABC, and BA_ABC (D = 10).

Function 1st (Best) 7th 13th (Median) 19th 25th (Worst) Mean Std Test (+, −, =)

F1
BA 1.5 × 10−3 2.89 × 10−3 4.01 × 10−3 5.47 × 10−3 6.74 × 10−3 4.17 × 10−3 1.53 × 10−3 +(25, 0, 0)

ABC 2.5 × 103 7.49 × 103 9.43 × 103 1.07 × 104 1.16 × 104 8.92 × 103 2.37 × 103 +(25, 0, 0)
BA_ABC 0 0 0 0 0 0 0

F2
BA 2.44 × 10−4 9.29 × 10−4 1.16 × 10−3 1.71 × 10−3 2.71 × 10−3 1.34 × 10−3 6.83 × 10−4 +(24, 1, 0)

ABC 5.26 × 103 8.72 × 103 1.06 × 104 1.33 × 104 1.84 × 104 1.09 × 104 3.32 × 103 +(25, 0, 0)
BA_ABC 6.02 × 10−7 9.92 × 10−6 2.80 × 10−5 7.01 × 10−5 3.35 × 10−4 7.77 × 10−5 1.10 × 10−4

F3
BA 9.63 × 102 9.16 × 103 2.48 × 104 7.85 × 104 1.80 × 105 4.28 × 104 4.45 × 104 +(23, 2, 0)

ABC 9.37 × 106 3.62 × 107 5.72 × 107 8.00 × 107 1.35 × 108 6.17 × 107 3.39 × 107 +(25, 0, 0)
BA_ABC 1.73 × 102 8.71 × 102 2.11 × 103 4.14 × 103 9.90 × 103 2.95 × 103 2.62 × 103

F4
BA 2.81 × 103 7.86 × 103 1.05 × 104 1.59 × 104 2.25 × 104 1.14 × 104 5.16 × 103 +(25, 0, 0)

ABC 6.09 × 103 1.00 × 104 1.14 × 104 1.17 × 104 1.66 × 104 1.10 × 104 2.49 × 103 +(25, 0, 0)
BA_ABC 4.89 × 10−4 7.95 × 10−4 2.03 × 10−3 4.30 × 10−3 4.15 × 10−2 4.72 × 10−3 8.66 × 10−3

F5
BA 6.62 × 101 5.41 × 102 9.78 × 102 1.71 × 103 5.35 × 103 1.20 × 103 1.10 × 103 +(25, 0, 0)

ABC 7.66 × 103 1.16 × 104 1.32 × 104 1.39 × 104 1.52 × 104 1.28 × 104 1.76 × 103 +(25, 0, 0)
BA_ABC 8.59 × 10−8 1.81 × 10−5 3.11 × 10−4 1.16 × 10−2 1.99 × 100 1.47 × 10−1 4.29 × 10−1

F6
BA 5.49 × 10−1 4.25 × 100 5.73 × 100 9.65 × 100 3.01 × 102 4.77 × 101 8.98 × 101 +(22, 3, 0)

ABC 1.28 × 108 7.02 × 108 9.11 × 108 1.17 × 109 3.56 × 109 1.15 × 109 8.46 × 108 +(25, 0, 0)
BA_ABC 7.31 × 10−8 2.76 × 10−2 7.72 × 10−1 2.92 × 100 1.68 × 101 2.29 × 100 3.98 × 100

F7
BA 8.92 × 102 1.11 × 103 1.26 × 103 1.38 × 103 1.78 × 103 1.26 × 103 2.21 × 102 ≈(13, 12, 0)

ABC 1.93 × 103 2.30 × 103 2.47 × 103 2.60 × 103 2.88 × 103 2.45 × 103 2.06 × 102 +(25, 0, 0)
BA_ABC 1.27 × 103 1.27 × 103 1.27 × 103 1.27 × 103 1.27 × 103 1.27 × 103 4.57 × 10−13

F8
BA 2.01 × 101 2.03 × 101 2.03 × 101 2.04 × 101 2.04 × 101 2.03 × 101 9.19 × 10−2 +(21, 4, 0)

ABC 2.05 × 101 2.07 × 101 2.08 × 101 2.08 × 101 2.09 × 101 2.07 × 101 9.22 × 10−2 +(25, 0, 0)
BA_ABC 2.00 × 101 2.01 × 101 2.02 × 101 2.03 × 101 2.04 × 101 2.02 × 101 1.18 × 10−1

F9
BA 1.25 × 101 2.45 × 101 3.34 × 101 4.16 × 101 5.53 × 101 3.32 × 101 1.08 × 101 +(25, 0, 0)

ABC 5.21 × 101 8.04 × 101 8.52 × 101 9.62 × 101 1.05 × 102 8.57 × 101 1.32 × 101 +(25, 0, 0)
BA_ABC 0 0 0 0 0 0 0
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Table 7. Cont.

Function 1st (Best) 7th 13th (Median) 19th 25th (Worst) Mean Std Test (+, −, =)

F10
BA 2.04 × 101 2.87 × 101 3.41 × 101 4.35 × 101 5.57 × 101 3.58 × 101 9.62 × 100 +(21, 4, 0)

ABC 9.76 × 101 1.08 × 102 1.18 × 102 1.25 × 102 1.44 × 102 1.18 × 102 1.30 × 101 +(25, 0, 0)
BA_ABC 7.96 × 100 1.39 × 101 1.69 × 101 2.38 × 101 4.58 × 101 1.99 × 101 9.27 × 100

F11
BA 7.99 × 100 8.62 × 100 9.01 × 100 9.47 × 100 1.00 × 101 9.10 × 100 5.46 × 10−1 +(25, 0, 0)

ABC 9.99 × 100 1.08 × 101 1.15 × 101 1.18 × 101 1.26 × 101 1.14 × 101 7.32 × 10−1 +(25, 0, 0)
BA_ABC 2.33 × 100 3.50 × 100 4.74 × 100 5.37 × 100 6.06 × 100 4.50 × 100 1.10 × 100

F12
BA 3.87 × 102 5.50 × 102 8.12 × 102 1.09 × 103 2.49 × 103 9.60 × 102 5.47 × 102 +(23, 2, 0)

ABC 4.10 × 104 6.65 × 104 7.80 × 104 9.00 × 104 1.13 × 105 7.80 × 104 2.08 × 104 +(25, 0, 0)
BA_ABC 1.52 × 101 8.42 × 101 1.66 × 102 3.16 × 102 6.07 × 102 2.17 × 102 1.64 × 102

F13
BA 1.64 × 100 2.82 × 101 3.09 × 101 3.54 × 101 3.89 × 101 3.12 × 101 5.65 × 10−1 +(25, 0, 0)

ABC 8.03 × 100 1.37 × 101 1.68 × 101 2.11 × 101 3.47 × 101 1.74 × 101 5.90 × 100 +(25, 0, 0)
BA_ABC 2.84 × 10−14 1.42 × 10−1 1.93 × 10−1 2.39 × 10−1 4.15 × 10−1 2.03 × 10−1 1.08 × 10−1

F14
BA 3.54 × 100 4.00 × 100 4.25 × 100 4.40 × 100 4.54 × 100 4.20 × 100 2.66 × 10−1 −(0, 25, 0)

ABC 4.81 × 100 4.83 × 100 4.84 × 100 4.85 × 100 4.86 × 100 4.84 × 100 1.31 × 10−2 +(24, 1, 0)
BA_ABC 4.77 × 100 4.80 × 100 4.81 × 100 4.81 × 100 4.84 × 100 4.80 × 100 1.71 × 10−2

F15
BA 1.77 × 102 3.01 × 102 4.59 × 102 5.53 × 102 6.74 × 102 4.43 × 102 1.39 × 102 +(25, 0, 0)

ABC 4.93 × 102 7.37 × 102 7.65 × 102 7.99 × 102 8.43 × 102 7.58 × 102 6.91 × 101 +(25, 0, 0)
BA_ABC 0 0 0 0 0 0 0

F16
BA 1.43 × 102 1.55 × 102 1.70 × 102 1.98 × 102 6.60 × 102 2.17 × 102 1.28 × 102 +(24, 1, 0)

ABC 3.70 × 102 3.90 × 102 4.20 × 102 4.55 × 102 5.46 × 102 4.31 × 102 5.02 × 102 +(25, 0, 0)
BA_ABC 1.00 × 102 1.17 × 102 1.27 × 102 1.35 × 102 1.75 × 102 1.29 × 102 1.76 × 101

