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Abstract: With the development of the Internet of Things (IoT) and cloud computing technology,
various cryptographic systems have been proposed to protect increasing personal information. Recently,
Post-Quantum Cryptography (PQC) algorithms have been proposed to counter quantum algorithms
that threaten public key cryptography. To efficiently use PQC in a server environment dealing with large
amounts of data, optimization studies are required. In this paper, we present optimization methods for
FrodoKEM and NewHope, which are the NIST PQC standardization round 2 competition algorithms in
the Graphics Processing Unit (GPU) platform. For each algorithm, we present a part that can perform
parallel processing of major operations with a large computational load using the characteristics of the
GPU. In the case of FrodoKEM, we introduce parallel optimization techniques for matrix generation
operations and matrix arithmetic operations such as addition and multiplication. In the case of NewHope,
we present a parallel processing technique for polynomial-based operations. In the encryption process of
FrodoKEM, the performance improvements have been confirmed up to 5.2, 5.75, and 6.47 times faster
than the CPU implementation in FrodoKEM-640, FrodoKEM-976, and FrodoKEM-1344, respectively. In
the encryption process of NewHope, the performance improvements have been shown up to 3.33 and 4.04
times faster than the CPU implementation in NewHope-512 and NewHope-1024, respectively. The results
of this study can be used in the IoT devices server or cloud computing service server. In addition, the
results of this study can be utilized in image processing technologies such as facial recognition technology.

Keywords: PQC; lattice-based; LWE; RLWE; FrodoKEM; NewHope; GPU; optimization

1. Introduction

The development of information communication technology such as the Internet of things (IoT) is
rapidly increasing the amount of data exchanged in real time. As the number of communication users and
volume of data increases, the risk of leakage of the user’s personal information also increases, so encryption
of transmitted information is required. To encrypt data, various modern cryptographic technologies such
as symmetric-key and public-key encryption algorithms have been developed [1,2].

However, with the advent of quantum computers, it has been suggested that modern cryptographic
algorithms such as Rivest-Shamir-Adleman (RSA), elliptic curve cryptography (ECC), and the digital
signature algorithm that rely on mathematical computational complexity like discrete mathematics are no
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longer secured for quantum algorithms such as the Shor algorithm [3]. Therefore, a new cryptographic
method that is safe for quantum algorithms is needed, and various ideas based on computationally difficult
problems have been proposed. A typical hard-problem-based idea is built on issues belonging to the
non-deterministic polynomial complete class.

The National Institute of Standards and Technology (NIST) has been recruiting quantum-resistant
cryptography that is safe for quantum algorithms through the post-quantum cryptography (PQC)
standardization project since 2012 and is currently conducting round 2 screening [4]. The algorithms
in the second round of the NIST PQC standardization contest are largely divided into multivariable, code,
lattice, and isogeny-based cryptography and hash-based digital signature classifications. Lattice-based
quantum-resistant cryptography is the most frequently proposed base among these round 2 target
algorithms. Lattice-based cryptography has a fast operation speed compared with other types of
quantum-resistant cryptography. However, the rate of increase in user data is getting faster. To keep
up with the speed of user data growth, a method that can quickly encrypt large amounts of data is needed.
From this need, optimization methods in various microprocessors have been proposed. However, it is still
burdensome to actively use quantum-resistant cryptography from the standpoint of a server that needs to
process data for multiple users.

To reduce the burden on a server that encrypts the data of multiple IoT devices or user information
in a cloud computing service, this paper proposes several methods for optimizing some lattice-based
cryptography using a graphics processing unit (GPU). Using the features of the GPU, certain operations or
functions can be processed in parallel. By the parallel processing methods, data can be processed faster
than it is when processed only by an existing central processing unit (CPU).

So far, various studies have been conducted to optimize cryptographic algorithms using GPU. In the
case of block ciphers, GPU optimization studies on lightweight block cipher algorithms have been carried
out recently [5]. In the case of public key cryptography, research has been conducted to optimize the
Elliptic Curve Cryptography (ECC) in GPU [6]. In addition to encryption, various technologies are being
optimized by utilizing the characteristics of the GPU, and studies are being conducted that can speed up
tasks with a long processing time such as deep learning, metaheuristic algorithms, and sorting data using
the GPU [7]. In the case of quantum resistant cryptography, optimization studies are mainly conducted in
an embedded device environment, and optimization studies using GPUs are very few. Therefore, in this
paper, we propose an optimization for PQC in a GPU environment.

The target algorithms presented in this paper are FrodoKEM [8], a learning with an error (LWE)-based
algorithm, and NewHope [9], a ring-LWE (RLWE)-based algorithm, for lattice-based cryptography.
FrodoKEM has major operations such as matrix generation functions and matrix multiplication and
NewHope has number theoretic transform (NTT)-based multiplication [10] and big number operations
taking up much of the algorithm’s operation time. In this paper, we propose methods to speed up the main
operation of these algorithms using a GPU. In addition, overall performance optimizations are undertaken
using various optimization techniques within the GPU.

By using the GPU to speed up the encryption process, it is possible to reduce the encryption burden
on the IoT server or cloud computing server. In addition, it can be used in technologies that need to
deal with imaging data in real time, such as face recognition technology and eye tracking technology, or
technologies that need to compute large amounts of data such as deep learning [11,12].

The contributions of our paper can be summarized as follows.

1. Optimizing the Latest Lattice-based PQCs
We optimized performance for the round 2 candidates of the PQC standardization competition hosted
by NIST. Among the round 2 competition algorithms, we selected the target algorithm from the
lattice-based algorithms, which are the basis of many algorithms. In this paper, optimization methods
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for FrodoKEM based on the LWE problem and NewHope based on the RLWE problem are proposed.
By measuring the individual computational load for the two target algorithms and optimizing the
computationally intensive computation with the GPU, a high level of performance improvement
was achieved. In addition, we propose parallel optimization methods using the features of the GPU.
However, in this case, parallel operation may be performed not just by executing the same function
in multiple threads in parallel but also including cases in which multiple threads need to perform
different operations. In this paper, we present possible problems or considerations in a situation in
which each thread needs to perform a different role when performing matrix multiplication or the
sampling process for error values.

