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Abstract

:

If X is a connected graph, then an X-factor of a larger graph is a spanning subgraph in which all of its components are isomorphic to X. Given a set  Γ  of pairwise non-isomorphic graphs, a uniformly resolvable Γ-decomposition of a graph G is an edge decomposition of G into X-factors for some graph   X ∈ Γ  . In this article we completely solve the existence problem for decompositions of   K v  -I into   C n  -factors and   K  1 , n   -factors in the case when n is even.






Keywords:


graph decomposition; factor; uniform factorization












1. Introduction and Definitions


For any graph G, let   V ( G )   and   E ( G )   be the vertex-set and the edge-set of G, respectively. Throughout the paper   K v   will denote the complete graph on v vertices, while    K v  \  K h    will denote the graph with   V (  K v  )   as vertex-set and   E  (  K v  )  \ E  (  K h  )    as edge-set (this graph is sometimes referred to as a complete graph of order v with a hole of size h).



Given a set  Γ  of pairwise non-isomorphic graphs, a Γ-decomposition (or Γ-design)of a graph G is a decomposition of the edge-set of G into subgraphs (called blocks) that are isomorphic to some element of  Γ . A  Γ -factor of G is a spanning subgraph of G whose components are isomorphic to a member of  Γ . If   X ∈ Γ  , then an X-factor is a spanning subgraph whose components are isomorphic to X. A  Γ -decomposition of G is resolvable if its blocks can be partitioned into  Γ -factors and is called a Γ-factorization of G. A  Γ -factorization of G is called uniform if each factor is an X-factor for some graph   X ∈ Γ  . A   K 2  -factorization of G is known as a 1-factorization and its factors are called 1-factors; it is well known that a 1-factorization of   K v   exists if and only if v is even ([1]). A   C k  -factorization of   K v   exists if and only if   3 ≤ k ≤ v  , v and k are odd, and   v ≡ 0  ( mod  k )   ([2]).



A  Γ -isofactorization of G is a  Γ -factorization with isomorphic factors. If  Γ  is the set of all possible cycles of   K v  , then determining the existence of possible  Γ -isofactorizations of   K v   with an odd v is known as the Oberwolfach Problem. It was first posed in 1967 by Gerhard Ringel and asks whether it is possible to seat an odd number v of mathematicians at n round tables in   ( v − 1 ) / 2   meals so that each mathematician sits next to everyone else exactly once. If the n round tables are of sizes    p 1  ,  p 2  , … ,  p n    (with    p 1  +  p 2  + ⋯ +  p n  = v  ), the Oberwolfach Problem asks for an isofactorization of   K v   with factors whose components are isomorphic to cycles of length    p 1  ,  p 2  , … ,  p n   . It is easy to see that such a factorization can exist only if v is odd. For even v, it is common to instead decompose   K v  -I, with the complete graph with the edges of a 1-factor removed. The uniform Oberwolfach problem (all cycles of a factor have the same size) has been completely solved by Alspach and Häggkvist [3] and Alspach, Schellenberg, Stinson and Wagner [2] .



Additional existence problems for  Γ -factorizations of   K v   or   K v  -I have been studied and many results have been obtained, especially on uniformly resolvable  Γ -decompositions: when  Γ  is a set of two complete graphs of an order of at most five in [4,5,6,7]; when  Γ  is a set of two or three paths on two, three or four vertices in [8,9,10]; for   Γ = {  P 3  ,  K 3  + e }   in [11]; for   Γ = {  K 3  ,  K  1 , 3   }   in [12]; for   Γ = {  C 4  ,  P 3  }   in [13]; for   Γ = {  K 3  ,  P 3  }   in [14]; for   Γ = {  K 2  ,  K  1 , 3   }   in [15,16]; for   Γ = {  K 2  ,  K  1 , 4   }   in [17]. Most famous is the variation of the Oberwolfach problem known as the Hamilton-Waterloo problem. In this problem the meals for the dining mathematicians take place at two different venues. Hence a decomposition of   K v   or   K v  -I is sought where the factors can be of either one of two types. In particular, the uniform case asks for a decomposition of   K v   or   K v  -I into   C p  -factors and   C q  -factors. Thus the round tables in one venue sit p mathematicians, whereas the tables in the other venue each sit q. Of course, in this case p and q must divide v and   Γ = {  C p  ,  C q  }  .



