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Abstract: The main goal of the research is to design a low-cost, performing quadrotor unmaned aerial
vehicle (UAV) system. Because of low cost limits, the performance must be ensured by other ways.
The present proposal is a quaternion-based estimator used in the control loop. In order to make the
proposed solution easy to be reproduced by the reader, step-by-step instructions are given, including
component choices, design, and implementation. Throughout the article, detailed description of the
system model is given. The efficacy of the suggested quaternion-based predictive control is evaluated
by extended experimental results.
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1. Introduction

Unmanned aerial vehicles (UAV)s have fascinated many researchers and engineers, as they turned
out to be accessible in a large variety of applications, not just for costly military operations. Nowadays,
UAVs have a broad range of applications, such as: image capturing, aerial recording, military operations,
operations in hard-to-reach areas, etc., [1–7]. Along with the development of wireless communications,
the control of UAVs has become extremely precise, robust, and even predictive. New research results
in the design of UAVs and new application areas include advanced and complex control techniques
like robust and adaptive control, algorithms for different flight conditions, fault tolerance, disturbance
rejection, etc., [8–13]. All these methods increase the complexity and the cost of the UAV. Because of the
extremely alert technological progress registered in the past two decades, the global industrialization
and the minimization of the costs of electronic components, countless researchers have shown a high
interest in the development of various devices helpful for the society.

One key issue regarding the control of UAVs resides in the estimation of their position. Various
methods have been proposed. An efficient method is presented in [14], both from the point of view
of the algorithm’s performance and from the point of view of using the processing capacity of a
microcontroller. Several estimation algorithms are compared in [15], with the results showing that the
extended Kalman algorithm is slower in terms of processing time than Madgwick algorithm [15].

The approach of estimating the pitch and roll coordinates presented in [16] constitutes a reference
that fits perfectly in the context of the present paper. For the application of the algorithm proposed
in the paper, a method of fusion of the data received from an accelerometer, a gyroscope, and a
magnetometer was used to estimate, accurately, the position of a flight apparatus. A combination
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of the extension of the classical Kalman filtering algorithm and the sequential geometric correction
is proposed, completely eliminating the magnetic distortions captured by the sensor. In addition,
the paper offers a clear and concise comparison between certain popular approaches to the problem
of estimating the coordinates of a flight apparatus and the method proposed by the author. Both the
improvements and the problems that arise in the implementation of this method are presented.

From all the knowledge resulting from this state-of-art, it can be concluded that UAVs can be
made at a relatively lower cost. Simple transducers can be used, as long as this is compensated by a
high performance and optimized estimation algorithm. The authors already designed a cheap and
easy to use two-rotor equipment, in order to be multiplied for laboratory works [17,18].