2. Suggesting Optimization Methods for a GPU Called from a CPU
We did not optimize the entire algorithm and suggest optimization methods for each operation by
grasping the load for each operation inside the algorithm. Methods of optimizing only the internal
time-loaded computation while using the CPU are proposed, and methods are proposed to improve
the memory copy time that inevitably occurs between the CPU and the GPU through Nvidia’s CUDA
stream and the thread indexing method. In conclusion, the method of optimization using the CPU
and the GPU at the same time can be actively run in an environment in which a large amount of data
must be encrypted in real time, such as an IoT server.

3. Optimizing GPU Computation Using Shared Resources
Threads that perform operations in parallel on the GPU share memory areas block by block and
are called shared memory. Shared memory is faster than global memory, so it is easy to store
and use the data and temporary results commonly used by each thread. Therefore, not only basic
parallel optimization methods using the GPU but also shared memory were used to provide better
performance results. In addition, a warp optimization method is proposed, because the threads are
executed in batches according to the bundle of threads, called the warp, rather than being performed
as independent operations. In addition, the problem of bank conflict that may occur while using
shared memory has been resolved, and the coalesced memory access method is implemented.

4.  Presenting performance measurement results on various GPU platforms
GPUs are divided into various architectures by generation, and each architecture has different
structural and performance characteristics. In this paper, we present the performance measurement
results for the GPUs of Pascal and Turing, two architectures of Nvidia. The Pascal architecture GTX
1070 and Turing architecture RTX 2070 were used in the experiment, and the results of optimization
and performance analysis in each environment are presented.

The remainder of this paper is as follows. Section 2 presents optimization trends for target
quantum-resistant cryptography. In Section 3, we explain the basics of the target algorithms and the
optimization environment. Section 4 introduces the various optimization methodologies presented in this
paper. Section 5 presents the performance improvement for each optimization method, and the paper
concludes in Section 6.

2. Previous Implementation of Target PQCs

The LWE problem was introduced by [13]. It is a generalization of the parity learning problems.
In [13,14], the LWE problem was used to create public-key cryptography. In addition, the LWE-based
public-key encryption scheme was developed more efficiently by [15] using a public matrix A € z7*"
instead of a rectangular one.

FrodoKEM modifies pseudorandom generation of the public matrix A from a small seed to make
more balanced key and ciphertext sizes [15]. The Frodo algorithm first appeared at the 2016 ACM CCS
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conference [8]. In [16], an optimization method through the GPU for general LWE-based algorithms
was proposed.

Lattice-based algorithms have the advantage of being faster than other algorithms, but they are still
slower than existing public-key cryptography. However, few optimization methods for FrodoKEM, which
is an LWE-based algorithm, have been proposed. In [17], FrodoKEM was optimized by applying ECC and
gray codes when encoding the bits converted from the encrypted symbol.

In [18], an RLWE-based hard problem was proposed. In [19], an RLWE-based key exchange algorithm
was proposed from a hardness assumption to create public-key cryptography. In [9], NewHope was
suggested and modeled as a secure public-key encryption scheme in CPA resistance. In addition, research
on efficient RLWE-based algorithms has been continuously conducted [20]. In [21], NewHope cryptography
was optimized using a GPU on facial security.

3. Background

3.1. Overview of Lattice-Based Cryptography

Lattice-based cryptography refers to an algorithm that bases the basic components of cryptography
on a computational lattice problem. Unlike the widely used and well-known public-key schemes such
as RSA or ECC, which can theoretically be easily attacked by quantum computers, some lattice-based
structures appear to be resistant to attack by classical and quantum computers. A lattice-based structure is
considered safe under the assumption that it cannot effectively solve certain well-studied computational
lattice problems.

The mathematical principle of the lattice-based cryptography is as follows. The LWE problem, with n
unknowns, m > n samples, modulo g and with error distribution X is as follows: for a random secret s

uniformly chosen in Z[, and given m samples either all of the form (a, b = <s,a>+e mod q) where ¢ & X,

or from the uniform distribution (a, b) & U(Z" x Zg), decide if the samples come from the former or the
latter case [8]. Let R denote the ring Z[X]/(X" + 1) for n a power of 2, and R, the residue ring R/qR. The
RLWE problem, with m unknowns, m > 1 samples, modulo g and with error distribution X is as follows:

for a uniform random secret s <- U(R;), and given m samples either all of the form (a, b =a - s + e mod q)
where the coefficients of e are independently sampled following the distribution X, or from the uniform,

distribution (a, b & U(R; % Ry), decide if the samples come from the former or the latter case [9].

The principle of lattice-based cryptography is as follows. When points are regularly arranged in a
crisscross pattern in n-dimensional space R, this set of arranged points is called a lattice. The pattern of
this lattice is determined by a specific basic vector. As the dimension increases, the texture of the lattice
by the vector becomes more complicated. Grid-based cryptography is primarily based on the difficulties
of the shortest vector problem (SVP) and the closest vector problem (CVP). SVP uses the principle that it
is difficult to find the shortest vector in polynomial time using the basic vectors on the coordinates, and
CVP uses the principle that it is difficult to find the nearest vector within the polynomial time using the
basic vectors on the coordinates. It is easy to find the closest lattice point to an arbitrary position in a
low-dimensional space, such as two dimensions, but it is difficult to efficiently find these lattice points on
a quantum computer with hundreds of dimensions.

Lattice-based ciphers have the advantage of a faster operation speed compared with other PQC
candidates but have the disadvantage that it is difficult to set parameters to satisfy security strength.
Lattice-based cryptography began in 1996, when it was implemented in a public-key cryptosystem [22].
In 2005, public-key cryptography based on the LWE problem was proposed [13], and safety was proved
under worst-case hardness assumptions. As research to improve lattice-based cryptography continued,
RLWE-based cryptography was proposed, and in 2009, homogeneous cryptography was introduced.
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Table 1 lists the lattice-based ciphers to be judged for round 2 of the NIST PQC
standardization competition.

Table 1. List of lattice-based encryption and key encapsulation mechanisms (KEMs) [4].