A uniformly resolvable   { X , Y }  -decomposition of G into exactly r X-factors and s Y-factors is abbreviated as   ( X , Y )  -URD  ( G ; r , s )  . If   G =  K v    we simply write   ( X , Y )  -URD  ( v ; r , s )  . In this paper, we study uniformly resolvable  Γ -decompositions in the case when   Γ = {  C n  ,  K  1 , n   }  . The existence problem of a   (  C n  ,  K  1 , n   )  -URD  ( v ; r , s )   was solved for   n = 2   ([9], note that    C 2  =  K 2   ) and   n = 3   ([12]). Here we deal with the case when n is even and greater or equal to 4. For an even n, it is known that a   (  C n  ,  K  1 , n   )  -URD  ( v ; 0 , s )   exists if and only if   v ≡ 1  ( mod  2 n )   and   v ≡ 0  ( mod  n + 1 )   ([18]), while, when v is even, no   (  C n  ,  K  1 , n   )  -URD  ( v ; r , s )   exists with   r > 0   because otherwise,   2 ( n + 1 ) r + 2 n s = ( n + 1 ) ( v − 1 )  , which is clearly impossible. Hence we study the existence problem for   (  C n  ,  K  1 , n   )  -URD  (  K v  − I ; r , s )  , which is denoted by   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    and, since n and   n + 1   must divide v, we assume that   v ≡ 0  ( mod  n ( n + 1 ) )  . Furthermore, since     ( v − 2 ) ( n + 1 )   2 n   ∉ N  , necessarily   r > 0  .



For   v ≡ 0  ( mod  n ( n + 1 ) )  , defined the set   J ( v )   according to the following Table 1.



We completely solve the existence problem of a   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    by proving the following result.



Theorem 1.

Let   v ≡ 0  ( mod  n ( n + 1 ) )  . There exists a   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    if and only if   ( r , s )  ∈  J ( v )  .






2. General Constructions and Related Structures


A  Γ -decomposition of   K  u ( g )   , the complete multipartite graph with u parts of size g, is known as a group divisible decomposition ( Γ -GDD for short) of type   g u  ; the parts of size g are called the groups. (If  Γ  consists of complete subgraphs, then a  GDD  is called a group divisible design). When   Γ = { G }  , we simply write G-GDD, and when   G =  K n   , we refer to such a group divisible design as an n-GDD. We denote a (uniformly) resolvable  Γ -GDD by  Γ -(U)RGDD. Specifically, an   ( X , Y )  -URGDD with r X-factors and s Y-factors is denoted by   ( X , Y )  -URGDD  ( r , s )  . It is easy to deduce that the number of G-factors of a G-RGDD is   α =   g ( u − 1 ) | V ( G ) |   2 | E ( G ) |    .



If the blocks of a  Γ -GDD of type   g u   can be partitioned into partial factors, each of which contains all vertices except those of one group, we refer to such a decomposition as a Γ-frame (an n-frame if   Γ = {  K n  }  ). For a fixed positive integer d, if  Γ  is a set of d-regular graphs, then it is easy to deduce that the number of partial factors missing a specified group is   α =  g d   .



A  Γ -decomposition of    K  v + h   \  K h    is known as an incomplete Γ-design of order   v + h   with a hole of size h. We are interested in incomplete resolvable  Γ -designs, which will be used in the “filling” and “frame”-constructions of this section. These designs have two types of factors: partial factors, which cover every vertex except the ones in the hole; and full factors, which cover every vertex of   K  v + h   .



Specifically, a   ( X , Y )  -IURD  ( v + h , h ;  [  r ′  ,  s ′  ]  ,  [ r , s ]  )   is a uniformly resolvable   ( X , Y )  -decomposition of    K  v + h   \  K h    with   r ′   partial X-factors and   s ′   partial Y-factors that cover every vertex not in the hole, and r X-factors and s Y-factors that cover every vertex of   K  v + h   .



Given a graph G and a positive integer t,   G  ( t )    will denote the graph on   V  ( G )  ×  Z t    with edge-set   {  {  x i  ,  y j  }  :  { x , y }  ∈ E  ( G )  , i , j ∈  Z t  }  , where the subscript notation   a i   is used to denote the pair   ( a , i )  . The graph   G  ( t )    is said to be obtained from G by expanding each vertex t times. When   G =  K n   , the graph   G  ( t )    is the complete equipartite graph   K    t , t , … , t  ︸   n  times     with n parts of size t and will be denoted by   K  n ( t )   ; while   C  n ( t )    will denote the graph   G  ( t )    where G is an n-cycle.



Remark 1.

Note that the graph   G  ( t )    admits t 1-factors corresponding to each 1-factor of G; for instance, starting from the two 1-factors of a   2 m  -cycle, 2t 1-factors of   C  2 m ( t )    can be obtained (t 1-factors for each 1-factor of the   2 m  -cycle).





For any two pairs of non-negative integers   ( r , s )   and   (  r ′  ,  s ′  )  , define    ( r , s )  +  (  r ′  ,  s ′  )  =  ( r +  r ′  , s +  s ′  )   . If X and   X ′   are two sets of pairs of non-negative integers and a is a positive integer, then   X +  X ′    will denote the set   {  ( r , s )  +  (  r ′  ,  s ′  )  :  ( r , s )  ∈ X ,  (  r ′  ,  s ′  )  ∈  X ′  }   and   a ∗ X   will denote the set of all pairs of non-negative integers that can be obtained by adding any a pairs of X together (repetitions of elements of X are allowed).