F17
BA 1.44 × 102 1.73 × 102 2.02 × 102 2.16 × 102 5.11 × 102 2.20 × 102 9.09 × 101 + (24, 1, 0)

ABC 2.87 × 102 3.86 × 102 4.11 × 102 4.45 × 102 5.40 × 102 4.22 × 102 5.45 × 101 + (25, 0, 0)
BA_ABC 1.22 × 102 1.43 × 102 1.58 × 102 1.65 × 102 1.73 × 102 1.53 × 102 1.54 × 101

F18
BA 3.41 × 102 8.24 × 102 9.31 × 102 1.01 × 103 1.05 × 103 9.11 × 102 1.48 × 102 + (24, 1, 0)

ABC 1.12 × 103 1.16 × 103 1.19 × 103 1.24 × 103 1.34 × 103 1.20 × 103 5.21 × 101 + (25, 0, 0)
BA_ABC 3.00 × 102 3.57 × 102 4.44 × 102 5.00 × 102 9.82 × 102 5.00 × 102 1.97 × 102

F19
BA 3.24 × 102 8.22 × 102 9.59 × 102 9.86 × 102 1.03 × 103 8.88 × 102 1.51 × 102 + (22, 3, 0)

ABC 1.08 × 103 1.17 × 103 1.20 × 103 1.23 × 103 1.26 × 103 1.19 × 103 4.50 × 101 + (25, 0, 0)
BA_ABC 3.56 × 102 4.53 × 102 5.00 × 102 8.00 × 102 9.32 × 102 6.15 × 102 1.96 × 102
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Table 7. Cont.

Function 1st (Best) 7th 13th (Median) 19th 25th (Worst) Mean Std Test (+, −, =)

F20
BA 3.03 × 102 8.01 × 102 9.67 × 102 9.97 × 102 1.09 × 103 8.36 × 102 2.59 × 102 + (20, 5, 0)

ABC 1.02 × 103 1.19 × 103 1.23 × 103 1.26 × 103 1.28 × 103 1.21 × 103 5.94 × 101 + (25, 0, 0)
BA_ABC 3.00 × 102 3.56 × 102 5.00 × 102 8.00 × 102 9.19 × 102 5.28 × 102 1.99 × 102

F21
BA 3.25 × 102 9.22 × 102 1.08 × 103 1.16 × 103 1.25 × 103 9.50 × 102 3.11 × 102 + (23, 2, 0)

ABC 1.30 × 103 1.37 × 103 1.39 × 103 1.42 × 103 1.45 × 103 1.39 × 103 4.29 × 101 + (25, 0, 0)
BA_ABC 2.00 × 102 4.10 × 102 4.11 × 102 5.00 × 102 9.00 × 102 4.45 × 102 1.57 × 102

F22
BA 7.67 × 102 7.77 × 102 8.74 × 102 9.08 × 102 9.37 × 102 8.55 × 102 6.24 × 101 + (25, 0, 0)

ABC 9.85 × 102 1.07 × 103 1.12 × 103 1.14 × 103 1.30 × 103 1.11 × 103 7.10 × 101 + (25, 0, 0)
BA_ABC 3.00 × 102 7.58 × 102 7.65 × 102 7.71 × 102 8.00 × 102 7.29 × 102 1.29 × 102

F23
BA 5.59 × 102 7.21 × 102 1.04 × 103 1.22 × 103 1.25 × 103 9.67 × 102 2.77 × 102 + (25, 0, 0)

ABC 1.28 × 103 1.36 × 103 1.39 × 103 1.41 × 103 1.47 × 103 1.39 × 103 4.28 × 101 + (25, 0, 0)
BA_ABC 4.25 × 102 5.48 × 102 5.48 × 102 5.48 × 102 5.59 × 102 5.24 × 102 5.04 × 101

F24
BA 2.05 × 102 3.96 × 102 4.09 × 102 7.22 × 102 1.24 × 103 5.79 × 102 3.10 × 102 + (25, 0, 0)

ABC 1.09 × 103 1.28 × 103 1.32 × 103 1.36 × 103 1.38 × 103 1.30 × 103 7.27 × 101 + (25, 0, 0)
BA_ABC 2.00 × 102 2.00 × 102 2.00 × 102 2.00 × 102 2.00 × 102 2.00 × 102 1.53 × 10−12

F25
BA 2.06 × 102 3.95 × 102 4.15 × 102 5.63 × 102 1.15 × 103 5.34 × 102 2.34 × 102 − (3, 22, 0)

ABC 1.34 × 103 1.41 × 103 1.42 × 103 1.44 × 103 1.48 × 103 1.42 × 103 2.80 × 101 + (25, 0, 0)
BA_ABC 6.01 × 102 6.23 × 102 8.20 × 102 8.24 × 102 8.31 × 102 7.41 × 102 1.03 × 102

BA ABC BA_ABC
Mean Rank 1.96 2.92 1.12
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Table 8. Comparison results of BA_ABC and other algorithms (D = 10).

Function Algorithms

BA_ABC SBAIS MBADE NBA iBA ILSSIWBA GBA TBA PBA LBA EBA RBA

F1 0 2.43 × 10−5 0 0 0 0 0 0 0 0 0 8.09 × 103

F2 7.77 × 10−5 1.90 × 10−7 0 4.38 × 10−7 0 0 0 0 0 0 0 7.88 × 103

F3 2.95 × 103 1.06 × 102 1.33 × 103 3.46 × 103 2.48 × 101 1.67 × 103 2.41 × 102 1.43 × 102 2.74 × 103 5.11 × 102 2.21 × 102 1.66 × 107

F4 4.72 × 10−3 2.57 × 102 0 2.54 × 103 2.99 × 103 1.92 × 10−4 3.81 × 102 1.54 × 102 9.79 × 103 5.88 × 103 1.77 × 103 1.16 × 104

F5 1.47 × 10−1 5.25 × 100 0 8.81 × 10−2 1.47 × 10−1 0 2.92 × 101 6.26 × 100 1.22 × 102 2.56 × 101 5.74 × 100 3.60 × 103

F6 2.29 × 100 9.94 × 10−1 0 7.97 × 10−1 1.69 × 10−3 5.64 × 100 4.96 × 10−2 2.91 × 10−2 4.36 × 102 2.20 × 10−2 1.44 × 100 4.48 × 108

F7 1.27 × 103 6.73 × 100 4.85 × 102 9.32 × 100 4.59 × 101 1.26 × 103 7.04 × 101 5.36 × 101 8.74 × 101 8.98 × 101 5.42 × 101 4.26 × 102

F8 2.02 × 101 2.15 × 100 2.03 × 101 2.01 × 101 2.00 × 101 2.01 × 101 2.01 × 101 2.01 × 101 2.02 × 101 2.02 × 101 2.02 × 101 2.02 × 101

F9 0 2.17 × 100 0 3.82 × 101 2.48 × 101 2.09 × 101 3.94 × 101 3.59 × 101 7.35 × 101 4.79 × 101 5.96 × 101 7.87 × 101

F10 1.99 × 101 8.17 × 10−1 1.05 × 101 6.64 × 101 4.08 × 101 1.97 × 101 5.53 × 101 4.58 × 101 9.17 × 101 5.22 × 101 7.85 × 101 9.88 × 101

F11 4.50 × 100 1.21 × 100 2.61 × 100 7.07 × 100 3.12 × 100 5.54 × 100 1.17 × 100 1.30 × 100 7.94 × 100 1.44 × 100 1.46 × 100 8.66 × 100

F12 2.17 × 102 1.75 × 102 3.15 × 102 3.69 × 103 2.20 × 10−2 7.29 × 101 7.54 × 101 4.25 × 101 2.82 × 101 4.18 × 101 7.40 × 101 1.02 × 105

F13 2.03 × 10−1 1.52 × 100 3.42 × 10−1 2.61 × 100 2.56 × 100 1.03 × 100 1.68 × 100 1.34 × 100 1.43 × 100 1.03 × 100 1.99 × 100 4.65 × 100

F14 4.80 × 100 2.18 × 100 4.62 × 100 3.34 × 100 3.92 × 100 3.88 × 100 3.97 × 100 3.94 × 100 4.03 × 100 3.99 × 100 4.24 × 100 4.13 × 100