Encryption/KEMs  Type (Lattice-Based)

Crystals-Kyber MLWE
KINDI MLWE
Saber MLWR
FrodoKEM LWE
Lotus LWE
Lizard LWE/RLWE
Emblem/R.emblem LWE/RLWE
KCL LWE/RLWE/LWR
Round 2 LWR/RLWR
Hila5 RLWE
Ding’s key exchange RLWE
LAC RLWE
Lima RLWE
NewHope RLWE
Three Bears IMLWE
Mersenne-756839 ILWE
Titanium MP-LWE
Ramstake LWE like
Odd Manhattan Generic
NTRU Encrypt NTRU
NTRU-HRSS-KEM NTRU
NTRUprime NTRU

3.2. Target NIST Round 2 LWE-Based PQC

LWE-based problems are based on hard problems using errors. From a linear algebra point of view,
it is easy to find a matrix S that satisfies B = AS given two matrices A and B. This is because the inverse
matrix can be used to simply obtain S = A~1B. However, if we want to find an S that satisfies B = AS + E
by adding a small error to the AS, those who know the error value can still calculate the S value easily. In
contrast, those who do not know the error should count the number of all cases of the added error. In this
case, it becomes difficult to find the S value. As the dimension of the matrix grows larger, the number of
cases to be counted increases exponentially, even for small errors. This problem is known to be difficult to
solve even with a quantum computer.

RLWE is an ideal lattice-based cryptographic technique made more efficient by reducing the key
size or speeding up the cryptographic operation compared with the general lattice-based cryptographic
technique. By applying the LWE technique on the ring, two integers A and B on the ring are searched for
S according to the added error value. In RLWE, Toom—Cook, Karatsuba, or NTT-based multiplication is
performed to efficiently calculate the multiplication of integers.

The LWE-based PQC candidates targeted in this paper are FrodoKEM and NewHope. FrodoKEM and
NewHope are both round 2 target algorithms of the NIST PQC standardization competition, and many
studies are actively being conducted, so this paper is expected to help other studies if these algorithms are
optimized. In this section, we look at the operation structure of target algorithms.
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3.2.1. FrodoKEM

The core of FrodoKEM is FrodoPKE, a public key encryption algorithm presented at the
2016 Association for Computing Machinery (ACM) Computer and Communications Security (CCS)
conference [8]. FrodoKEM can be largely divided into three types: FrodoKEM-640, FrodoKEM-976,
and FrodoKEM-1344. The overall process consists of key generation, encapsulation, and decapsulation.
In this paper, we propose some methods to optimize the encryption process in FrodoPKE. Variable
information according to the type of FrodoKEM is shown in Table 2. In Table 2, the unit of a key size is a
byte. The notation of FrodoPKE is described in Table 3.

Table 2. Variable Information of FrodoKEM.

Type FrodoKEM-640 FrodoKEM-976 FrodoKEM-1344
Dimension n 640 976 1344
Modulus q 215 216 216
Public key size 9616 15,632 21,520
Private key size 19,888 31,296 43,088
Hash function SHAKE-128 SHAKE-256 SHAKE-256

Table 3. Notation of FrodoPKE.

Symbol Description

g=2P Powers of 2 with exponent D < 16

n,f,m n = 0 mod 8 integer matrix dimension
B<D Number of bits encoded in each matrix component

I=Bxmxfn Length of the bitstream encoded by the 17-by-7 matrix

len Bit length of the seed
seed, used to generate a pseudorandom matrix.
len Bit length of the seed used to generate
seedse a pseudo-random matrix for error sampling
Tx Cumulative distribution table for sampling

The encryption processes of FrodoPKE are described in Algorithm 1 and Figure 1. These algorithms
and figures show the IND-CPA-secure public key encryption scheme process in FrodoPKE.
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Algorithm 1 FrodoPKE Encryption [8].

Require: Message j € M and public key pk = (seed, B) € {0,1}/“"seeda x Zy<"
Ensure: Ciphertextc = (Cy, C2) € Z7" x Z7*"
1: A < Frodo.Gen(seed4)
seedgg s U({O, 1}16715“‘155)
(O, 1), ., p2antTm=1)y . SHAKE(0x96||seedsg, 2imn + i - leny)
S’ Frodo.SampleMatrix((r(O), r ,r(m"_l)), m,n, Ty)
E’ < Frodo.SampleMatrix( (¢, p(mn+1) - p2mn=1)) 47 3 T.)
E" Frodo.SampleMatrix((r(zm”), p2mntl) o pQmntmi=1)) gm g T
B =S’A+E andV =SB+ E"
return ciphertext ¢ < (Cy, C3) = (B’, V+Frodo.Encode())

Public Key Message > M
Seed, || B L
ENCODE
Random !
) ] L ™ |
Generate SHAKE v l
EII

—{ V=SB+E" |» C=V+M

| B=SA+E |

l

Sample S'

T T T

Ciphertext

Figure 1. FrodoPKE encryption process.

The functions used consist of a randombytes function that generates random values, generates a
matrix function that generates matrix A, the SHA-3-based extendable-output function SHAKE [23], matrix
multiplication and addition or subtraction operations, a Gaussian sampling function (Frodo.SampleMatrix),
and an encoding and decoding function.

Looking at the FrodoKEM reference code provided by NIST, the randombytes function for generating
random values uses the BCryptGenRandom function, an application programming interface (API)
provided by Microsoft. When increasing or decreasing the data by a desired length, the SHA-3
extendable-output functions SHAKE-128 or SH AKE-256 are used depending on the key length. The sample
function is responsible for generating errors on the LWE basis. In the case of FrodoKEM, sampling is
performed using CDF_Table and the cumulative distribution function. The matrix A used for matrix
operation B = AS + E is created by selecting either the advanced encryption standard (AES) or SHAKE.
The encode function replaces data with matrix data during encapsulation. Substituted matrix data are
transformed into existing data through a decode function in a decapsulation process. In addition, there are
various addition, subtraction, and multiplication operations on the matrix.
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After the first key generation process of FrodoPKE, the public-key and the private key are generated.
The matrix operation is also used in the encryption process. In this process, the SHAKE function for
hashing data is called continuously. The encryption process includes the processes of encoding data and
generating a ciphertext.