Quaternion framework is widely used today to avoid locks and to ensure better computational
efficiency [19,20]. The field of application is large, ranging from mechanical systems [21] and medical
robots [22] to neural networks [23] and human activities and postures recognition [24], all research
papers reporting remarkable results. Quaternions are also used in UAV control with great success.
In [25], the authors developed a nonlinear state space model using the quaternion and angular velocity
as state variables, which simplifies the system dynamics. The main focus of the research is directed
toward the feedback linearization of the model. The simulation results are presented solely for the
attitude stabilization task of the quadcopter. A quaternion representation of the attitude of a quadrotor
is also used in [26], where various control methods are discussed and compared, such as the PD,
LQR, and backstepping methods. Various case scenarios are discussed including noisy data, actuator
restrictions, external disturbances. The attitude control of a quadrotor is designed in a quaternion
framework in [27], to avoid gimbal lock and for better computational efficiency. The controllers
are tuned based on third-order sliding mode control, with a low-pass filter to reduce chattering
and a disturbance observer to cover disturbance estimation problems. To ensure the robustness,
a disturbance compensation term is also included in the control law. The simulation results show
that the proposed method is efficient. In [28], two variants of adaptive state space controllers for
attitude stabilization and self-tuning of a quadrotor are proposed. The effectiveness of the approach
is demonstrated through simulations that use a quaternion-based nonlinear dynamic model of a
quadrotor. A quaternion representation of the attitude of a quadrotor is also used in [29], where a
quaternion-energy-based control law is defined as a Lyapunov function, with the control laws described
with unit quaternions and their axis-angle representation. Various simulation and experimental results
are presented. Unit quaternions are also used in [30] to describe a simple yet complete dynamic
model for the rotational and translational dynamics of unmanned aerial vehicles, whereas dual
quaternions are explained and used for robotic systems with multiple rotations and translations.
An unmanned aerial vehicle described with unit quaternions is presented in [31]. In this case,
a quaternion-passivity-based control is derived. The experimental results and numerical simulations
validate the results. Intermediary quaternions are used in the design of a backstepping control
technique with integral properties in [32]. Compared to classical quaternions, the proposed approach
has also the advantage that one specific orientation corresponds to only one intermediary quaternion,
which helps coping with the unwinding phenomenon. Numerical simulations, as well as experimental
tests, are presented. The robustness of the algorithm is also tested during the numerical simulations
only. In [33], a quaternion-based guidance law is proposed which feeds into an attitude control system
based on a PD+ control law. A quaternion control scheme for a quadrotor is also proposed in [34].
An attitude control algorithm is developed to stabilize the vehicle’s heading and an additional position
control law for stabilization of the vehicle in all states. In this case also, numerical and experimental
results are presented to validate the approach. An advanced control scheme, also based on quaternions,
is presented in [35] for the attitude control of a quadrotor. Here, both the model and the proportional
squared control algorithm are implemented in the quaternion space. Extended simulation results are
included to demonstrate the efficacy of the suggested novel approach. Quaternions for attitude control
are also used in [36], where a quaternion multiplicative formula is proposed to obtain the change of
the attitude angle of a quadrotor. Only some practical solutions are presented.
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Other recent significant results in UAV control includes more complex structures or calculus.
In [37], a control structure based on a hierarchical scheme is proposed, consisting of an energy-based
control to stabilize the vehicle translational dynamics and to attenuate the payload oscillation and a
nonlinear state feedback controller based on a linear matrix inequality (LMI) to control the quadrotor
rotational dynamics. The authors of [38] propose a neuroadaptive integral robust controller, while [39]
discusses the dynamic motion planning and control of an UAV using Direct and the Second Method
of Lyapunov. An interesting, but complex solution is proposed in [40], where the dynamic system is
divided in two subsystems driven by the translational and the rotational dynamics, based on a linear
parameter-varying model.

All these approaches have in common the use of advanced control algorithms, with the major
drawback of requiring expensive hardware for implementation purposes. Thus, the main objective of
the present work is to design and implement a low-cost, easy to use quadrotor UAV, accessible for
any user. A quaternion-based estimator is proposed, similarly to existing research studies. However,
in terms of the proposed control strategy, the classical PID controller is used, instead of advanced
control algorithms. In this way, the implementation of the control strategy is simplified, which triggers
the possibility of using low-cost devices for measurement and control. The final control structure
includes four controllers, one for each direction of movement. Step by step design and implementation
details are presented in order to be easily reproduced by the reader. Using simulation and experimental
data, the proposed method is validated. The results show that similar closed loop performance can be
achieved using our proposed approach, compared to other more advanced control strategies. The major
advantage is that using our proposed method, these results are achieved using a low-cost UAV with a
simple, yet efficient control strategy. The novelty of this work consists, thus, in a quaternion-based
estimator and classical Proportional-Integral-Derivative (PID) control strategy, implemented using
low-cost microcontroller and sensors. For the proposed remote control, performances are imposed in
terms of rejecting a moderate range of disturbances and filtering sensor noisy signals.

The rest of this paper is organized as follows. The materials and methods used are presented in
the next section. The resulting quadrotor UAV prototype, along with experimental data, is detailed in
Section 3. Finally, conclusions are presented in Section 4.

2. Materials and Methods

From construction point of view, the system includes the following elements: plastic skeleton
for the flight apparatus; support for the electrical circuit of the remote control; electrical circuits;
ATmega32U4 and ATmega 328 microcontrollers; four DC motors; four electronic velocity controllers;
four propellers; two wireless remote communication modules and a position detection module.