F15 0 2.14 × 102 2.36 × 102 4.99 × 102 2.83 × 102 1.25 × 102 6.52 × 102 6.23 × 102 6.62 × 102 6.66 × 102 7.31 × 102 7.02 × 102

F16 1.29 × 102 7.37 × 101 1.14 × 102 2.43 × 102 1.93 × 102 1.39 × 102 4.58 × 102 4.99 × 102 4.80 × 102 4.61 × 102 4.38 × 102 4.67 × 102

F17 1.53 × 102 1.07 × 102 1.14 × 102 2.89 × 102 1.81 × 102 1.39 × 102 2.03 × 102 2.31 × 102 4.73 × 102 3.39 × 102 3.76 × 102 5.61 × 102

F18 5.00 × 102 6.49 × 102 3.88 × 102 9.81 × 102 9.53 × 102 7.48 × 102 1.15 × 103 1.04 × 103 1.08 × 103 1.11 × 103 1.07 × 103 1.16 × 103

F19 6.15 × 102 4.10 × 102 3.97 × 102 1.02 × 103 8.97 × 102 7.89 × 102 9.77 × 102 8.94 × 102 1.00 × 103 1.03 × 103 1.09 × 103 1.09 × 103

F20 5.28 × 102 3.03 × 102 5.14 × 102 1.07 × 103 8.05 × 102 6.97 × 102 8.80 × 102 9.95 × 102 1.01 × 103 1.03 × 103 1.08 × 103 1.14 × 103

F21 4.45 × 102 4.28 × 102 5.00 × 102 1.09 × 103 1.23 × 103 3.20 × 102 1.29 × 103 1.23 × 103 1.29 × 103 1.27 × 103 1.29 × 103 1.41 × 103

F22 7.29 × 102 4.22 × 102 7.29 × 102 9.25 × 102 8.54 × 102 7.84 × 102 8.26 × 102 8.55 × 102 9.10 × 102 8.24 × 102 9.82 × 102 9.66 × 102

F23 5.24 × 102 4.48 × 102 5.60 × 102 1.20 × 103 1.23 × 103 6.93 × 102 1.42 × 103 1.40 × 103 1.39 × 103 1.40 × 103 1.42 × 103 1.47 × 103

F24 2.00 × 102 2.00 × 102 2.00 × 102 1.04 × 103 9.49 × 102 2.00 × 102 1.34 × 103 7.43 × 102 9.76 × 102 9.95 × 102 7.60 × 102 1.43 × 103

F25 7.41 × 102 3.11 × 102 4.65 × 102 1.07 × 103 9.46 × 102 1.64 × 103 8.14 × 102 5.72 × 102 9.82 × 102 9.36 × 102 5.43 × 102 1.12 × 103

Wilcoxon Test

+ 7 6 18 15 12 16 15 18 16 15 22
- 17 15 6 8 11 8 9 5 7 8 2
= 1 4 1 2 2 1 1 2 2 2 1

p value 0.026(-) 0.085(≈) 0.001(+) 0.042(+) 0.248(≈) 0.037(+) 0.092(≈) 0.004(+) 0.026(+) 0.052(≈) 1.15 × 10−4(+)

Friedman Test

Mean
Rank 5.22 2.78 4.16 7.44 5.24 4.78 6.92 5.74 8.66 7.58 8.06 11.42
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3.3. Performance of BA_ABC on CEC2010 Large-Scale Test Functions

In this section, the performance of BA_ABC on large-scale test functions was evaluated. For this
purpose, CEC2010 benchmark functions [35] were used. The properties of the functions were given
in Table 9. According to CEC2010 rules, the maximum number of evaluations (FEs) was taken as
3.00 × 106 and the number of general cycles as 25. Comparative results of BA_ABC with BA and ABC
were given in Table 10 for 3.00 × 106 FEs.

Table 9. CEC2010 benchmark functions.

Function Name Modality Range

Separable functions

F1 Shifted Elliptic Function Unimodal [−100, 100]
F2 Shifted Rastrigin’s Function Multimodal [−5, 5]
F3 Shifted Ackley’s Function Multimodal [−32, 32]

Single-group m-nonseparable functions

F4 Single-group Shifted and m-rotated Elliptic Function Unimodal [−100, 100]
F5 Single-group Shifted and m-rotated Rastrigin’s Function Multimodal [−5, 5]
F6 Single-group Shifted and m-rotated Ackley’s Function Multimodal [−32, 32]
F7 Single-group Shifted m-dimensional Schwefel’s Function 1.2 Unimodal [−100, 100]
F8 Single-group Shifted m-dimensional Rosenbrock’s Function Multimodal [−100, 100]

D/2m groups m-nonseparable functions

F9 D/2m -group Shifted and m-rotated Elliptic Function Unimodal [−100, 100]
F10 D/2m -group Shifted and m-rotated Rastrigin’s Function Multimodal [−5, 5]
F11 D/2m -group Shifted and m-rotated Ackley’s Function Multimodal [−32, 32]
F12 D/2m -group Shifted m-dimensional Schwefel’s Problem 1.2 Unimodal [−100, 100]
F13 D/2m -group Shifted m-dimensional Rosenbrock’s Function Multimodal [−100, 100]

D/m groups m-nonseparable functions

F14 D/m -group Shifted and m-rotated Elliptic Function Unimodal [−100, 100]
F15 D/m -group Shifted and m-rotated Rastrigin’s Function Multimodal [−5, 5]
F16 D/m -group Shifted and m-rotated Ackley’s Function Multimodal [−32, 32]
F17 D/m -group Shifted m-dimensional Schwefel’s Problem 1.2 Unimodal [−100, 100]
F18 D/m -group Shifted m-dimensional Rosenbrock’s Function Multimodal [−100, 100]

Nonseparable functions

F19 Shifted Schwefel’s Problem 1.2 Unimodal [−100, 100]
F20 Shifted Rosenbrock’s Function Multimodal [−100, 100]

According to Table 10, BA_ABC produced the best mean value in 12 functions, BA in one function,
and ABC in the remaining seven functions. When Table 10 test column was examined in general,
it was seen that the BA_ABC algorithm was better than the BA algorithm in a total of 19 functions,
and there was a significant difference between them. No significant difference was found between
the BA and BA_ABC algorithms in function number five. When the test results of BA_ABC and ABC
were examined, it was found that BA_ABC had significantly worse results in six functions, equal result
in one, and better results in 13. According to the results of the Friedman test given at the bottom of
Table 10, the BA_ABC algorithm ranked first with a mean rank value of 1.40, the ABC algorithm ranked
second with a mean rank value of 1.85, and the BA algorithm ranked third with a mean rank value
of 2.75.
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Table 10. CEC2010 test results of BA, ABC, and BA_ABC (D = 1000).

F1 F2 F3

BA ABC BA_ABC BA ABC BA_ABC BA ABC BA_ABC

Best 7.89 × 109 2.34 × 10−12 1.64 × 10−11 1.35 × 104 3.12 × 101 3.89 × 101 1.98 × 101 5.14 × 10−7 1.42 × 10−6

Median 2.74 × 1010 8.80 × 10−12 1.72 × 10−10 1.44 × 104 3.97 × 101 4.85 × 101 2.04 × 101 9.57 × 10−7 3.34 × 10−6

Worst 3.23 × 1010 3.29 × 10−11 6.05 × 10−8 2.46 × 104 4.72 × 101 5.30 × 101 2.14 × 101 1.89 × 10−6 6.43 × 10−6

Mean 2.63 × 1010 1.10 × 10−11 4.81 × 10−9 1.73 × 104 3.95 × 101 4.74 × 101 2.06 × 101 1.00 × 10−6 3.54 × 10−6

Std 4.93 × 109 7.82 × 10−12 1.46 × 10−8 4.47 × 103 3.88 × 100 3.58 × 100 7.83 × 10−1 3.69 × 10−7 1.21 × 10−6

Test(+, −, =) +(25, 0, 0) −(0, 25, 0) +(25, 0, 0) −(4, 21, 0) +(25, 0, 0) −(0, 25, 0)

F4 F5 F6

BA ABC BA_ABC BA ABC BA_ABC BA ABC BA_ABC
Best 2.91 × 1011 3.58 × 1013 7.80 × 109 2.83 × 108 4.25 × 108 2.78 × 108 1.94 × 107 1.97 × 107 1.88 × 107

Median 5.14 × 1011 4.57 × 1013 1.82 × 1010 3.76 × 108 5.90 × 108 3.71 × 108 1.97 × 107 2.00 × 107 1.94 × 107