3.2.2. NewHope

NewHope is an RLWE-based algorithm. Whereas FrodoKEM is a matrix-based operation, NewHope
is mainly an integer operation on a ring. It can be largely divided into two types: NewHope-512 and
NewHope-1024. The overall process consists of key generation, encryption, and decryption. Variable
information according to the type of NewHope is shown in Table 4. In Table 4, the unit of a key size is a
byte. The notation of FrodoPKE is described in Table 5. Since this paper aims to optimize the performance
of encryption, NewHope, like FrodoKEM, is described based on the NewHope-CPA-PKE, which includes
the encryption process.

Table 4. Variable information of NewHope.

Type (CPA-KEM) NewHope-512 NewHope-1024

dimension n 512 1024
modulus g 12,289 12,289
NTT parameter 7y 10,968 7
Public key size 928 1824
Private key size 896 1792

Table 5. Notation of NewHope.

Symbol Description
n Dimension of polynomial rings
U 256-bit message represented as an array of 32 bytes
coin True random generated value that used for sampling function
b,a,8¢,¢,t 0,00 Polynomial in R; = Z,[X]/(X" 4+ 1)
publicseed Seed value that generates polynomial 4
PolyBitRev Transform function to process NTT-based multiplication
Compress Function that generates array h by switching between modulus g and modulus 8

The encryption processes of NewHope are described in Algorithm 2 and Figure 2. The main operation
of NewHope is a ring-based polynomial operation. Among them, NTT-based multiplication is composed
of NewHope’s main operations.

Looking at the NewHope reference code provided by NIST, as in FrodoKEM, random values
are generated through the randombytes function. In NewHope, random values are generated using
CTR_DRBG(AES — 256), which is a deterministic random bits generator using the AES-256 block
cipher algorithm. The extendable-output function uses SHA-3's SHAKE-128 and SHAKE-256. The seeds
generated through the randombytes function and the SHAKE function are used to generate 4, s, and e to
calculate b = 4 o § + ¢, where NTT conversion is performed to quickly calculate 4 o 3.
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Algorithm 2 NewHope Encryption [9].

Require: pk € {0,...,255}7"/4+32 4 € {0,...,255}32, coin € {0,...,255}%
Ensure: Ciphertext ¢
1: (b, publicseed) <— DecodePk(pk)
a < GenA (publicseed)
s’ < PolyBitRev(Sample(coin, 0))
e’ < PolyBitRev(Sample(coin, 1))

'’ « Sample(coin, 2)

} <« NTT(s')

i a1+ NTT()

v < Encode(y)

v « NTT Y (b-1)+e’ +0

h = Compress(v’)

_ =
=

. return c = EncodeC(i1, h)

Public Key Sample Message
' : '} ! !
DECODE | 5 || s | | e | | ENcobEe

|

I !
b ” publicseed | NTT NTT v
I
Generate £

> bt
V'=
Uy ] INTT(E\Jf)+e"+v

Ciphertext +~— Encode [+~ Compress <—,

Figure 2. NewHope encryption process.

NTT-based multiplication [10] is an algorithm that can efficiently multiply two large numbers, such as
Toom—Cook or Karatsuba multiplication. NTT is based on fast Fourier transform. NTT-based multiplication
consists of obtaining ¢ = NTT~!(NTT(a) o NTT(b)) for a,b,c € R, and it is implemented by defining
ideal lattice R; = Zg[X]/ (X" 4 1) for efficient NTT-based multiplication. In this way, the transformed
coefficient-wise multiplication of two numbers through NTT conversion is the same as the multiplication
result. However, it is necessary to process the reduction after the multiplication. NewHope uses the
Montgomery reduction algorithm [24] for fast reduction.

The values generated in the key generation process are encoded and made into a private key and a
public-key. In the encryption process, these values are first decoded to perform encryption.
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3.3. Structure of Nvidia GPU Platform

In this paper, we propose several methods to optimize FrodoKEM and NewHope using a GPU.
Therefore, the structure and characteristics of the GPU are explained to describe the principles of the
proposed optimization methods.

A GPU is a kind of electronic circuit and is designed to accelerate the generation of images in the
frame buffer to process and change memory quickly and output it to a screen. Modern GPUs handle
computer graphics and image processing effectively. The reason for this performance is the structure of the
GPU. If the CPU is performing calculations through a small number of high-performance cores, the GPU
performs calculations using a number of generic cores. GPUs specialize in processing specific operations
in parallel using multiple cores. The advantage of this GPU feature is that it can be performed quickly via
parallel processing on the CPU through the GPU.

The GPU was originally developed to perform graphics tasks, but general-purpose computing on
a GPU technique was later proposed that uses the GPU to compute applications for which the CPU
does. This allows software developers to use the GPU for computations such as encryption rather than
graphics tasks. CUDA is a parallel computing platform and API model developed by Nvidia [25]. As with
programming written in C language using CUDA, GPU operations can be easily coded using CUDA
libraries. Since CUDA was released in 2007, new CUDA versions have been developed as GPU technology
evolved. With the development of a new GPU architecture and CUDA version, it is possible to use various
memory controls and computations. However, previously developed GPUs do not support the latest
CUDA version.

When programming a GPU using CUDA, the GPU receives commands from the CPU through a
function called a kernel. To use the data used by the CPU in the GPU, the CPU data must be copied to the
GPU before operation of the kernel. For example, when the block encryption algorithm is performed in
parallel through the GPU, plaintext data existing in the CPU must be copied to the GPU in advance to
encrypt the plaintext data in the GPU. In addition, if the encrypted data are to be used again in the CPU,
an additional process of copying the ciphertext from the GPU to the CPU is required. The copying process
between the CPU and the GPU is transmitted through peripheral component interconnect express (PCle),
but the PCle transfer speed is slow compared with the individual speeds of the CPU and the GPU. Many
studies have been conducted to reduce the data copying time between the CPU and the GPU through
various optimization methods, because such a copying process causes a lot of load over time.

GPUs have some differences in architecture. The most recent Nvidia GPU architecture is the Turing
architecture, which has 4352 CUDA cores for the RTX 2080 Ti, the flagship graphics card model of the
Turing architecture. Table 6 shows the features of each Nvidia GPU architecture.