Construction 1.

(GDD-Construction) Let  G  be a Γ-RGDD of type   g u  , where Γ is a set of graphs of order   n ≥ 2  , and let t be a positive integer. If for any fixed factor   F i  ,   i = 1 , 2 , … , α  , there exists an   ( X , Y )  -URD  (  r ¯  ,  s ¯  )   of   B  ( t )    for each   B ∈  F i    and for each    (  r ¯  ,  s ¯  )  ∈  J i   , then so does an   ( X , Y )  -URGDD  ( r , s )   of type    ( g t )  u   for each    ( r , s )  ∈  J 1  +  J 2  + ⋯ +  J α   .





Proof. 

Expand each vertex t times. For   i = 1 , 2 , … , α  , for each block B of   F i   on   V  ( B )  ×  Z t    place a copy of an   ( X , Y )  -URD  (  r i  ,  s i  )   of   B  ( t )    with    (  r i  ,  s i  )  ∈  J i   . Thus we obtain an   ( X , Y )  -URGDD  ( r , s )   of type    ( g t )  u   with   r =  ∑  i = 1  α   r i    and   s =  ∑  i = 1  α   s i   , and so    ( r , s )  ∈  J 1  +  J 2  + ⋯ +  J α   . □





Construction 2.

(Filling Construction) Suppose there exists a   ( X , Y )  -URGDD  ( r , s )   of type   g u   for each   ( r , s ) ∈ J  . If there exists an   ( X , Y )  -URD  ( g ;  r ′  ,  s ′  )  , for each    (  r ′  ,  s ′  )  ∈  J ′   , then so does:




	(i) 

	
an   ( X , Y )  -IURD  ( u g , g ;  [  r ′  ,  s ′  ]  ,  [ r , s ]  )   for each   (  r ′  ,  s ′  )     ∈  J ′    and   ( r , s ) ∈ J  ;




	(ii) 

	
an   ( X , Y )  -URD  ( u g ;  r ¯  ,  s ¯  )  , for each    (  r ¯  ,  s ¯  )  ∈  J ′  + J  .











Proof. 

Fix any pairs   ( r , s ) ∈ J   and    (  r ′  ,  s ′  )  ∈  J ′   , and start with an   ( X , Y )  -URGDD  ( r , s )   with u groups of size g,   G i  ,   i = 1 , 2 , … , u  . For every   i = 2 , 3 , … , u  , place a copy of an   ( X , Y )  -URD  ( g ;  r ′  ,  s ′  )   on   G i   to obtain an   ( X , Y )  -IURD  ( g u , g ;  [  r ′  ,  s ′  ]  ,  [ r , s ]  )   with   G 1   as the hole. Finally, on   G 1   place a copy of an   ( X , Y )  -URD  ( g ;  r ′  ,  s ′  )   to obtain an   ( X , Y )  -URD  ( g u ;  r ′  + r ,  s ′  + s )  . □





Remark 2.

Note that the “filling” technique allows us to construct an   ( X , Y )  -URD  ( v + h ;  r ′  + r ,  s ′  + s )   whenever an   ( X , Y )  -IURD  ( v + h , h ;  [  r ′  ,  s ′  ]  ,  [ r , s ]  )   and an   ( X , Y )  -URD  ( h ;  r ′  ,  s ′  )   are given.





Construction 3.

(Frame-Construction) Let  F  be a Γ-frame of type   g u  , where Γ is a set of graphs of order   n ≥ 2   and the number of partial factors missing any fixed group is α, and let t, h and v be positive integers such that   v = g t u + h  . If there exists:




	(i) 

	
An   ( X , Y )  -URD  (  r ¯  ,  s ¯  )   of   G  ( t )    for each   G ∈ Γ   and for each   (  r ¯  ,  s ¯  ) ∈ J  ;




	(ii) 

	
An   ( X , Y )  -IURD  ( g t + h , h ;  [  r ′  ,  s ′  ]  ,  [   r ¯  ¯  ,   s ¯  ¯  ]  )   for each   (  r ′  ,  s ′  )     ∈  J ′    and   (   r ¯  ¯  ,   s ¯  ¯  ) ∈ α ∗ J  ;




	(iii) 

	
An   ( X , Y )  -URD  ( h ;  r ′  ,  s ′  )   for each    (  r ′  ,  s ′  )  ∈  J ′   ;









then so does an   ( X , Y )  -URD  ( v ; r , s )   for each    ( r , s )  ∈  J ′  + u α ∗ J   exist.





Proof. 