The main aspects of the flight apparatus described in this work are defined by: the number of
engines, the position of the support arms, the mass and the center of gravity of the whole assembly.
The arms are mounted in “X,” to allow easy change of direction, and the center of gravity is fixed at
the intersection of the axes of the arms. The change of direction is facilitated by the control of the
angular velocity of the engines. The motors are positioned as follows: two motors on one diagonal
are rotated in the same direction, while the remaining two motors on the other diagonal rotate in
the opposite direction. Viewed as a whole, the system is composed of a four-arm flight apparatus
mounted in “X” and a remote control that provides references to the control circuit located on the
quadrotor. They communicate via the UART protocol, using two RF transmission and reception
modules. Two-way data exchanges are made between the quadrotor and the remote control, so both
items send data and await receipt.

Regarding the mechanical design of the system, a variety of computer-aided design environments
could be used to create 3D drawings and model the parts necessary for the physical realization of the
system. In the present work AutoCAD and SolidWorks were adopted. In addition, Ultimaker Cura–a
G code generator and a 3D printer that could correctly interpret the generated code—was operated to
create the remote control.
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After choosing the components, measuring their dimensions and making the connections,
an electrical scheme could be conceived. The present practice used a CAD/CAM environment provided
by Autodesk, called Eagle.

The device is designed in such way that the center of gravity coincides with the geometric one,
also serving as the center of the coordinate system attached to the quadrotor. This coordinate system
describes the relative movements of the flight apparatus to a fixed coordinate system, with an axis
perpendicular to the earth’s surface. The other two axes of the fixed coordinate system can be chosen so
as to coincide with cardinal points whose axes are perpendicular (for example north-east or south-west).

Like any aerial vehicle, this system has also six degrees of freedom, meaning three movements
of translation and three of rotation. All these movement possibilities are strongly dependent on the
velocity and implicitly the angular velocity of the four engines. Therefore, depending on these aspects,
the following kinetic forces and moments developed and applied to the quadrotor can be distinguished:
the altitude advance, the gyroscopic effect, the yaw moment, the pitch moment, the roll moment
and, of course, the force of gravitational attraction. The increase or decrease of altitude is possible by
simultaneously increasing or decreasing the velocity of all engines. In order to maintain a constant
altitude it is necessary to drive the engines at the same velocity, each developing the same angular
velocity. Unlike the altitude movement, the kinetic yaw, pitch, and roll momenta are obtained by
differentiating the engine velocity. The yaw moment, or rotation around the vertical axis, is obtained
by simultaneously increasing the velocity of two motors rotating in the same direction. Depending on
the chosen engine group, the flight apparatus will rotate clockwise or trigonometrically.

2.1. Quaternion-Based Estimator

In order to obtain the orientation angles and to facilitate the calculus, two representations can be
used, namely: Euler angles and quaternions.

Quaternions are used to express the orientation of a coordinate system to a reference system [41].
Given an angle of rotation Ψ about the axis “r, an orientation of the coordinate system B can be
represented with respect to the system A as follows [41]:

A
B q̂ =

[
q1q2q3q4

]
=

[
cos

Ψ
2
−“rx sin

Ψ
2
−“ry sin

Ψ
2
−“rz sin

Ψ
2

]
(1)

The terms “rx, “ry, “rz represent the components of the unity vector “r of the reference system A.
A very important advantage presented by this angle expression method is that the product of

two quaternions C
Dq̂ and D

E q̂ represents the orientation of the system E with respect to the reference
system C.

Moreover, the orientation described by a quaternion A
B q̂ =

[
q1 q2 q3 q4

]
can be expressed by the

rotation matrix A
B R, representing the rotation of the coordinate system B with respect to the reference

system A. The dependence between the quaternion terms and the rotation matrix is presented in
Equation (2) [16,20].

A
B R =


2q2

1 + 2q2
2 − 1 2

(
q1q4 + q2q3

)
2
(
q2q4 − q1q3

)
2
(
q2q3 − q1q4

)
2q2

1 + 2q2
3 − 1 2

(
q1q2 + q3q4

)
2
(
q1q3 + q2q4

)
2
(
q3q4 − q1q2

)
2q2

1 + 2q4
2 − 1

 (2)

Although, from a computational point of view, obtaining orientation using quaternions is more
efficient, they are hard to interpret physically. Thus, in order to have a clear picture of the real
movement, the orientations expressed by quaternions are transformed into representations using Euler
angles. To carry out these transformations, Equations (3)–(5) could be used [21].