The GPU is composed of several streaming multiprocessors (SMs), and each SM is composed of
several cores and memory. If the GPU operation structure is largely divided, it is composed of several
grids, with several blocks to be drawn. These blocks are made of several threads. Because many of these
threads perform individual operations in parallel, they have a fast operation speed. Each thread is used
separately by dividing the register memory space, and threads in the block can be accessed jointly through
shared memory. Global memory is a common memory that all threads can access. Global memory that
uses the dynamic random-access memory space has a large memory size but has the disadvantage of being
slow. Registers have fast access but small capacity. Furthermore, it consists of many memory types, such
as GPU memory, constant memory, texture memory, and local memory. Figure 3 shows the Nvidia GPU
memory structure.
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Table 6. Features of the latest Nvidia graphics processing units (GPU) architectures.

Architecture Maxwell Pascal Turing
Flagship GPU GTX980Ti GTX1080Ti RTX?2080Ti
SM count 24 28 68
Core count 2816 3584 4352
Memory Size 6 GB 11 GB 11 GB
Base clock 1000 MHz 1480 MHz 1350 MHz
CUDA compute capability 5.2 6.1 7.5

GPU

Block 0 Block 1
| Shared Memory | | Shared Memory |
A A A A
Registers Registers | Registers | | Registers |
A A A ]k
v v Y Y A\ v A A4
| Threado || Thread 1 | | Threado || Thread 1 |
AAA I AAA A A AAA ]u AAA
A A 4
Local Local Local Local CPU
Memory Memory Memory Memory

Global Memory « >

Constant Memory « >

h 4

Texture Memory .

Figure 3. Nvidia GPU memory structure.

4. Proposed Optimization on Lattice-Based PQC in a GPU Environment

This section presents optimization methods for the main operations of the target algorithms
FrodoKEM and NewHope. Using the characteristics of the GPU, we explain the parts to improve the
performance by heavy operation in parallel and introduce the implementation method.

4.1. Common Optimization Method Using the GPU

Even if the same operation is performed on a large amount of data, operating in series versus in
parallel causes a significant speed difference. In particular, FrodoKEM and NewHope, which have large
data sizes, need to perform the same calculation for a certain size of data over thousands of bytes. Therefore,
if it is possible to perform a fast operation for each algorithm through parallel processing, the overall speed
of the algorithm can be improved.
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Tables 7 and 8 measure the computational load specificity for the target algorithms. The unit of time
is microseconds, and the percentage value to the right of the time represents the percentage of the total
computation time.

Table 7. Percentage of computational load in FrodoPKE encryption.

FrodoKEM-640 FrodoKEM-976 FrodoKEM-1344

Randombytes 20 0.12% 13 0.04% 12 0.02%
Generates A matrix 14,960 9259% 33,794 92.87% 64,512 93.20%
Matrix Multiplication =~ 1040  6.44% 2318  6.37% 4368 6.31%
Sampling 42 0.26% 78 0.21% 72 0.10%
SHAKE 96 0.59% 184 0.51% 252 0.36%

Table 8. Percentage of computational load in NewHope encryption.

NewHope-512 NewHope-1024

Randombytes 101 1.77% 151 1.16%
Generates A 583  10.24% 1210 9.28%
NTT Multiplication 1728 30.36% 3713  28.49%
Sampling 2837 49.85% 6951 53.33%
encoding 232 4.08% 540 4.14%
SHAKE 210 3.69% 468 3.59%

It can be seen that FrodoKEM's time load is mostly used for the AES operation to generate matrix A.
In addition, it was confirmed that the time consumption was large in matrix multiplication. Therefore,
FrodoKEM focuses on optimizing the matrix A generation process. If the optimization for AES used for
matrix A generation is performed, the overall operation speed may be increased.

In NewHope, the sampling and NTT-based multiplication processes took up most of the computation
time. Therefore, in the processes of sampling and NTT-based multiplication, performance improvement
can be achieved by optimizing the part that can process each component of the polynomial in parallel. The
proposed GPU parallel optimization method was implemented to operate only the main operations with
the GPU while processing the algorithm around the CPU.

4.2. Optimization Methods of FrodoKEM on GPU Platform

Because FrodoKEM operates on data with thousands to tens of thousands of bytes, the time load
for each operation is high. The main operations of FrodoKEM are randombytes, SHAKE, AES, matrix
multiplication, and sampling. Among them, AES operation for generating matrix A is the most time
intensive. AES occupies the most FrodoKEM operating time because the size of the matrix to be generated
reaches several thousand bytes, compared with generating a 16-byte ciphertext once encrypted. Therefore,
if the AES operation is performed in parallel using a GPU, significant performance can be improved.

AES is used to generate pseudorandom matrix A from seed seed, during the key generation,
encapsulation, and decapsulation processes of FrodoKEM.

In FrodoKEM's A matrix generation process, the number of AES calls to create matrix A is called 7% /8
times according to dimension parameter n, which means 51,200, 119,072, 225,792 times in FrodoKEM-640,
FrodoKEM-976, and FrodoKEM-1344, respectively. However, on GPU, n? /8 threads can create matrix A
by calling AES each once.

In the parallel matrix generation process, the 16-byte data input to the AES contains only 2 bytes
of row information and 2 bytes of column information; the remaining 12 bytes contain all 0-padded



Mathematics 2020, 8, 1781 13 of 21

data. Therefore, if each thread is responsible for a matrix component corresponding to a unique row
and column component using a thread identifier value, which is the unique number of each thread, the
process of creating a matrix A with AES can be parallelized. The GPU parallelization process using matrix
components is shown in Figure 4.

By dividing the AES for creating an n x n matrix by 16 bytes, each thread performs AES once. Because
the value that goes into the input of AES can be generated independently through the unique index of the
thread and block, there is no need to copy inputs from the CPU to the GPU. Because the memory copy
time between the CPU and the GPU is long, it is efficient to eliminate the memory copy time using the
thread and block index. However, the result of AES performed on the GPU must be copied from the GPU
to the CPU. The CUDA stream can be used to reduce the copy time as much as possible. Conventionally,
when the process of copying the memory from the CPU to the GPU ends, the GPU kernel operates, and
when the kernel ends, the GPU memory is copied to the CPU. However, the CPU is idle while the GPU is
performing the operation. When using the CUDA stream, each stream performs memory copy and kernel
operations in parallel. Because the CPU copies the memory of the second stream immediately after the
memory copy of the first stream is finished, the idle state of the CPU generated while the GPU is operating
can be reduced.