Let   A i  ,   i = 1 , 2 , … , u  , be the groups of  F  and for   j = 1 , 2 , … , α  , let   F  i j    be the j-th partial factor that misses the group   A i  . Expand each vertex t times and add a set H of t extra vertices. For   j = 1 , 2 , … , α  , let   F  i j    be the j-th partial factor that misses the group   G i  . For each block   B ∈  F  i j    , on   v  ( B )  ×  Z t    place a copy,    D  i j    ( B )   , of an   ( X , Y )  -URD  (  r  i j   ,  s  i j   )   of   B  ( t )    with   (  r  i j   ,  s  i j   ) ∈ J  . For   i = 1 , 2 , … , u  , on   H ∪ (  A i  ×  Z t  )   place a copy   D i   of an   ( X , Y )  -IURD  ( g t + h , h ;  [  r ′  ,  s ′  ]  ,  [  r i  ,  s i  ]  )   with    (  r ′  ,  s ′  )  ∈  J ′    and    (  r i  ,  s i  )  =  ∑  j = 1  α    r  i j   ,  s  i j    ∈ α ∗ J  . For every   i = 1 , 2 , … , u  , combine all of the factors of    D  i j    ( B )   ,   B ∈  F  i j    , along with the full factors of   D i   to obtain   r ¯  X-factors and   s ¯  Y-factors, where    (  r ¯  ,  s ¯  )  =  ∑  i = 1  u   (  r i  ,  s i  )  ∈ u α ∗ J  . Now, fill the hole H with a copy  D  of an   ( X , Y )  -URD  ( h ;  r ′  ,  s ′  )   with    (  r ′  ,  s ′  )  ∈  J ′   . Combine the factors of  D  with the partial factors of   D i   to obtain further   r ′  X-factors and   s ′  Y-factors with    (  r ′  ,  s ′  )  ∈  J ′   . The result is an   ( X , Y )  -URD  ( v ; r , s )   where    ( r , s )  =  (  r ′  +  r ¯  ,  s ′  +  s ¯  )  ∈  J ′  + u α ∗ J  . □





We quote the following known results for a later use.



Lemma 1

(Ref. [19]). For   l ≥ 3   and   u ≥ 2  , there exists a   C l  -RGDDof type   g u   if and only if   g ( u − 1 ) ≡ 0  ( mod  2 )  ,   g u ≡ 0  ( mod  l )  ,   l ≡ 0  ( mod  2 )   if   u = 2  , and   ( g , u , l ) ∉ { ( 2 , 3 , 3 ) , ( 6 , 3 , 3 ) , ( 2 , 6 , 3 ) , ( 6 , 2 , 6 ) }  .





Lemma 2

(Ref. [20]). A   {  C 3  ,  C 4  }  -frame of type   g u   exists if and only if   u ≥ 3   and   g ≡ 0  ( mod  2 )  .






3. Necessary Conditions and Preliminary Lemmas


Let   n ≡ 0  ( mod  2 )  ,   n ≥ 4  . To start with, in this section we will give necessary conditions for the existence of a   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    and then we will prove some basic lemmas that are useful for obtaining our main result. Let   p = n ( n + 1 )  .



Lemma 3.

Let   v ≡ 0  ( mod  p )  . If there exists a   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    then   ( r , s ) ∈ J ( v )  .





Proof. 

By the resolvability:


    r n v  n  +   n s v   n + 1   =   v ( v − 2 )  2  ,  








and hence


  2 ( n + 1 ) r + 2 n s = ( n + 1 ) ( v − 2 ) .  



(1)







Denote by R the set of r   C n  -factors and by S the set of s   K  1 , n   -factors. Since the factors of R are regular of degree 2, every vertex of   K v  -I is incident to r   C n  -factors in R and   ( v − 2 ) − 2 r   edges in S. Assume that any fixed vertex appears in x factors of S with degree n and in y factors of S with degree 1. Since


  x + y = s    a n d    n x + y = v − 2 − 2 r ,  








equality (1) gives us:


  ( n + 1 ) ( v − 2 − n x − y ) + 2 n ( x + y ) = ( n + 1 ) ( v − 2 ) ,  








which implies   y = n x   and   s = ( n + 1 ) x  . Replacing   s = ( n + 1 ) x   in Equation (1) provides   r =   v − 2  2  − n x  , where   x <   v − 2   2 n     (because r is a positive integer) and so   0 ≤ x ≤ ⌊   v − 2   2 n   ⌋  . □





In what follows, we will denote by   (  a 1  ,  a 2  , … ,  a n  )   the n-cycle on   {  a 1  ,  a 2  , … ,  a n  }   with edge-set   {  {  a 1  ,  a 2  }  ,     {  a 2  ,  a 3  }  , … ,  {  a  n − 1   ,  a n  }  ,  {  a n  ,  a 1  }   }   , and by   ( a ;  a 1  ,  a 2  , … ,  a n  )   the graph   K  1 , n    on the vertex-set   { a ,  a 1  ,  a 2  , … ,  a n  }   with edge-set   {  { a ,  a 1  }  ,  {  { a ,  a 2  }  , … ,  { a ,  a n  }  }   . If G is a graph whose vertices belong to   Z v  , then we call orbit of B under   Z v   the set    ( G )  =  { G + i : i ∈  Z v  }   , where   G + i   is the graph with   V ( G + i ) = { a + i : a ∈ V ( G ) }   and   E ( G + i ) = { { a + i , b + i } : { a , b } ∈ V ( G ) }  .