Ψ = atan
(
2q2q3 − 2q1q4, 2q2

1 + 2q2
2 − 1

)
(3)
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θ = arcsin
(
2q1q3 + 2q2q4

)
(4)

Φ = atan
(
2q3q4 − 2q1q2, 2q2

1 + 2q2
4 − 1

)
(5)

In order to obtain the real values of the angles, a sensor with 9 degrees of freedom was used,
consisting of an accelerometer, a gyroscope, and a magnetometer. The sensor used is from the MPU9250
family and communicates with the microcontroller via the I2C interface, at a frequency of 400 kHz.
The I2C protocol is a very popular data transmission protocol, due to the multitude of advantages it
presents [42]. For data filtering and estimating the orientation of the aerial vehicle, the quaternion
representation described above was used. With a physical interpretation much closer to reality, the data
provided by the gyroscope are filtered and estimated easily. Thus, the angular positions on the X,
Y, and Z axes are arranged in a vector W as described in Equation (6). In addition to these three
elements, on the first position in the vector is inserted the term 0 in order to be able to perform
quaternion products.

W =
[
0 wx wy wz

]
(6)

Ref
Sensor

.
q = Ref

Sensorq ⊗W (7)

With the angular position arranged in the vector W it is possible to compute the orientation change
of the coordinate system given by the earth to the coordinate system attached to the UAV. This calculus
is represented in Equation (7).

Where the term Ref
Sensorq represents the current orientation of the coordinate system given by the

earth to the quadrotor coordinate system.
In order to obtain an orientation of the coordinate system attached to the quadrotor with respect

to the reference one, at a time t it is necessary to perform the mathematical operations detailed in
Equations (8) and (9).

Sensor
Ref

.
qgyro,k =

1
2

Sensor
Ref qest, k−1 ⊗W (8)

Sensor
Ref qgyro,k = Sensor

Ref qest, k−1 +
Sensor

Ref
.
qgyro,kTs (9)

where TS represents the sampling time, and t = k·TS.
Because of the nature of the data from the accelerometer, an optimization problem can be

formulated in which the orientation of the sensor Sensor
Ref q̂ and, implicitly of the flight system, is given

by minimizing the difference between the orientation of the reference system of the earth dref and that
of the sensor, dsensor. The objective function to be minimized of is described by Equations (10) and (11),
with the components detailed in (12)–(14).

of
(
Sensor

Ref q̂, dref, dsensor
)
= Sensor

Ref q̂∗ ⊗ dref ⊗
Sensor

Ref q̂ − dsensor (10)

of
(
Sensor

Ref q̂, dref, dsensor
)
=

2drx
(

1
2 − q2

3 − q2
4

)
+ 2dry

(
q1q4 + q2q3

)
+ 2drz

(
q2q4 − q1q3

)
− dsx

2drx
(
q2q3 − q1q4

)
+ 2dry

(
1
2 − q2

2 − q2
4

)
+ 2drz

(
q1q2 + q3q4

)
− dsy

2drx
(
q1q3 + q2q4

)
+ 2dry

(
q3q4 − q1q2

)
+ 2drz

(
1
2 − q2

2 − q2
3

)
− dsz


(11)

Sensor
Ref q̂ =

[
q1 q2 q3 q4

]
(12)

dref =
[
0 drx dry drz

]
(13)

dsensor =
[
0 dsx dsy dsz

]
(14)

In order to solve this optimization problem, the conjugate gradient method is used, a simple,
efficient method that requires a relatively low computing power [43]. However, the conjugate gradient
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method presents a number of disadvantages related to the algorithm step, µ and the initial point
Sensor

Ref q̂0. Equations (15) and (16) describe the estimation of future orientation Sensor
Ref q̂k+1.

Sensor
Ref q̂k+1 = Sensor

Ref q̂k − µ
F
‖F‖

(15)

F =
∂f

(
Sensor

Ref q̂, dref, dsensor
)

∂
(
Sensor

Ref q̂, dref

) of
(
Sensor

Ref q̂, dref, dsensor
)

(16)

The general cost function of given in (10) can be simplified to be easy to implement even in a
low-cost microcontroller. Because of the fact that by convention gravitational acceleration determines
only the Z axis of the reference system, this objective function can be expressed as in Equation (17),
while the vectors dref and dsensor are given in (18) and (19).

of
(
Sensor

Ref q̂, dref, dsensor
)
=


2
(
q2q4 − q1q3

)
− dx

2
(
q1q2 + q3q4

)
− dy

2
(

1
2 − q2

2 − q2
3

)
− dz

 (17)

dref = [0 0 0 1] (18)

dsensor =
[
0 dx dy dz

]
(19)