Worst 8.87 × 1011 5.86 × 1013 4.07 × 1010 4.90 × 108 7.23 × 108 5.43 × 108 2.08 × 107 2.00 × 107 1.98 × 107

Mean 5.18 × 1011 4.63 × 1013 2.15 × 1010 3.74 × 108 5.81 × 108 3.81 × 108 2.01 × 107 1.99 × 107 1.93 × 107

Std 1.07 × 1011 6.46 × 1012 9.19 × 109 6.04 × 107 6.74 × 107 7.12 × 107 5.56 × 105 8.69 × 104 2.53 × 105

Test(+, −, =) +(25, 0, 0) +(25, 0, 0) ≈(14,11,0) +(25, 0, 0) +(24, 1, 0) +(25, 0, 0)

F7 F8 F9

BA ABC BA_ABC BA ABC BA_ABC BA ABC BA_ABC
Best 5.73 × 106 2.97 × 1010 6.09 × 104 5.79 × 106 3.75 × 105 5.93 × 104 8.82 × 109 5.83 × 108 2.63 × 106

Median 6.05 × 106 4.02 × 1010 1.64 × 105 6.30 × 106 3.33 × 106 3.06 × 105 2.99 × 1010 6.58 × 108 3.52 × 106

Worst 5.41 × 108 4.86 × 1010 2.97 × 105 2.21 × 108 2.03 × 107 7.24 × 107 4.13 × 1010 7.06 × 108 7.11 × 106

Mean 4.11 × 107 3.97 × 1010 1.74 × 105 3.73 × 107 6.34 × 106 1.06 × 107 2.96 × 1010 6.57 × 108 3.78 × 106

Std 1.25 × 108 5.64 × 109 5.32 × 104 7.21 × 107 5.49 × 106 1.93 × 107 6.21 × 109 3.33 × 107 1.05 × 106

Test(+, −, =) +(25, 0, 0) +(25, 0, 0) +(19, 6, 0) ≈(16, 9, 0) +(25, 0, 0) +(25, 0, 0)

F10 F11 F12

BA ABC BA_ABC BA ABC BA_ABC BA ABC BA_ABC
Best 1.35 × 104 6.79 × 103 4.21 × 103 2.15 × 102 2.01 × 102 1.95 × 102 2.04 × 106 6.12 × 105 2.19 × 10−1

Median 1.47 × 104 7.27 × 103 4.78 × 103 2.34 × 102 2.01 × 102 1.96 × 102 3.53 × 106 6.62 × 105 2.65 × 10−1

Worst 2.45 × 104 7.54 × 103 7.48 × 103 2.35 × 102 2.02 × 102 2.00 × 102 4.01 × 106 6.91 × 105 3.16 × 10−1

Mean 1.76 × 104 7.23 × 103 4.95 × 103 2.27 × 102 2.01 × 102 1.96 × 102 3.46 × 106 6.65 × 105 2.74 × 10−1

Std 4.61 × 103 1.92 × 102 7.45 × 102 8.74 × 100 1.81 × 10−1 1.80 × 100 3.68 × 105 1.66 × 104 2.37 × 10−2

Test(+, −, =) +(25, 0, 0) +(25, 0, 0) +(25, 0, 0) +(25, 0, 0) +(25, 0, 0) +(25, 0, 0)

F13 F14 F15

BA ABC BA_ABC BA ABC BA_ABC BA ABC BA_ABC
Best 4.8 × 109 3.90 × 102 4.27 × 102 9.23 × 109 1.32 × 109 7.48 × 106 9.42 × 103 1.39 × 104 8.74 × 103

Median 1.02 × 1011 5.11 × 102 8.36 × 102 3.07 × 1010 1.44 × 109 9.64 × 106 1.49 × 104 1.46 × 104 9.38 × 103

Worst 1.33 × 1011 1.16 × 103 2.97 × 103 3.94 × 1010 1.54 × 109 1.18 × 107 2.49 × 104 1.49 × 104 1.06 × 104

Mean 1.00 × 1011 5.48 × 102 1.11 × 103 3.10 × 1010 1.44 × 109 9.59 × 106 1.90 × 104 1.45 × 104 9.45 × 103

Std 2.53 × 1010 1.75 × 102 6.47 × 102 5.93 × 109 6.88 × 107 1.07 × 106 5.35 × 103 2.70 × 102 4.76 × 102

Test(+, −, =) +(25, 0, 0) −(2, 23, 0) +(25, 0, 0) +(25, 0, 0) +(24, 1, 0) +(25, 0, 0)

F16 F17 F18

BA ABC BA_ABC BA ABC BA_ABC BA ABC BA_ABC
Best 3.90 × 102 4.03 × 102 3.90 × 102 2.69 × 106 1.23 × 106 1.15 × 100 8.15 × 1010 1.36 × 103 8.36 × 102

Median 3.96 × 102 4.03 × 102 3.91 × 102 4.00 × 106 1.30 × 106 1.34 × 100 8.79 × 1011 5.28 × 103 1.05 × 104

Worst 4.29 × 102 4.04 × 102 3.99 × 102 5.44 × 106 1.39 × 106 1.63 × 100 1.01 × 1012 1.54 × 104 3.41 × 104

Mean 4.09 × 102 4.03 × 102 3.92 × 102 4.08 × 106 1.33 × 106 1.33 × 100 8.58 × 1011 6.31 × 103 1.38 × 104

Std 1.61 × 101 2.64 × 10−1 2.20 × 100 5.57 × 105 4.04 × 104 1.27 × 10−1 1.77 × 1011 4.12 × 103 1.07 × 104

Test(+, −, =) +(23, 2, 0) +(25, 0, 0) (25, 0, 0) +(25, 0, 0) +(25, 0, 0) −(7, 18, 0)

F19 F20 Mean Rank

BA ABC BA_ABC BA ABC BA_ABC BA ABC BA_ABC

Best 4.06 × 106 6.87 × 106 3.51 × 104 1.50 × 1011 9.44 × 100 2.46 × 102

2.75 1.85 1.40

Median 5.70 × 106 8.03 × 106 4.71 × 104 1.04 × 1012 2.47 × 101 6.60 × 102

Worst 7.51 × 106 8.38 × 106 6.60 × 104 1.22 × 1012 7.11 × 101 1.18 × 103

Mean 5.86 × 106 7.94 × 106 4.72 × 104 1.01 × 1012 2.80 × 101 6.77 × 102

Std 7.57 × 105 3.73 × 105 8.31 × 103 1.98 × 1011 1.45 × 101 2.26 × 102

Test(+, −, =) +(25, 0, 0) +(25, 0, 0) +(25, 0, 0) −(0, 25, 0)

For CEC2010 test functions; the BA_ABC algorithm was compared with recently proposed
algorithms such as Adaptive Hybrid Differential Evolution with circular sliding window (AHDE) [39],
Quantum-behaved Particle Swarm Optimization with Random Selection (RSQPSO) [40], Improved Sine
Cosine Algorithm (ISCA) [41], Micro Differential Evolution with local Directional Search (µDSDE) [42],
and Adaptive Enhanced Unidimensional Search (aEUS) [43]. The mean values of the algorithms are
given in Table 11. According to the results, BA_ABC produced the best mean values in five functions,
the AHDE algorithm in one, the RSQPSO algorithm in four, the ISCA algorithm in five, and the aEUS
algorithm in five. The µDSDE algorithm, on the other hand, did not produce the best mean value
in any function. When the Wilcoxon test results in Table 11 were examined, it was concluded that
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there was no significant difference between the BA_ABC and aEUS algorithms; however, BA_ABC was
better than other algorithms and that there was a significant difference between them. When Friedman
test results were examined, it was found that BA_ABC ranked first among the algorithms with a mean
rank value of 2.65 and the aEUS algorithm ranked second with a mean rank value of 2.83.

Table 11. Comparison results of BA_ABC and other algorithms (D = 1000).