Lemma 4.

A   (  C n  ,  K  1 , n   )  -URD  ( r , s )   of   C  n ( t )    where   t = n + 1   exists for   ( r , s ) = ( n + 1 , 0 ) , ( 1 , n + 1 )  .





Proof. 

Start from the cycle   C = ( 0 , 1 , … , n − 1 )   on   Z n   and expand it   t = n + 1   times. For the case   ( r , s ) = ( 1 , n + 1 )  , take the following factors:



  F = {  (  0 j  ,  1 j  , … ,   ( n − 1 )  j  )  : j = 0 , 1 , … , n }  ,



   F j  =  {  (  i j  ;   ( 1 + i )   j + 1   ,   ( 1 + i )   j + 2   , … ,   ( 1 + i )   j + n   )  : i ∈  Z n  }   ,   j ∈  Z  n + 1    .



For the case   ( r , s ) = ( n + 1 , 0 )  , take the following   C n  -factors:



   F j ′  =  {  (  0 i  ,  1  i + j   ,  2 i  ,  3  i + j   , … ,   ( n − 2 )  i  ,   ( n − 1 )   i + j   )  : i ∈  Z  n + 1   }   ,   j ∈  Z  n + 1    . □





Lemma 5.

A G-factorization of   G  ( n )    exists for   G =  C n  ,  K  1 , n    .





Proof. 

For   G =  C n   , start from the n-cycle   ( 1 , 2 , … , n )   and on    { 1 , 2 , … , n }  ×  Z n    consider the following   C n  -factors:



   F i  =  {  (  1 i  ,  2  i + j   ,  3 i  ,  4  i + j   , … ,  n  i + j   )  : j ∈  Z n  }   ,   i ∈  Z n   .



For   G =  K  1 , n    , start from   ( 0 ; 1 , 2 , … , n )   and on    { 0 , 1 , 2 , … , n }  ×  Z n    consider the following   K  1 , n   -factors:



   F i ′  =  {  (  0 i  ;  1 0  ,  1 1  , … ,  1  n − 1   )  ,  (  0  i + 1   ;  2 0  ,  2 1  , … ,  2  n − 1   )  , … ,  (  0  i − 1   ;  n 0  ,  n 1  , … ,  n  n − 1   )  }   ,   i ∈  Z n   . □





Lemma 6.

There exists a   (  C n  ,  K  1 , n   )  -URD  ( n , n ( n + 1 ) )   of   C  n ( p )   .





Proof. 

Let   F i  ,   i = 1 , 2 , … , n   be the   C n  -factorization of   C  n ( n )    given by Lemma 5. Expand each vertex   t = n + 1   times. For   i = 1 , 2 , … , n  , for each n-cycle C of   F i   on   V  ( C )  ×  Z t    place a copy of a   (  C n  ,  K  1 , n   )  -URD  ( 1 , n + 1 )   of   C  n ( t )    (given by Lemma 4) to get a   (  C n  ,  K  1 , n   )  -URD  ( n , n ( n + 1 ) )   of   C  n ( p )   . □





It is not difficult to generalize Lemma 4.8 of [17] so as to obtain a more general result that holds for any even n.



Lemma 7.

A   (  C n  ,  K  1 , n   )  -URD  ( 0 ,   ( n + 1 )  2  )   of   C  m ( p )    exists for every   m ≥ 3  .





Lemma 8.

There exists a   (  C n  ,  K  1 , n   )  -URD    *   ( 2  ( n + 1 )  ; 0 , n + 1 )   .





Proof. 

The orbit of   B = ( 0 ; 1 , 2 , … , n )   under   Z  2 ( n + 1 )    is the block set of a   K  1 , n   -decomposition of    K  2 ( n + 1 )   − I   and can be partitioned into the   n + 1   factors    F i  =  { B + i +  ( n + 1 )  j , j = 0 , 1 }   , for   i  =  0 , 1 , … , n  , to obtain the required design. □





Lemma 9.

Let   v = p k  ,   k ≥ 1  . A   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    exists for every    ( r , s )  ∈  (   v − 2  2  − n x ,        ( n + 1 )  x ) : x = 0 , 1 , … ,    k n  2   .





Proof. 