Dimension n

A
r A\

Thread (1)= AES(O,Q) Thread (2)= AES(O,S) Thread (n/16)= AES(O,(~n—16))

St : Block (1)
: =AES(0,(n-16))

: Block (2)
i = AES(1,(n-16))

: Block (n-1)
: =AES((n-1),(n-16))

Matrix A = AES(Block ID, Thread ID) = AES128( Block ID | | Thread ID || 0 || O)

Figure 4. Matrix A parallel generation process.

Because the key value is seed 4, the AES of all matrices has the same round key; therefore, memory
can be efficiently used if the pregenerated key is stored in the memory shared by threads. However, the
global memory of the GPU has a disadvantage in that it is slow. Therefore, the key shared by the threads
in the block is used to store the round key, and then the thread can access and use the shared memory.
Basically, the higher the dimension of FrodoKEM, the slower it is proportionally, because the CPU has to
call more AES. However, because the parallel optimization method on the GPU performs one AES per
thread in parallel, the efficiency of the optimization increases: the GPU only needs to call the AES once,
using as many threads as the AES needs to be called.

Another major time-consuming operation in FrodoKEM is the matrix multiplication operation. The
matrix size is proportional to the dimension, so it takes a significant amount of time to multiply the n x n
matrix A by the n x 7i matrix S. On the GPU, this matrix multiplication process can be optimized using
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threads. In FrodoKEM, 7 is always fixed at 8. In this case, to obtain the 8 x 8 block of the result matrix
B, as much as 8 x N data in matrix A and the entire S matrix are needed. That is, because matrix S is
continuously used in all parts, if matrix S is stored in shared memory, a faster speed can be obtained than
when it is accessed from global memory. By dividing n x 7 matrix A by the number of blocks and threads,
and multiplying and accumulating the results by referring to their matrix positions, each thread performs
one multiplication process and one addition process. The parallel matrix product processes can be seen in
Figure 5.

—_——

4 N Matrix S
Shared

memory

—_———— e ——— —

Matrix A

Result
Matrix B

mediate Result

+ 1| Results

\
|
|
|
: Final
|
|
|
|
)

Figure 5. Parallel matrix product process.

To perform matrix multiplication for an 7 X n matrix and an # x 8 matrix in the process of FrodoKEM's
matrix multiplication, component multiplication and addition by n2/8 times are required. In addition,
8n times of component additions are required when performing matrix addition on the result of matrix
multiplication. In GPU, this process is performed by a bundle of 64 threads independently performing a
matrix multiplication operation every 8 rows of an n x n matrix. Accordingly, matrix multiplication can be
processed by performing 7/8 times of component multiplication and addition operations for each thread.

However, this implementation creates a problem in that each thread must access the memory where
the result is stored at every calculation. This creates serialization between threads, which slows the
implementation considerably. Therefore, access to the same result memory can be reduced by creating 8
x 8 shared memory to temporarily store the result and adding all data in the shared memory after the
calculation is complete.

4.3. Optimization Methods of NewHope on the GPU Platform

The main operation of NewHope, NTT, is a multiplication method that can reduce the time complexity
for performing n x n multiplication from O(n?) to O(nlogn). The NTT-converted data are calculated in
a manner similar to dot product between coefficients, where the multiplication, addition, and reduction
processes between coefficients can be performed in parallel. Figures 6 and 7 show the polynomial operation
that can be performed in parallel.
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Multiplication in polynomials with NTT transformation is calculated through dot multiplication. In
this process, a dot product operation is performed on an array of 512 and 1024 polynomial coefficients for
each of NewHope-512 and NewHope-1024 according to dimension 7. In GPU, each thread can compute an
operation on each array. By using n threads, it is possible to speed up the operation with one calculation.

Public key Message > v
Encoder
v
1 1
Public key 6 R P?rallgl v INTT(v")
Decoder > Pointwise » INTT
Multiplication
A \ 4 v
NTr(S') Parallel
Parallel Polynomial
Polynomial Addition
Sampler
NTT v
g Parallel .
nrre) | T potmomian e SRR
Addition
Random A y f
Generator 3 Parallel N =
p| Pointwise u Ciphertext ¢
SHAKE Multiplication i

Processing Order

Figure 6. NewHope encryption with partial parallelism.

CPU GPU
Polynomial Polynomial
Operation(Serial) Operation(Parallel)
— Thread (0) — —

] Thread (1) — >
[ Thread (2) — —
r ] Thread (3) — —>
L Thread (n-4) — e

] Thread (n-3) — >
[ Thread (n-2) — >
l— ] Thread (n-1) — >

Figure 7. Parallel polynomial operation process.
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Inside the sampling process at NewHope, the extractor seed is set as the input of the SHAKE function.
The extractor seed consists of the input seed, nonce value, and i value padded, and i is sequentially
increased from 0 to 7 or 15 depending on the NewHope parameter. Because the input seed and nonce
values are the same, the value of extract seed varies depending on the value of i, and these values are set as
input values of the SHAKE function. Therefore, the SHAKE function that does not need to be calculated
by all threads is calculated by the warp, which is a bundle of threads, and shared in shared memory. For
data stored in shared memory, each thread takes a polynomial coefficient and can sample using the result
of SHAKE stored by the warp.

In addition, each thread of the GPU performs functions to calculate each term of the polynomial in
parallel, reducing computation time. Polynomial point-wise multiplication, addition, and Montgomery
subtraction can be implemented to ensure that all threads perform the same instruction. However, in the
sampling function, in which threads must perform different operations, threads in the same warp are
implemented to perform the same operation and thus prevent the thread serialization problem because of
control divergence. Control divergence refers to a situation in which different threads wait until the end
of one conditional statement, when threads execute different operations because of a branch such as an
if statement in a warp. Therefore, in the case of the sampling SHAKE function, 32 threads in one warp
perform calculations only with different parameter values and store the result value in shared memory,
and then the entire thread in the block performs parallel sampling using the value to be implemented.