The data obtained from the magnetometer will be processed in the same way as the data obtained
from the accelerometer, but with a more laborious processing given by the decomposition of the earth’s
magnetic field in both a component on the X axis and one on the Z axis. To obtain the next orientations
Sensor

Ref q̂k+1, the same conjugate gradient algorithm will be used. Equation (20) describes the objective
function, with the terms detailed in (21) and (22), while Equation (23) presents the gradient of the
objective function.

of
(
Sensor

Ref q̂, mref, msensor
)
=


2mrx

(
1
2 − q2

3 − q2
4

)
+ 2mrz

(
q2q4 − q1q3

)
−msx

2mrx
(
q2q3 − q1q4

)
+ 2mrz

(
q1q2 + q3q4

)
−msy

2mrx
(
q1q3 + q2q4

)
+ 2mrz

(
1
2 − q2

2 − q2
3

)
−msz

 (20)

mref = [0 mrx 0mrz] (21)

msensor =
[
0 msx msy msz

]
(22)

F =
∂of

(
Sensor

Ref q̂, mref, msensor
)

∂
(
Sensor

Ref q̂, mref

) of
(
Sensor

Ref q̂, mref, msensor
)

(23)

In order to obtain both a measurement and an accurate estimation of the orientation of the
quadrotor, it is necessary to compose the two objective functions presented in Equations (10) (or the
simplified form in (17)) and (20). Also, the gradient of both functions will be used to implement the
conjugate gradient algorithm for the combination of functions. The composition will be noted with fcom

and the gradient of this compound function will be noted by Fcom. In addition, to make the algorithm
more efficient, the step µ will be variable and recomputed at each iteration, as shown in Equation (24).
The algorithm and the gradient of the new objective function are presented in Equations (25) and (26):

µt = α‖Actual
Ref

.
qgyro,k‖TS (24)

Sensor
Ref qcom,k = Sensor

Ref q̂est,k−1 − µt
Fcom

‖Fcom‖
(25)
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Fcom =


∂f(Sensor

Ref q̂est,k−1, dSensor)
∂(Sensor

Ref q̂est,k−1)
f
(
Sensor

Ref q̂est,k−1, dSensor

)
∂f(Sensor

Ref q̂est,k−1, mref, mSensor)
∂(Sensor

Ref q̂est,k−1, mref)
f
(
Sensor

Ref q̂est,k−1, mref, mSensor

)
 (26)

whereα is a constant chosen experimentally to minimize the measurements noise from the accelerometer
and magnetometer, TS is the sampling period, Actual

Ref
.
qgyro,k, represents the orientation given by the

gyroscope, computed using Equation (8).
Because of the fusion of measurements from the gyroscope, Sensor

Ref qgyro,k and those from the
accelerometer and magnetometer Sensor

Ref qcom,k, a weighted, very accurate estimate is obtained,
as presented in Equation (27). The weight Pk will be computed at each iteration based on the
step µt, a control constant β, and the sampling period TS, as in (28).

Sensor
Ref q̂est,k = Pk

Sensor
Ref qcom,k + (1− Pk)

Sensor
Ref qgyro,k (27)

Pk =
β

µt
TE

+ β
(28)

The proposed filter in (27) and (28) ensures an accurate estimation such that Sensor
Ref q̂est,k →

Sensor
Ref qk

as k→∞. This can be easily proved using the classical Lyapunov function.
At each iteration, after obtaining the current estimate, Equations (3)–(5) are used to express the

Euler angle orientation, which gives a much easier to understand perspective on the movement of
the quadrotor.

After obtaining the orientation angles and converting them from quaternions to Euler angles,
at each iteration the rotation matrices Rx(Φ), Ry(θ), and Rz(Ψ) will be constructed. With these matrices,
the rotation matrix of the entire system Rxyz(Ψ, θ, Φ) is computed, as described in Equations (29)–(32).