Start from a   C n  -RGDD of type   2   n k  2   , which exists by Lemma 1 and has   α =   n k  2  − 1   factors. Applying the GDD-construction with   t = n + 1   gives a   (  C n  ,  K  1 , n   )  -URGDD  (  r ¯  ,  s ¯  )   of type    [ 2  ( n + 1 )  ]    n k  2    for each    (  r ¯  ,  s ¯  )  ∈  (   n k  2  − 1 )  *  {  ( n + 1 , 0 )  ,  ( 1 , n + 1 )  }    (the input designs are given by Lemma 4). Now fill the groups with copies of a   (  C n  ,  K  1 , n   )  -URD    *   ( 2  ( n + 1 )  ; 0 , n + 1 )    from Lemma 8 to get a   (  C n  ,  K  1 , n   )  -URD    *   ( p k ; r , s )    for each    ( r , s )  ∈  {  ( 0 , n + 1 )  }  +  (   n k  2  − 1 )  ∗  {  ( n + 1 , 0 )  ,  ( 1 , n + 1 )  }  =    v − 2  2   − n x ,  ( n + 1 )  x ) : x = 1 , … ,    n k  2    . The missing case (  x = 0  ) corresponds to a   C n  -factorization of    K  p k   − I  , which is known to exist (see [21]). □





Lemma 10.

A   (  C n  ,  K  1 , n   )  -URD    *   ( p ; r , s )    exists for every   ( r , s ) ∈ J ( p )  .





Proof. 

It follows by Lemma 9 for   k = 1  . □





Lemma 11.

A   (  C n  ,  K  1 , n   )  -URD    *   ( 2 p ; r , s )    exists for every   ( r , s ) ∈ J ( 2 p )  .





Proof. 

It follows by Lemma 9 for   k = 2  . □





Lemma 12.

A   (  C n  ,  K  1 , n   )  -URGDD  ( r , s )   of type   p  1 + 2 k   ,   k ≥ 1  , exists for every   ( r , s ) ∈ { k p − n x , ( n + 1 ) x ) :     x = 0 , 1 , … , k n , k ( n + 1 ) }  .





Proof. 

Applying the GDD-construction with   t = n + 1   to a   C n  -RGDD of type   n  1 + 2 k    (which exists by Lemma 1 and has   α = n k   factors) gives a   (  C n  ,  K  1 , n   )  -URGDD  (  r ¯  ,  s ¯  )   of type   p  1 + 2 k    for each    (  r ¯  ,  s ¯  )  ∈ n k *  {  ( n + 1 , 0 )  ,  ( 1 , n + 1 )  }  =  { p k − n x ,  ( n + 1 )  x )   : x = 0 , 1 , … , n k }    (the input designs are given by Lemmas 4). For    ( r , s )  = ( 0 , k   ( n + 1 )  2  )  , apply the GDD-construction with   t = p   to a   C  1 + 2 k   -RGDD of type   1  1 + 2 k   , which exists by Lemma 1 and has   α = k   factors (the input designs are given by Lemma 7). □





Lemma 13.

Let   v = p + 2 p k  ,   k > 0  . A   (  C n  ,  K  1 , n   )  -IURD    *   ( p + 2 p k , p ;  [  r ′  ,  s ′  ]  ,  [ r , s ]  )    exists for each   (  r ′  ,  s ′  )     ∈ J ( p )   and   ( r , s ) ∈ { p k − n x , ( n + 1 ) x ) :     x = 0 , 1 , … , n k , ( n + 1 ) k }  . In addition, if   k ≤  n 2  + 1  , then a   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    exists for every   ( r , s ) ∈ J ( v )  .





Proof. 

It follows by applying the filling construction to the GDD from Lemma 12 and using copies of a   (  C n  ,  K  1 , n   )  -URD    *   ( p ; r , s )    from Lemma 10 as input designs. □





As a consequence of the previous lemma we have the following two lemmas.



Lemma 14.

A   (  C n  ,  K  1 , n   )  -IURD  ( 3 p , p ;  [  r ′  ,  s ′  ]  ,  [ r , s ]  )   exists for each   (  r ′  ,  s ′  )     ∈ J ( p )   and   ( r , s ) ∈ { ( p  −  n x , ( n  +  1 )  x ) , x = 0 , 1 , … , n + 1 }  .





Lemma 15.

A   (  C n  ,  K  1 , n   )  -URD    *   ( 3 p ; r , s )    exists for every   ( r , s ) ∈ J ( 3 p )  .





Lemma 16.

A   (  C n  ,  K  1 , n   )  -URGDD  ( r , s )   of type    ( 2 p )  k  ,   k ≥ 2  , exists for every   ( r , s ) ∈ { ( ( k  −  1 ) p  −  n x , ( n  +  1 ) x ) :     x = 0 , 1 , … , n ( k − 1 ) , ( n + 1 ) ( k − 1 ) }  .





Proof. 