In these optimization methods, memory storage and access coalesce to allow multiple memory types
to have effective memory access. When multiple threads access memory, the necessary threads access the
memory by referring to an area, not by thread. However, if the data are not coalesced and stored, and if
the thread does not have access to the desired data in one instance of accessing the memory area, it causes
a time decrease because additional memory area access is required.

5. Experimental Results

The platform environment in which the experiment was measured is shown in Table 9. Performance
was measured, including memory time between the CPU and the GPU. The experimental results show
performance improvement when the GPU optimization method is applied based on the result of running
the reference source code of the submission in the experimental environment in round 2 of the existing
NIST PQC standardization competition.

Table 9. GPU optimization implementation test environment.

CPU Intel Core i7-9700K Intel Core i7-9700K
GPU GTX 1070 RTX 2070
GPU Architecture Pascal Turing
CUDA Core count 1920 2340
GPU Memory Size GDDR5 8 GB GDDR6 8 GB
GPU Base clock 1506 MHz 1410 MHz
oS Windows 10 Windows 10
CUDA Version 10.2 10.2

The experimental results were presented in units of microseconds and were based on the average
of the times measured while repeating the entire encryption process 1000 times. The time for the major
operations was measured from before data is copied from the CPU to the GPU until the data is copied
again after the GPU operation is completed. Each experiment result was measured by replacing only two
GPUs on the same CPU and OS. During the experimental measurement, we used the test vector to verify
the optimization implementation result. If there is interference from the outside such as jamming or an
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error occurs inside due to an abnormality in the device, it is implemented so that the presence or absence
of an error can be determined using an error correction code.

5.1. Performance Improvement on FrodoKEM

This section presents the optimization results of matrix A generation and matrix multiplication, which
are the main operations of FrodoKEM, and the optimization results of the entire FrodoPKE encryption
process according to GPU optimization implementation.

Tables 10 and 11 show the results of optimizing the main operation of FrodoKEM using the GPU.
Each figure shown in the table represents microseconds, and the percentage represents a performance
improvement in the GPU compared with the CPU.

Table 10. Operation time (us) and performance improvements by optimized matrix A generation and
matrix multiplication in FrodoKEM (GTX 1070).

Matrix A Generation Matrix Multiplication
CPU GPU Improvement CPU GPU Improvement
FrodoKEM-640 14,960 3877 286% 1040 873 19%
FrodoKEM-976 33,794 7440 354% 2318 1911 21%
FrodoKEM-1344 64,512 13,254 387% 4368 3125 39%

Table 11. Operation time (us) and performance improvements by optimized matrix A generation and
matrix multiplication in FrodoKEM (RTX 2070).

Matrix A Generation Matrix Multiplication
CPU GPU Improvement CPU GPU Improvement
FrodoKEM-640 14,960 2167 590% 1040 785 32%
FrodoKEM-976 33,794 4463 657% 2318 1554 49%
FrodoKEM-1344 64,512 7847 722% 4368 2519 73%

In the matrix A generation operation, the GPU calls AES in parallel, resulting in a significant
performance improvement. In terms of the computation speed inside the GPU kernel, it shows thousands
of times faster than the CPU implementation. However, to perform calculations on the GPU, data must be
copied from the CPU to the GPU in advance. This additional computational load has the disadvantage of
greatly reducing the GPU computational efficiency in a real environment.

In RTX 2070, as a result of implementing the operation to generate the matrix A in parallel
through the GPU and optimizing it using shared memory, it was confirmed that it was 6.9, 7.57,
and 8.22 times faster than the existing CPU for FrodoKEM-640, FrodoKEM-976, and FrodoKEM-1344,
respectively. This speed was measured based on time including the memory copy time between
the CPU and the GPU. In addition, as a result of performing the matrix multiplication operation
using a GPU, performance improvement of 32%, 49%, and 73% was confirmed for FrodoKEM-640,
FrodoKEM-976, and FrodoKEM-1344, respectively, compared with the existing CPU implementation. In a
matrix multiplication kernel, 5120, 7808, 10,752 threads multiply each block stored in shared memory for
FrodoKEM-640, FrodoKEM-976, and FrodoKEM-1344, respectively. In GTX 1070, 3.86, 4.54, and 4.87 times
faster speed was confirmed for matrix A generation function in FrodoKEM-640, FrodoKEM-976, and
FrodoKEM-1344, respectively. In a matrix multiplication function, performance improvement of 19%,
21%, and 39% has been shown. When only kernel time was measured, excluding memory copy time,
FrodoKEM-640’s matrix A generation kernel was confirmed that a throughput of 164 and 279 Gbps
was achieved in GTX 1070 and RTX 2070, respectively. In Figure 8, FrodoPKE's total encryption time is
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presented by each platform. In RTX 2070, 5.20, 5.78, and 6.47 times faster speed than CPU implementation
was confirmed for the whole encryption process in FrodoKEM-640, FrodoKEM-976, and FrodoKEM-1344,
respectively. In GTX 1070, 3.29, 3.78, and 4.14 times faster speed than CPU implementation was confirmed
for the whole encryption process in FrodoKEM-640, FrodoKEM-976, and FrodoKEM-1344, respectively.

Frodokem-saoccev) [ 16,158

FrodoKEM-640(GTX 1070) 4,980
FrodoKEM-640(RTX 2070) 3,154

FrodoKEM-976(CPU) 36,387
FrodoKEM-976(GTX 1070) 9,698

FrodoKEM-976(RTX 2070) 6,215

FrodoKEM-1344(CPU) 69,216
FrodoKEM-1344(GTX 1070) 16,727
FrodoKEM-1344(RTX 2070) 10,782
0 10,600 20,600 30,600 40,600 50,600 60,600 70,600

Figure 8. Comparison of operation time (us) for FrodoPKE encryption between CPU implementation and
GPU implementation including memory copy time.

The larger the dimension 7, the longer the length that the CPU needs to process serially, but the GPU
only needs to increase the available threads, so the performance improvement increases even more.