Function Algorithms

BA_ABC AHDE RSQPSO ISCA µDSDE aEUS

F1 4.81 × 10−9 1.81 × 10−20 8.66 × 10−32 1.55 × 1011 2.05 × 104 8.32 × 10−24

F2 4.74 × 101 3.57 × 10−6 1.18 × 101 1.64 × 100 1.47 × 102 0
F3 3.54 × 10−6 3.73 × 10−9 1.27 × 10−14 3.10 × 10−1 2.45 × 100 1.90 × 10−12

F4 2.15 × 1010 2.33 × 1012 7.09 × 1011 1.37 × 1012 3.16 × 1011 2.84 × 1011

F5 3.81 × 108 3.88 × 108 5.39 × 108 3.27 × 108 1.11 × 108 7.18 × 107

F6 1.93 × 107 1.97 × 107 1.94 × 107 1.29 × 105 1.50 × 107 1.99 × 107

F7 1.74 × 105 2.01 × 106 7.50 × 100 3.71 × 1010 5.53 × 105 2.73 × 103

F8 1.06 × 107 9.09 × 105 8.78 × 107 1.59 × 1013 4.08 × 107 1.29 × 108

F9 3.78 × 106 7.06 × 107 1.75 × 107 1.66 × 1011 7.16 × 108 7.57 × 106

F10 4.95 × 103 5.84 × 103 5.33 × 103 2.96 × 103 4.63 × 103 7.15 × 103

F11 1.96 × 102 2.01 × 102 1.98 × 102 1.89 × 102 1.98 × 102 1.99 × 102

F12 2.74 × 10−1 3.99 × 104 1.19 × 102 1.33 × 106 2.59 × 105 3.28 × 10−1

F13 1.11 × 103 1.64 × 103 1.06 × 103 6.30 × 1010 1.10 × 103 1.09 × 103

F14 9.59 × 106 1.71 × 108 5.58 × 107 2.29 × 108 1.85 × 109 1.71 × 107

F15 9.45 × 103 1.09 × 104 1.34 × 104 1.64 × 103 8.79 × 103 1.42 × 104

F16 3.92 × 102 3.98 × 102 9.37 × 102 3.18 × 102 3.90 × 102 3.98 × 102

F17 1.33 × 100 2.00 × 105 2.31 × 103 3.27 × 106 1.03 × 106 3.98 × 100

F18 1.38 × 104 4.77 × 103 2.28 × 103 1.41 × 104 3.01 × 104 2.97 × 103

F19 4.72 × 104 5.84 × 105 3.08 × 106 5.90 × 106 4.56 × 106 9.44 × 103

F20 6.77 × 102 1.21 × 103 1.13 × 103 1.59 × 1011 5.29 × 103 4.51 × 102

Wilcoxon Test

+ 15 14 13 14 11
− 5 6 7 6 9
= 0 0 0 0 0
p 0.009(+) 0.012(+) 0.025(+) 0.038(+) 0.455(≈)

Friedman Test

Mean Rank 2.65 4.03 3.23 4.25 4.03 2.83

Figure 1 shows the convergence graphs of BA, ABC, and BA_ABC algorithms for every six
functions randomly selected from CEC2005 and CEC2010. When the graphs of the CEC2005 functions
were examined, it was seen that the BA algorithm converged faster in the graph of function F7, and the
BA_ABC algorithm converged faster in the other functions and produced a better solution. When the
graphs of CEC2010 functions were examined, it was seen that the ABC algorithm produced the best
solution in F3 and F20 functions. The convergence rate and characteristics of ABC and BA_ABC
algorithms were similar in function F3. It can be said that BA produced the best solution in function F5,
and converged faster than others, but was not able to produce new solutions towards the end of the
iteration. In the remaining functions, BA_ABC converged faster and produced better solutions.
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3.4. Performance of BA_ABC in Classical Engineering Design Problems

Engineering Design can be defined as the process of meeting the requirements that are needed to
create a product. Today, meta-heuristic algorithms emerge as an alternative to traditional optimization
methods used in this process. The method we proposed in this section was applied to three engineering
optimization problems, including pressure vessel design problem, tension/compression spring design
problem, and gear train design problem, which are frequently used in literature, and its performance
was examined.

3.4.1. Pressure Vessel Design Problem

The pressure vessel design problem is a classic engineering design problem that aims to minimize
pressure vessel welding, manufacturing, and material costs [44,45]. It is a problem with four decision
variables and four constraints (thickness of shell Ts, the thickness of head Th, inner radius R, length of
the cylindrical section of the vessel L). The schematic representation of the problem is given in Figure 2.
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The mathematical model of the problem can be summarized as in Equation (13).

X = (Ts, Th, R, L) = (x1, x2, x3, x4)

Minimize f (X) = 0.6224 x1x3x4 + 1.7781 x2x2
3 + 3.1661 x1

2x4 + 19.84 x2
1x3

Subject to g1 (X) = −x1 + 0.0193 x3 ≤ 0

g2 (X) = −x2 + 0.0095 x3 ≤ 0

g3(X) = −λx2
3x4 − 4/3 λx3

3 + 1, 296, 000 ≤ 0

g4 (X) = x4 − 240 ≤ 0

1 × 0.0625 ≤ x1, x2 ≤ 99 × 0.0625, 10 ≤ x3, x4 ≤ 200

(13)

The result obtained from the proposed method is given in Table 12, with the general cycle number
taken as 30 and FES value taken as 30,000. The table shows the values of decision variables and
constraint values for the best fitness value. The statistical information obtained after 30 general cycles
are also shown in the table. Table 13 shows the comparison results between the ten algorithms selected
from the literature and the BA_ABC algorithm. The BA_ABC algorithm has been shown to produce an
acceptable result similar to the literature.

Table 12. Optimal solutions of pressure vessel design problem by BA_ABC.

x1 x2 x3 x4 f (x)
Decision variables 0.7781878 0.3846586 40.32058 199.9867 5885.3715

g1 g2 g3 g4
Constraint values −6.0599 × 10−7

−2.6680 × 10−7 −0.4149 −40.0133
Best Median Worst Mean Std.

5885.3715 6008.1344 6248.7054 6017.5957 91.5592
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Table 13. Comparison of BA_ABC with other algorithms for pressure vessel design optimization problem.

Algorithms Worst Mean Best Std

EBA [31] 6370.77 6173.67 6059.71 142.33
IAPSO [47] 6090.53 6068.75 6059.71 14.01
CGWO [48] 6188.11 5783.58 5034.18 254.50
WCA [49] 6590.21 6198.61 5885.33 213.04
MBA [50] 6392.50 6200.64 5889.32 160.34

PSO_GA [51] 5885.48 5885.38 5885.33 0.05
ABC [52] 5895.12 5887.55 5885.40 2.74
BA [53] 6318.95 6179.13 6059.71 137.22

CSDE [54] 1.52 × 1022 6261.41 6059.71 1.44 × 10−8

TLNNA [55] 6114.95 5935.42 5885.33 66.28
BA_ABC 6248.70 6017.59 5885.37 91.55

3.4.2. Tension/Compression Spring Design Problem

This design problem was studied by Belegundu and Arora [56] and it is an optimization problem
whose main purpose is to reduce the weight of spring with three decision variables such as wire
diameter (d), mean coil diameter (D) and the number of active coils (N). The schematic representation
of the problem is given in Figure 3.

Mathematics 2020, 8, x FOR PEER REVIEW 28 of 37 

Table 12. Optimal solutions of pressure vessel design problem by BA_ABC. 

 1x  2x  3x  
4x  )(xf  

Decision variables 0.7781878 0.3846586 40.32058 199.9867 5885.3715 
 1g  2g  3g  

4g   
Constraint values −6.0599 ×10-7 −2.6680×10-7 −0.4149 −40.0133  

 Best Median Worst Mean Std. 
 5885.3715 6008.1344 6248.7054 6017.5957 91.5592 

Table 13. Comparison of BA_ABC with other algorithms for pressure vessel design optimization 
problem. 

Algorithms Worst Mean Best Std 
EBA [31] 6370.77 6173.67 6059.71 142.33 

IAPSO [47] 6090.53 6068.75 6059.71 14.01 
CGWO [48] 6188.11 5783.58 5034.18 254.50 
WCA [49] 6590.21 6198.61 5885.33 213.04 
MBA [50] 6392.50 6200.64 5889.32 160.34 

PSO_GA [51] 5885.48 5885.38 5885.33 0.05 
ABC [52] 5895.12 5887.55 5885.40 2.74 
BA [53] 6318.95 6179.13 6059.71 137.22 

CSDE [54] 1.52 × 1022 6261.41 6059.71 1.44 × 10-8 
TLNNA [55] 6114.95 5935.42 5885.33 66.28 

BA_ABC 6248.70 6017.59 5885.37 91.55 

3.4.2. Tension/Compression Spring Design Problem 

This design problem was studied by Belegundu and Arora [56] and it is an optimization 
problem whose main purpose is to reduce the weight of spring with three decision variables such as 
wire diameter (d), mean coil diameter (D) and the number of active coils (N). The schematic 
representation of the problem is given in Figure 3. 