Rx(Φ) =


1 0 0
0 c(Φ) −s(Φ)

0 s(Φ) c(Φ)

 (29)

Ry(θ) =


c(θ) 0 s(θ)

0 1 0
−s(θ) 0 c(θ)

 (30)

Rz(Ψ) =


c(Ψ) −s(Ψ) 0
s(Ψ) c(Ψ) 0

0 0 1

 (31)

Rxyz(Φ, θ, Ψ) = Rx(Ψ)·Ry(θ)·Rz(Φ) =
c(θ)c(Ψ) s(Φ)s(θ)c(Ψ) − c(Φ)s(Ψ) c(Φ)s(θ)c(Ψ) + s(Φ)s(Ψ)

c(θ)s(Ψ) s(Φ)s(θ)s(Ψ) + c(Φ)c(Ψ) c(Φ)s(θ)s(Ψ) − s(Φ)c(Ψ)

−s(θ) s(Φ)c(θ) c(Φ)c(θ)

 (32)

where c(Ψ) = cos(Ψ), s(Ψ) = sin(Ψ), c(θ) = cos(θ), s(θ) = sin(θ), c(Φ) = cos(Φ), s(Φ) = sin(Φ).

2.2. Quadrotor Kinematic and Dynamic Model

In order to establish an efficient mathematical model, as close as possible to the reality,
which ensures greater system controllability, it is necessary to use the Equations of Newton classical
mechanics and of Euler for angular motions. It is also necessary to take into account both the relative
movements of the fixed coordinate system (in this case, the earth), as well as the relative dynamics of
the coordinate system attached to the quadrotor. Thus, two vectors, Pp and Pa, will be used, described
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by Equations (33) and (34). Pp is the vector of the linear and angular positions of the flight system
relative to earth, while Pa is the vector of the linear and angular velocities of the quadrotor.

Pp =
[

x y z Φ θ Ψ
]T

(33)

Pa =
[

u v w p q r
]T

(34)

To link these two vectors, the rotation matrix Rxyz(Φ, θ, Ψ) and a matrix of angular velocity
transformations, Tv(Φ, θ) is used, derived from the inverse of the derivative of the Euler angle change
rate. Thus in Equations (35)–(40) the dependencies between the vectors Pp and Pa are detailed.

vp =
[ .

x
.
y

.
z

]T
(35)

ωp =
[ .

Φ
.
θ

.
Ψ

]T
(36)

va =
[

u v w
]T

(37)

ωa =
[

p q r
]T

(38)

vp = Rxyz(Φ, θ, Ψ)·va (39)

ωp = TV(Φ, θ)·ωa (40)

The vectors vp and ωp are the derivatives of the linear and angular positions of Pp, while va and
ωa are the linear and angular velocities of the vector Pa. The matrix of angular velocity transformations
Tv(Φ, θ) is constructed as described by Equation (41).

Tv(Φ, θ) =


1 c(Φ) tan(θ) c(Φ) tan(θ)
0 c(Φ) −s(Φ)

0 s(Φ)
c(θ)

c(Φ)
c(θ)

 (41)

Performing the multiplications leads to the kinematic model:

.
x = uc(Ψ)c(θ) − v[c(Φ)s(Ψ) − c(Ψ)s(Φ)s(θ)] + w[s(Φ)s(Ψ) + c(Φ)s(Ψ)s(θ)]
.
y = uc(θ)c(Ψ) + v[c(Φ)c(Ψ) + s(Φ)s(θ)s(Ψ)] −w[c(Ψ)s(Φ) − c(Φ)s(Ψ)s(θ)]
.
z = −uc(θ) + vc(θ)s(Φ) + wc(Φ)c(θ)
.

Φ = p + qs(Φ)t(θ) + rc(Φ)t(θ)
.
θ = qc(Φ) − rs(Φ)
.

Ψ = q s(Φ)
c(θ) + q c(Φ)

c(θ)

(42)

From Newton’s laws, the forces acting on the quadrotor can be determined. These will be denoted
with vector Fa and calculated as described in Equations (43) and (44).

Fa = mq(ωa × va +
.
va) (43)

Fa =
[

fx fy fz
]T

(44)

where mq denotes the mass of the quadrotor, “ × ” is the vector product of the linear and angular

velocity relative to the quadrotor coordinate system, while
..
va is the linear acceleration.
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Similar to the computation of the force, the angular velocity applied to the quadrotor will also be
determined from Euler’s Equation. These velocities will be noted with Ma, and are strongly dependent
on the inertia matrix I, as it is presented in Equations (45)–(47).