Applying the GDD-construction with   t = n + 1   to a   C n  -RGDD of type    ( 2 n )  k  ,   k ≥ 2  , (which exists by Lemma 1 and has   α = n ( k − 1 )   factors) gives a   (  C n  ,  K  1 , n   )  -URGDD  (  r ¯  ,  s ¯  )   of type    ( 2 p )  k   for each    (  r ¯  ,  s ¯  )  ∈  ( k − 1 )  n *  {  ( n + 1 , 0 )  ,  ( 1 , n + 1 )  }  =  { p  ( k − 1 )  − n x ,  ( n + 1 )  x )  :     x = 0 , 1 , … , n ( k − 1 )   (the input designs are given by Lemmas 4). For    ( r , s )  = ( 0 ,  ( k − 1 )    ( n + 1 )  2  )  , apply the GDD-construction with   t = p   to a   C  2 k   -RGDD of type   2 k  ,   k ≥ 2  , which exists by Lemma 1 and has   α = k − 1   factors (the input designs are given by Lemma 7). □





Lemma 17.

A   (  C n  ,  K  1 , n   )  -URGDD  ( r , s )   of type    ( 2 p )  2   exists for every   ( r , s ) ∈ { ( p − n x , ( n + 1 ) x ) : x  =  0 , 1 , … , n + 1 }  .





Proof. 

It follows by Lemma 16 for   k = 2  . □





Lemma 18.

A   (  C n  ,  K  1 , n   )  -URGDD  ( r , s )   of   C  4 ( p )    exists for every   ( r , s ) ∈ { p − n x , ( n + 1 ) x ) : x  =  0 , 1 , … , n + 1 }  .





Proof. 

It follows by Lemma 17 because the graph   K  2 p , 2 p    is isomorphic to   C  4 ( p )   . □





Lemma 19.

A   (  C n  ,  K  1 , n   )  -URGDD  ( r , s )  ,   n ≠ 6  , of type   p 2   exists for every    ( r , s )  ∈ {  p 2  − n x ,  ( n + 1 )  x ) :     x = 0 , 1 , … ,  n 2   }   .





Proof. 

For   n ≠ 6  , applying the GDD-construction with   t = n + 1   to a   C n  -RGDD of type   n 2   (which exists by Lemma 1 and has   α =  n 2    factors) gives a   (  C n  ,  K  1 , n   )  -URGDD  (  r ¯  ,  s ¯  )   of type   p 2   for each    (  r ¯  ,  s ¯  )  ∈  n 2  *  {  ( n + 1 , 0 )  ,  ( 1 , n + 1 )  }  =   p 2   − n x ,  ( n + 1 )  x ) : x = 0 , 1 , … ,   n 2     (the input designs are given by Lemmas 4). □





Lemma 20.

A   (  C n  ,  K  1 , n   )  -URGDD  ( r , s )   of type    ( 2 p )  3   exists for every   ( r , s ) ∈ { ( 2 p − n x , ( n + 1 ) x ) : x  =  0 , 1 , … , 2 ( n + 1 ) }  .





Proof. 

By Lemma 16 a   (  C n  ,  K  1 , n   )  -URGDD  ( r , s )   of type    ( 2 p )  3   exists for every   ( r , s ) ∈ { ( 2 p  −  n x , ( n  +  1 ) x ) : x = 0 , 1 , … , 2 n , 2 n + 2 }  . We need to solve the case for   x = 2 n + 1  . For   n ≠ 6  , apply the GDD-construction with   t = p   to a   (  C 6  ,  K 2  )  -URGDD  ( 1 , 2 )   of type   2 3   (which can be obtained from a   C 6  -RGDD of type   2 3   by replacing one 6-cycle with two 1-factors) and get a   (  C n  ,  K  1 , n   )  -URGDD  ( r , s )   of type    ( 2 p )  3   with    ( r , s )  = 2  (  n 2  ,  n 2   ( n + 1 )  )  +  ( 0 ,   ( n + 1 )  2  )  =  ( n ,  ( n + 1 )   ( 2 n + 1 )  )    (the input designs are two copies of a   (  C n  ,  K  1 , n   )  -URGDD  (  n 2  ,  n 2   ( n + 1 )  )   of type   p 2   given by Lemma 19, and a copy of a   (  C n  ,  K  1 , n   )  -URD  ( 0 ,   ( n + 1 )  2  )   of   C  6 ( p )    from Lemma 7). For   n = 6  , apply the GDD-construction with   t = p = 42   to a   C 6  -RGDD of type   2 3   and get a   (  C 6  ,  K  1 , 6   )  -URGDD  ( 6 , 91 )   of type   84 3   (the input designs are given by Lemmas 6 and 7). □





By Lemmas 11 and 20, and the filling constructions the following two lemmas follow.



Lemma 21.

A   (  C n  ,  K  1 , n   )  -IURD  ( 6 p , 2 p ;  [  r ′  ,  s ′  ]  ,  [ r , s ]  )   exists for each   (  r ′  ,  s ′  )     ∈ J ( 2 p )   and   ( r , s ) ∈ { ( 2 p  −  n x , ( n + 1 ) x ) , x = 0 , 1 , … , 2 ( n + 1 ) }  .