 
Figure 3. The structure of the tension/compression spring design problem [46]. 

The mathematical model of the problem can be summarized as in Equation (14). 

X = (d D N) = ),,( 321 xxx   

Minimize f (X) = ( 3x +2) 2
12xx  

Subject to  
1g  (X) = )854.717/(1 4

13
3
2 xxx− ≤ 0 

2g (X) = )5108/1())(566.12/4( 2
1

4
1

3
1221

2
2 xxxxxxx +−− ≤ 0 

3g (X) = )/45.140(1 3
2
21 xxx−  ≤ 0 

4g (X) = 1)5.1/)(( 21 −+ xx  ≤ 0 

0.005 ≤ 𝑥ଵ  ≤ 2, 0.25 ≤  𝑥ଶ ≤ 1.3, 2 ≤ 𝑥ଷ ≤ 15 

(14) 

The result obtained from the proposed method is given in Table 14, with the general cycle 
number taken as 30 and FES value taken as 1000. In Table 15, the comparison results of BA_ABC 

Figure 3. The structure of the tension/compression spring design problem [46].

The mathematical model of the problem can be summarized as in Equation (14).

X = (d D N) = x1, x2, x3

Minimize f (X) = (x3 + 2)x2x2
1

Subject to g1 (X) = 1 −
(
x3

2x3/717.854x4
1

)
≤ 0

g2(X) =
(
4x2

2 − x1x2/12.566
(
x2x3

1 − x4
1

))
+

(
1/5108x2

1

)
≤ 0

g3(X) = 1 −
(
140.45x1/x2

2x3
)
≤ 0

g4(X) = ((x1 + x2)/1.5) − 1 ≤ 0

0.005 ≤ x1 ≤ 2, 0.25 ≤ x2 ≤ 1.3, 2 ≤ x3 ≤ 15

(14)

The result obtained from the proposed method is given in Table 14, with the general cycle number
taken as 30 and FES value taken as 1000. In Table 15, the comparison results of BA_ABC with the
literature are given. The BA_ABC algorithm has been shown to produce an acceptable result similar to
the literature.

Table 14. Optimal solutions of tension/compression spring design problem by BA_ABC.

x1 x2 x3 f (x)
Decision variables 0.054007 0.417747 8.39565 0.012667

g1 g2 g3 g4
Constraint values −0.002253 −0.115968 −4.177092 −0.685497

Best Median Worst Mean Std.
0.012667 0.012688 0.01273352 0.01268755 1.46 × 10−5
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Table 15. Comparison of BA_ABC with other algorithms for the tension/compression spring design
optimization problem (NA = Not Available).

Algorithms Worst Mean Best Std

EBA [31] NA NA 0.01267 NA
IAPSO [47] 0.01782 0.01367 0.01266 1.57 × 10−3

CGWO [48] 0.01217 0.01217 0.01195 1.04 × 10−5

WCA [49] 0.01295 0.01274 0.01266 8.06 × 10−5

MBA [50] 0.01290 0.01271 0.01266 6.30 × 10−5

ABC [52] 0.01271 0.01266 0.01266 9.42 × 10−6

BA [53] 0.01689 0.01350 0.01267 1.42 × 10−3

CSDE [54] 0.01266 0.01269 0.01266 3.00 × 10−5

TLNNA [55] 0.01283 0.01268 0.01266 3.24 × 10−5

BA_ABC 0.01273 0.01268 0.01266 1.46 × 10−5

3.4.3. Gear Train Design Problem

The gear train design problem is an optimization problem proposed by Sandgren [44], whose aim
is to minimize the cost of the gear ratio of the gear train. This problem only has a boundary constraint.
There is no constraint on equality or inequality. It has four decision variables, including Ta, Tb, Td,
and Tf. The schematic representation of the problem is given in Figure 4.

Mathematics 2020, 8, x FOR PEER REVIEW 29 of 37 

with the literature are given. The BA_ABC algorithm has been shown to produce an acceptable 
result similar to the literature. 

Table 14. Optimal solutions of tension/compression spring design problem by BA_ABC. 

 1x  2x  3x  )(xf   
Decision variables 0.054007 0.417747 8.39565 0.012667  

 1g  2g  3g  
4g   

Constraint values −0.002253 −0.115968 −4.177092 −0.685497  
 Best Median Worst Mean Std. 
 0.012667 0.012688 0.01273352 0.01268755 1.46 × 10-5 

Table 15. Comparison of BA_ABC with other algorithms for the tension/compression spring design 
optimization problem (NA = Not Available). 

Algorithms Worst Mean Best Std 
EBA [31] NA NA 0.01267 NA 

IAPSO [47] 0.01782 0.01367 0.01266 1.57 × 10-3 
CGWO [48] 0.01217 0.01217 0.01195 1.04 × 10-5 
WCA [49] 0.01295 0.01274 0.01266 8.06 × 10-5 
MBA [50] 0.01290 0.01271 0.01266 6.30 × 10-5 
ABC [52] 0.01271 0.01266 0.01266 9.42 × 10-6 
BA [53] 0.01689 0.01350 0.01267 1.42 × 10-3 

CSDE [54] 0.01266 0.01269 0.01266 3.00 × 10-5 
TLNNA [55] 0.01283 0.01268 0.01266 3.24 × 10-5 

BA_ABC 0.01273 0.01268 0.01266 1.46 × 10-5 

3.4.3. Gear Train Design Problem 

The gear train design problem is an optimization problem proposed by Sandgren [44], whose 
aim is to minimize the cost of the gear ratio of the gear train. This problem only has a boundary 
constraint. There is no constraint on equality or inequality. It has four decision variables, including 

aT , bT , dT , and fT . The schematic representation of the problem is given in Figure 4. 

 

Figure 4. The structure of the gear train design problem [46]. 

The mathematical model of the problem can be summarized as in Equation (15). 

X = ( aT bT dT fT ) = ),,( 4,321 xxxx  

Minimize f (X) = 2
4132 ))/()931,6/1(( xxxx−  

12 ≤ 4,321 ,, xxxx  ≤ 60 

(15) 

The result obtained from the proposed method is given in Table 16, with the general cycle 
number taken as 30 and FES value taken as 1000. In Table 17, the comparison results of BA_ABC 

Figure 4. The structure of the gear train design problem [46].

The mathematical model of the problem can be summarized as in Equation (15).

X = (TaTbTdTf) = (x1,x2,x3,x4)
Minimize f (X) = ((1/6931) − (x2x3/x1x4))2

12 ≤ x1,x2,x3,x4 ≤ 60
(15)

The result obtained from the proposed method is given in Table 16, with the general cycle number
taken as 30 and FES value taken as 1000. In Table 17, the comparison results of BA_ABC with the
literature are given. When the results were examined, it was seen that the best solution was obtained
with the BA_ABC algorithm.

Table 16. Optimal solutions of gear train design problem by BA_ABC.

x1 x2 x3 x4 f (x)

Decision variables 12.00 19.7523 51.7153 31.7670 2.0732 × 10−14

Best Median Worst Mean Std.
2.07 × 10−14 5.14 × 10−11 7.64 × 10−9 7.42 × 10−10 1.92 × 10−9
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Table 17. Comparison of BA_ABC with other algorithms for the gear train design optimization problem.