In the case of matrix A generation operation, the performance improvement number was high because
it was optimized so that all threads perform the operation only once. However, in the matrix multiplication
optimization implementation, each thread was implemented to perform 7 /8 component multiplication
operations, so the performance improvement was not greater than the matrix A generation operation.
It could have been implemented so that each thread could perform component multiplication only once by
dividing n/8 operations again, but in that case, serialization problems caused by bank conflict that occur
when different threads access the same memory bank.

5.2. Performance Improvement on NewHope

Like FrodoKEM, NewHope also has a very fast computing speed inside the GPU kernel, but due to
the time load due to memory copying, it did not show a significant performance improvement in the actual
encryption performance measurement. However, as the dimension 7 increases, the GPU only increases the
number of threads that perform the same operation. Therefore, optimization performance improvements
increase as dimension 7 increases.

In the case of the sampling function, a part of the inside of the sampling function has been optimized,
but this part has a fixed ratio of the whole sampling function. Therefore, the sampling optimization
performance improvement is not significantly affected by the GPU architecture type and dimension 7.

This section presents the optimization results of NTT-based multiplication and polynomial operations,
which are major operations of NewHope, and the optimization results of the entire encryption process
according to GPU optimization implementation. Table 12 shows the results of optimizing the main
operation of NewHope using the GPU. NewHope compared performance based on the time during which
the same operation was repeated 100 times. In RTX 2070, NTT-based transformation and the point-wise
multiplication process recorded 3.12 and 4.67 times faster speed in NewHope-512 and NewHope-1024,
respectively, compared with the CPU implementation. In GTX 1070, 2.2 and 3.57 times faster speed in
NewHope-512 and NewHope-1024 was confirmed. The 512 and 1024 byte arrays of polynomial work
once each in the same number of threads for each NewHope-512 and NewHope-1024 encryption process.
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NewHope’s polynomial operation increases in proportion to the time load as the parameter grows larger
on the CPU, but on the GPU, it only needs to increase the number of threads running simultaneously,
so the time does not change significantly. However, the polynomial NTT conversion process could not
be parallelized. Because NTT multiplication of the experimental results is the time including the NTT
conversion, the simple point-wise multiplication speed is faster than the existing CPU implementation.

Table 12. Operation time (us) and performance improvements by optimized major operation in NewHope.

NewHope-512

GTX 1070 RTX 2070
CPU GPU Improvement GPU Improvement
NTT Multiplication 1618 734 120% 518 212%
Poly Addition 110 68 62% 65 69%
Poly Sampler 2837 941 201% 820 246%
NewHope-1024
GTX 1070 RTX 2070
CPU GPU Improvement GPU Improvement
NTT Multiplication 3494 978 257% 748 367%
Poly Addition 219 120 82% 107 104%
Poly Sampler 6951 2163 221% 1915 263%

In the parallel sampling process, when implementing to perform different roles for threads in the
warp without taking control divergence into account, serialization occurs, and CPU performance is better
than GPU performance. Accordingly, we solved the problem by changing the threads in the warp to
perform the same role in consideration of the warp of the thread. The sampling optimization result in the
table is the result of measuring the version that solved the problem. When only kernel time was measured,
excluding memory copy time, NewHope-512’s polynomial multiplication kernel was confirmed that a
throughput of 604 and 1435 Gbps was achieved in GTX 1070 and RTX 2070, respectively. In Figure 9,
NewHope’s total encryption time is presented by each platform. In RTX 2070, 3.33 and 4.04 times faster
speed than CPU implementation was confirmed for the whole encryption process in NewHope-512 and
NewHope-1024, respectively. In GTX 1070, 2.95 and 3.76 times faster speed was confirmed for the whole
encryption process in NewHope-512 and NewHope-1024, respectively.

In this paper, these experiments present the result of optimizing only the internal operation by calling
one cryptographic algorithm. Therefore, in a real environment, since numerous threads can call not only
major operations in the cryptographic algorithm, but also the cryptographic algorithm itself in parallel,
the actual efficiency is much higher.

Newtope stzccry) | 5591
NewHope-512(GTX 1070) 1,928
NewHope-512(RTX 2070) 1,709

NewHope-1024(CPU)

13,033
NewHope-1024(GTX 1070) 3,467

3,224

NewHope-1024(RTX 2070)

1 ! ! ! ! ! ! J
3,000 4,500 6,000 7,500 9,000 10,500 12,000 13,500

1
0 1,500

Figure 9. Comparison of operation time (us) for NewHope encryption between CPU implementation and
GPU implementation including memory copy time.
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6. Conclusions

In this paper, we propose an optimization method for FrodoKEM and NewHope, which are NIST
PQC standardized competition round 2 competition algorithms. The LWE-based algorithm, FrodoKEM,
and the RLWE-based algorithm, NewHope, are lattice-based PQC candidates. By analyzing the main
operation time for each algorithm, we propose several methods for parallel optimization of computations
with a large time load in the CPU using the GPU. These are implemented to perform the main operation of
algorithms in parallel using the GPU thread and solve the memory problems in the GPU that occur during
the implementation process. As a result of implementation using RTX 2070, in the process of FrodoPKE,
which is the encryption part of FrodoKEM, the performance results can be confirmed as up to 5.2, 5.75,
and 6.47 times faster than CPU implementation in FrodoKEM-640, FrodoKEM-976, and FrodoKEM-1344,
respectively. In the process of NewHope’s encryption part, the performance results can be confirmed as up
to 3.33 and 4.04 times faster than CPU implementation in NewHope-512 and NewHope-1024, respectively.
Experimental measurements are taken on Nvidia GeForce GTX 1070 GPU and Nvidia GeForce RTX
2070 GPU.

The process can be actively used in a situation such as a server equipped with a GPU in an actual
operating environment. Servers that manage IoT devices or servers that provide cloud computing services
can reduce the burden of encryption operations. In addition, this optimization method can be used to
encrypt data in real-time image processing technologies such as face recognition and eye tracking.

In this paper, only FrodoKEM and NewHope, which are candidates for NIST PQC standardization
round 2, are proposed, but future studies will study optimization for more diverse algorithms, such as
NTRU, Saber, and Crystals—Kyber. In addition, we plan to study the differences for each architecture while
measuring various experimental results on more diverse GPU platforms.
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