Lemma 22.

A   (  C n  ,  K  1 , n   )  -URD    *   ( 6 p ; r , s )    exists for each   ( r , s ) ∈ J ( 6 p )  .





Lemma 23.

A   (  C n  ,  K  1 , n   )  -URD    *   ( 10 p ; r , s )    exists for every   ( r , s ) ∈ J ( 10 p )  .





Proof. 

Apply the filling construction to a   (  C n  ,  K  1 , n   )  -URGDD  ( r , s )   of type    ( 2 p )  5   with   ( r , s ) ∈ { ( 4 p  −  n x , ( n + 1 ) x ) : x = 0 , 1 , … , 4 n , 4 ( n + 1 ) }   (given by Lemma 16 for   k = 5  ) by using copies of a   (  C n  ,  K  1 , n   )  -URD    *   ( 2 p ; r , s )    from Lemma 11 as input designs. □






4. The Main Result


Lemma 24.

Let   v ≡ 0  ( mod  4 p )  . Then a   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    exists for every   ( r , s ) ∈ J ( v )  .





Proof. 

Let   v = 4 p k  ,   k ≥ 1  . Applying the GDD-construction with   t = 2 p   to a 2-RGDD of type   1  2 k    (i.e., a 1-factorization of   K  2 k   , which is known to have   α = 2 k − 1   1-factors) gives a   (  C n  ,  K  1 , n   )  -URGDD  (  r ¯  ,  s ¯  )   of type    ( 2 p )   2 k    for each    (  r ¯  ,  s ¯  )  ∈  ( 2 k − 1 )  *  {  ( p − n x ,  ( n + 1 )  x )  : x = 0 , 1 , … , n + 1 }    (the input designs are given by Lemma 17). Now fill the groups with copies of a   (  C n  ,  K  1 , n   )  -URD    *   ( 2 p ;  r ′  ,  s ′  )    with    (  r ′  ,  s ′  )  ∈ J  ( 2 p )    (from Lemma 11) to get a   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    for each   ( r , s ) ∈ J ( p ) + ( 2 k  −  1 ) * { ( p −  n x , ( n  +  1 ) x ) : x = 0 , 1 , … , n  +  1 } = J ( 4 p k )  . □





Lemma 25.

Let   v ≡ 2 p  ( mod  4 p )  . Then a   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    exists for every   ( r , s ) ∈ J ( v )  .





Proof. 

Let   v = 2 p + 4 p k  ,   k ≥ 0  . The cases   v = 2 p , 6 p   and   10 p   follow by Lemmas 11, 22 and 23, respectively. For   k ≥ 3  , applying the frame-construction with   t = 2 p   and   h = 2 p   to a 2-frame of type   2 k   (see [22]) gives a   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    for each   ( r , s ) ∈ J ( 2 p ) + 2 k ∗ { ( p − n x , ( n + 1 ) x ) : x = 0 , 1 , … , n + 1 } = J ( 2 p + 4 p k )   (the input designs are given by Lemmas 11, 17 and 21). □





Lemma 26.

Let   v ≡ p  ( mod  2 p )  . Then a   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    exists for every   ( r , s ) ∈ J ( v )  .





Proof. 

Let   v = p + 2 p k  ,   k ≥ 0  . The cases   v = p , 3 p   and   5 p   follow by Lemmas 10, 13 and 15, respectively. For   l ≥ 3  , apply the frame-construction with   t = p   and   h = p   to a   {  C 3  ,  C 4  }  -frame of type   2 l  , which is known to exist ([20]) and have   α = 1   factor missing in any fixed group, and get a   (  C n  ,  K  1 , n   )  -URD  ( v ; r , s )   for each   ( r , s ) ∈ J ( p ) + k * { ( p − m x , ( m + 1 ) x ) , x = 0 , 1 , … , m + 1 } = J ( p + 2 p k )   (the input designs are given by Lemmas 10, 12, 14 and 18). □





As a consequence of Lemmas 24–26, our main result immediately follows.



Theorem 2.

Let   v ≡ 0  ( mod  n ( n + 1 ) )  . There exists a   (  C n  ,  K  1 , n   )  -URD    *   ( v ; r , s )    if and only if   ( r , s ) ∈ J ( v )  .
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Table 1. The set   J ( v )  .






Table 1. The set   J ( v )  .





	v
	    J ( v )    





	   0  ( mod  2 n ( n + 1 ) )   
	    (   v − 2  2  − n x ,  ( n + 1 )  x )  ,   x = 0 , 1 , … ,   v − 2 n   2 n     



	   n ( n + 1 )  ( mod  2 n ( n + 1 ) )   
	    (   v − 2  2  − n x ,  ( n + 1 )  x )  ,   x = 0 , 1 , … ,   v − n   2 n     
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