Algorithms Worst Mean Best Std

IAPSO [47] 1.82 × 10−8 5.49 × 10−9 2.70 × 10−12 6.36 × 10−9

CGWO [48] 2.71 × 10−10 7.09 × 10−11 2.83 × 10−13 1.02 × 10−10

MBA [50] 2.06 × 10−8 2.47 × 10−9 2.70 × 10−12 3.94 × 10−9

BA 5.11 × 10−2 7.89 × 10−3 1.31 × 10−8 1.38 × 10−2

ABC 1.02 × 10−9 1.54 × 10−10 1.47 × 10−13 2.50 × 10−10

BA_ABC 7.64 × 10−9 7.42 × 10−10 2.07 × 10−14 1.92 × 10−9

4. Investigation of Contribution of BA and ABC Algorithms to the Solution of BA_ABC
Algorithm

The contribution of the algorithms that make up the hybrid system to the solution produced by the
hybrid system may vary depending on the problem or function studied. Sometimes an algorithm may
be more successful at producing new solutions, or algorithms may perform similarly. Determining the
algorithms’ contribution amounts can be a guide for future hybrid studies on these functions. For this
purpose, in this section, the contribution of the BA and ABC algorithms carried out in parallel to the
BA_ABC algorithm to the solution for each function is examined. The results of the contribution of
the algorithms to the solution in CEC2005 functions in Table 18 and CEC2010 in Table 19 are stated.
In these tables, the BA column indicates the number of times the BA produced more solutions and the
number of times the BA was more successful than the ABC algorithm during the control process of the
algorithms’ success status. Similarly, the ABC column shows the number of times ABC produced more
solutions and was more successful. These columns also provide information about the direction of
information exchange. For example, BA and ABC columns for the F1 function in Table 19 show that
information exchange took place 15 times from the BA population to the ABC population and nine
times from the ABC population to the BA population. BA+ and BA- columns respectively indicate the
number of new successful solutions produced by BA and the number of new solutions that failed to
develop the current best solution. Again, ABC+ and ABC- columns show the number of successful
and unsuccessful solutions produced by ABC, respectively. C+ and C- columns indicate the number
of successful and unsuccessful solutions produced in the process that continued with the successful
algorithm, after the parallel operation of the algorithms had ended, respectively. In general, for the
relevant algorithm, it can be said that the “+” symbol indicates the number of successful solutions that
developed the current best solution, while the “-” symbol indicates the number of failed solutions that
could not develop the current best solution.

In the function groups studied, mnc was determined as 15. Accordingly, if any of the BA or ABC
columns took the value of 15, it meant that the algorithm was more successful in the information
exchange process, and the remaining iterations would continue with this algorithm. Therefore, it can
be concluded that the remaining iterations in F1 in Table 19 were continued with the BA algorithm,
while those in F2 function were continued with the ABC algorithm.

When the tables are examined, it can be seen that the contribution of the algorithms to the BA_ABC
solution changes depending on the function. According to Table 18, it can be said that the contribution
of the ABC algorithm to the result is higher in the F25 function, and the contribution of the algorithms
to the solution is similar in the F12 function. In the remaining 23 functions, it was determined that the
information exchange was mostly from BA to ABC, and the iterations remaining after the information
exchange process were continued with the BA algorithm. In other words, the contribution of the BA
algorithm to BA_ABC was higher in 92% of the functions, while the ABC algorithm’s contribution to
BA_ABC was higher in 4% of the functions. In the remaining 4%, their contribution to BA_ABC was
similar. Therefore, it can be said that the BA algorithm is more successful in this set of functions, and it
provided a better contribution to the solution.
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Table 18. Contribution of BA and ABC to BA_ABC solutions in CEC2005.

Function BA ABC BA+ BA- ABC+ ABC- C+ C-

F1 15 2 2813 19,797 242 44,978 7298 24,872
F2 15 0 613 19,337 87 39,813 368 39,782
F3 15 0 530 19,420 6 39,894 657 39,493
F4 15 1 271 21,009 14 42,546 74 36,086
F5 15 1 375 20,905 90 42,470 127 36,033
F6 15 5 440 26,160 284 52,916 236 19,964
F7 15 5 872 25,728 183 53,017 621 19,579
F8 15 6 216 27,182 126 56,266 96 16,114
F9 15 5 3715 22,885 321 52,879 4278 15,922

F10 15 7 599 28,661 395 58,125 849 11,371
F11 15 6 293 27,637 108 55,752 46 16,164
F12 15 10 235 33,098 185 66,482 0 0
F13 15 9 339 31,581 362 63,478 74 41,66
F14 15 1 358 20,922 131 42,429 379 35,781
F15 15 9 3418 28,502 463 63,377 590 3650
F16 15 6 163 27,767 159 55,701 74 16,136
F17 15 9 53 31,867 11 63,829 2 4238
F18 15 4 670 24,600 162 50,378 633 23,557
F19 15 6 321 27,609 235 55,625 165 16,045
F20 15 1 1225 20,055 134 42,426 1952 34,208
F21 15 7 346 28,914 327 58,193 75 12,145
F22 15 5 173 26,428 203 52,996 357 19,843
F23 15 4 114 25,156 40 50,500 96 24,094
F24 15 8 751 29,839 295 60,885 1053 7177
F25 6 15 48 27,882 23 55,837 0 16,210

Table 19. Contribution of BA and ABC to BA_ABC solutions in CEC2010.

Function BA ABC BA+ BA- ABC+ ABC- C+ C-

F1 15 9 5155 954,845 4710 1,915,290 707 119,293
F2 1 15 497 639,503 18,193 1,261,807 7093 1,072,907
F3 12 13 2329 997,671 8919 1,991,081 0 0
F4 15 2 3595 676,405 2125 1,357,875 26,946 933,054
F5 14 11 3111 996,889 6243 1,993,757 0 0
F6 15 2 3739 676,261 1762 1,358,238 2755 957,245
F7 15 2 4414 684,474 1669 1,349,443 4699 955,301
F8 15 1 3737 636,262 1152 1,278,849 6788 1,073,212
F9 15 0 6718 593,282 705 1,199,295 152,842 1,047,158
F10 1 15 767 639,233 11,503 1,268,497 5873 1,074,127
F11 9 15 2091 957,908 11,075 1,908,926 1842 118,158
F12 15 0 8181 591,819 356 1,199,644 44,117 1,155,883
F13 13 12 5294 994,706 9139 1,990,861 0 0
F14 15 0 7295 592,705 501 1,199,499 175,931 1,024,069
F15 15 5 3532 796,468 4044 1,595,956 1946 598,054
F16 15 6 2989 837,011 4005 1,675,995 1925 478,075
F17 15 0 7078 592,923 385 1,199,614 108,336 1,091,664
F18 15 9 7395 952,605 6125 1,913,875 1472 118,528
F19 15 0 6052 593,949 34 1,199,965 171,282 1,028,718
F20 15 3 7752 712,248 2429 1,437,571 4593 835,407

When Table 19 is examined, it is seen that the information exchange took place from BA to ABC in
a total of 14 functions (F1, F4, F6, F7, F8, F9, F12, F14, F15, F16, F17, F18, F19, F20) and the remaining
iterations after the information exchange process was continued with the BA algorithm. It can be said
that BA contributed more to the solution in these functions. In three of the remaining functions (F2,
F10, F11), ABC contributed more to the solution, and the information exchange took place from ABC to
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BA. The remaining iterations after this process were continued with ABC. In F3, F5, and F13 functions,
the contribution of the algorithms to the solution of the BA_ABC algorithm was similar. In other
words, the contribution of the BA algorithm to BA_ABC was higher in 70% of the functions, while the
ABC algorithm’s contribution to BA_ABC was higher in 15% of the functions. In the remaining 15%,
their contribution to BA_ABC was similar.

According to the results given in Tables 18 and 19, it was determined that the contribution of BA
algorithm to the solutions of the hybrid BA_ABC algorithm was higher.

5. Algorithm Complexity

In this section, the complexity of BA, ABC, and BA_ABC algorithms were calculated according
to the rules defined for the CEC2020 [57] test set, and the obtained results were compared.
Algorithm complexity is calculated as follows.

T0 denotes the computing time for the problem given in Equation (16).

x = 0.55;
for i = 1: 1000000

x = x + x; x = x/2; x = x* x; x = sqrt(x); x = log(x);
x = exp(x); x = x/(x + 2);

end

(16)

T1 is the computing time just for Function (1) in the test set for a particular dimension(D) and
200,000 function evaluation number. The total computing time for the proposed algorithm with
200,000 evaluations of the same D dimensional function is T2. T2 is executed five times, and the average
of the T2 values found is calculated (T2 = mean(T2)). Finally, the algorithm complexity is denoted by
(T2 − T1)/T0 and evaluated according to the linear growth. Additionally, the algorithm complexities
are calculated on the 5, 10, and 15 dimensions to determine the effect of dimension increase.

The algorithms were coded using Matlab R2016a, and algorithm complexity calculation was done
by running the algorithms on a PC with Intel CPU (1.50 GHz) and 4 GB RAM. The complexity of the
BA, ABC, and BA_ABC were shown in Table 20.

Table 20. The complexity of the BA, ABC, and BA_ABC algorithms.

CEC2020 (Function 1)

BA
T0 T1 T2 (T2 − T1)/T0

D = 5
0.2901

1.5922 13.0710 39.5684
D = 10 1.6110 13.1026 39.6125
D = 15 1.9029 13.6737 40.5749

ABC
T0 T1 T2 (T2 − T1)/T0

D = 5
0.2901

1.5922 11.1987 33.1144
D = 10 1.6110 11.9764 35.7304
D = 15 1.9029 12.4667 36.4143

BA_ABC
T0 T1 T2 (T2 − T1)/T0

D = 5
0.2901

1.5922 13.0957 39.6535
D = 10 1.6110 13.3799 40.5684
D = 15 1.9029 14.2354 42.5112

According to Table 20, it was seen that the complexities of all algorithms rise depending on the
increased dimension. The complexity of the proposed BA_ABC algorithm was higher than the BA and
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ABC algorithms, in all dimensions. Furthermore, the lowest complexity values for all dimensions were
obtained in the ABC algorithm.

6. Results and Discussion

In this study, to examine the performance of the proposed BA_ABC algorithm in different
dimensions and on different test sets, the algorithm was tested on classical benchmark functions,
CEC2005 small-scale test problems, CEC2010 large-scale test problems, and classical engineering design
problems. Table 4 shows the results of BA, ABC, and BA_ABC algorithms in classical benchmark test
functions, and Table 5 shows the comparative results of BA_ABC with other algorithms (BA, ABC, FA,
DE, HSABA, and MBADE). When Table 4 was examined, it was determined that the rise in dimension
increased the amount of error; however, BA_ABC performed better than BA and ABC algorithms
in most functions of different dimensions. Statistical tests also confirmed that BA_ABC was more
successful. According to the statistical test results in Table 5, it was found that BA_ABC showed similar
performance with hybrid algorithms (HSABA and MBADE). There was a significant difference between
the remaining algorithms, and BA_ABC performed better than these algorithms. According to Friedman
test results, the BA_ABC algorithm ranked first with the smallest mean rank value. Table 7 shows
the results of BA, ABC, and BA_ABC algorithms in CEC2005 small-scale test functions. When Table 7
was examined, it was seen that BA_ABC performed better in BA and ABC algorithms in most of the
functions and ranked first according to Friedman results. The comparison results of the BA_ABC
algorithm with the recently proposed bat algorithms (SBAIS, MBADE, NBA, iBA, ILSSIWBA, GBA,
TBA, PBA, LBA, EBA, and RBA) are given in Table 8. In the table, the BA_ABC algorithm was found
to be worse than one of the compared bat versions, similar to four, and better performing than the
remaining six. BA_ABC ranked fifth among the algorithms. Table 10 shows the results of BA, ABC,
and BA_ABC algorithms in CEC2010 large-scale test functions. Comparison results of BA_ABC with
AHDE, RSQPSO, ISCA, µDSDE, and aEUS algorithms are given in Table 11. When Table 10 was
examined, it was found that BA_ABC performed better in BA and ABC algorithms in most functions
and ranked first according to Friedman results. In Table 11, it was found that the BA_ABC algorithm
performed similarly with one of the compared algorithms and performed better than the remaining
four. BA_ABC ranked first in the ranking between algorithms. Finally, the algorithm’s performance
over classical engineering design problems was examined. The results of the three engineering design
problems are given in Tables 12–17. When the results were examined, it was seen that the algorithm
produced acceptable and successful results for these problems. Overall, the BA_ABC algorithm
produced very successful results for all test sets and dimensions, and the success of the algorithm was
verified by statistical test results. Also, the contributions of BA and ABC algorithms to the hybrid
algorithm were examined in the fourth section. The results obtained for CEC2005 and CEC2010 are
given in Tables 18 and 19. It was determined that the BA algorithm contributed more to the hybrid
system in most of the functions. Finally, in the fifth section, the complexity of BA, ABC, and BA_ABC
algorithms were examined. The complexity of the BA_ABC algorithm was found to be higher than the
standard algorithms.

However, the increased dimension-related performance loss is still an ongoing problem for
BA_ABC. According to the results of Table 4, it can be said that BA_ABC is relatively less affected
compared to BA and ABC algorithms. The structural difficulty of functions (shift, rotation, etc.) is
another reason for the loss in BA_ABC performance. Despite this, the algorithm is seen to find more
successful results than BA and ABC algorithms in most of the functions. Consequently, BA_ABC is a
successful hybrid algorithm, and the reason for its success can be said to be the reduction of convergence
speed to the current best solution using inertia weight and the increase of diversity and global search
capability thanks to the hybrid system created with the ABC algorithm.

Techniques other than metaheuristic algorithms also can be used to improve the performance of
BA_ABC. For example, using machine learning techniques with metaheuristic algorithms might be a
good option. Fine-tuning of parameters in metaheuristic algorithms affects algorithm performance
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substantially. The most suitable parameter value may vary depending on the structural features and
dimensions of the problem. Usually, researchers choose the parameters used for similar problems or
try to find the most suitable parameter by performing tests with these values. Parameter selection of
metaheuristic algorithms can be performed using machine learning strategies (such as fuzzy logic,
Bayesian networks, neural networks, support vector machines, etc.). Population management and
diversity are another factor affecting performance in metaheuristic algorithms. Machine learning
techniques such as the Apriori algorithm, clustering techniques, etc., can be used for extracting
information from previously visited solutions, discovering more promising search areas, and increasing
population variety [58]. Furthermore, metaheuristic algorithms can be associated with the concept
of big data, which has been frequently studied recently. Using metaheuristic algorithms in this field
allows us to produce fast responses in real-time areas where data are regularly updated, to work with
different data types at the same time, to cope with uncertainties, and to evaluate the information
obtained through the use of the objective function [59]. As a result, it may be appropriate to use
machine learning options for increasing the population diversity of the proposed BA_ABC and setting
its parameters. Furthermore, examining the performance of the proposed BA_ABC algorithm on big
data, it can contribute to the literature and present successful results.

7. Conclusions and Future Work

In this study, a new hybrid algorithm was proposed to improve BA’s global search capability and
increase its performance on different test sets. In this algorithm, which is called BA_ABC, the population
was divided into two, and the BA algorithm was performed in one part and the ABC algorithm in
the other. When each certain number of iterations was completed, the performance of the algorithms
was evaluated, and the information exchange was ensured by replacing some of the individuals
with the best fitness values in the successful algorithm with the individuals with the worst fitness
values in the population of the unsuccessful algorithm. When the maximum number of exchanges
was reached, the remaining iterations were continued with the successful algorithm. Thanks to the
proposed BA_ABC algorithm, performance decreases due to structural problems of the BA algorithm
were reduced, and its global search capability was improved.

The BA_ABC algorithm was firstly tested on 10 classic benchmark functions. This test was done
on dimensions of 10, 30, 50, 100, and 1000. Despite the increased dimension, the proposed algorithm
was found to be more successful than the BA and ABC algorithms. Again, the BA_ABC algorithm
performed better than the algorithms selected from the literature. Secondly, CEC2005 small-scale test
functions were used to determine how the BA_ABC algorithm was performing compared to the latest
BA versions. The algorithm performed better than the BA and ABC algorithms. It produced acceptable
results compared to the BA versions. Thirdly, the performance of BA_ABC in large-scale problems was
tested on CEC2010 large-scale test functions. It was determined that the proposed algorithm performed
better than BA, ABC, and the latest algorithms in the literature. Finally, the BA_ABC algorithm was
tested on three frequently used problems of classical engineering design problems. The BA_ABC
algorithm produced acceptable results, which were similar to those in the literature in these problems.
Also, the contribution of BA and ABC algorithms, which constituted the hybrid algorithm, to the
solutions was examined on CEC2005 and CEC2010 functions. It was observed that the BA algorithm
contributes more to the solutions of BA_ABC in most of the functions. Finally, in the calculation about
the algorithm complexity, it was found that the complexity of the BA_ABC algorithm is more than
the standard algorithms. In general, when all the results were examined, it was determined that the
proposed algorithm produced successful and acceptable results in different test groups. As a future
study, the hybrid system components used in the BA_ABC algorithm can be replaced with different
algorithms and tested on CEC functions in recent years. Furthermore, machine learning techniques
can be added to increase the performance of the algorithm, or its performance can be examined on big
data problems as a different field of study.
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