Ma = I·
.
ωa +ωa × (I·ωa) (45)

Ma =
[

mx my mz
]T

(46)

I =


Ix 0 0
0 Iy 0
0 0 Iz

 (47)

Combining Equations (44) and (46), the dynamic model of the quadrotor relative to its own
coordinate system can be expressed as:

fx = m
( .
u + qw− rv

)
fy = m(

.
v− pw + ru)

fz = m
( .
w + pv− qu

)
mx =

.
pIx − qrIy + qrIz

my = prIx +
.
qIy − prIz

mz = −pqIx + pqIy +
.
rIz

(48)

The forces and velocities described above can also be expressed by Equations (49) and (50).

Fa = mqgRxyz(Φ, θ, Ψ)T
·êz − fp·ê3 + fv (49)

Ma = τa − ga + τv (50)

In the above expression mq means the total mass of the quadrotor, g is the gravitational acceleration,
êz and ê3 are the unit vectors on the Z axis of the reference coordinate system, respectively of the
coordinate system attached to the quadrotor. The element fp represents the total propulsion force

developed by the engines, and fv =
[

fvx fvy fvz
]T

represents the disturbances or forces that are
opposed to the rotation of each engine, caused by air currents. τa represents the angular velocity
generated by the velocity differences of the four motors, while τv stands for the angular velocities
produced by air currents on each motor, detailed in Equations (51) and (52). ga are the gyroscope
moments caused by the combined velocities of the four motors. Given the fact that the inertia of the
motors is negligible compared to the developed force, the gyroscopic moments may be neglected from
Equation (50).

τa =
[
τx τy τz

]T
(51)

τv =
[
τvx τvy τvz

]T
(52)

Replacing these new Equations for forces and velocities, a new dynamic model is obtained:

−mqgs(θ) + fvx = mq
( .
u + qw− rv

)
mqgc(θ)s(Φ) + fvy = mq(

.
v− pw + ru)

mqgc(θ)c(Φ) + fvz − fp = mq
( .
w + pv− qu

)
τx + τvx =

.
pIx − qrIy + qrIz

τy + τvy = prIx +
.
qIy − prIz

τz + τvz = −pqIx + pqIy +
.
rIz

(53)
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In order to control the quadrotor, the dependence between the propulsion force fp, velocity
τa, and the motor’s angular velocities Ωa =

[
Ω1 Ω2 Ω3 Ω4

]
needs to be introduced in the

model, using Equation (54). 
fp = b

(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4

)
τx = b·l

(
Ω2

1 + Ω2
2 −Ω2

3 −Ω2
4

)
τy = b·l

(
Ω2

1 + Ω2
4 −Ω2

2 −Ω2
3

)
τz = d

(
Ω2

1 + Ω2
3 −Ω2

2 −Ω2
4

) (54)

where b is a propulsion coefficient and d is the aerodynamic resistance coefficient. The term l represents
the distance from the center of gravity of the quadrotor to the center of rotation of the engine. This term
is equal for all four arms of the quadrotor. In addition, replacing the terms obtained from Equation (54)
in (53) leads to a new expression of the dynamic model, given by:

−mqg s(θ) + fvx = mq
( .
u + qw− rv

)
mqg c(θ)s(Φ) + fvy = mq(

.
v− pw + ru)

mqgc(θ)c(Φ) + fvz − b
(
Ω2

1 + Ω2
2 + Ω2

3 + Ω2
4

)
= mq

( .
w + pv− qu

)
b · l

(
Ω2

1 + Ω2
2 −Ω2

3 −Ω2
4

)
+ τvx =

.
pIx − qrIy + qrIz

b · l
(
Ω2

1 + Ω2
4 −Ω2

2 −Ω3
2

)
+ τvy = prIx +

.
qIy − prIz

d
(
Ω2

1 + Ω2
3 −Ω2

2 −Ω2
4

)
+ τvz = −pqIx + pqIy +

.
rIz

(55)

This model will be used as predictor in the control structure.

2.3. Quadrotor State Space Model Used for Controller Design

The next step consists in the model design in a state space form, in order to easily apply the
controller design methods. Therefore, the state vector X, the input vector u, and the output vector y
will be chosen as it is presented below:

X =
[

Φ θ Ψ p q r u v w x y z
]T

(56)

u =
[

fp τx τy τz
]T

(57)

y =
[

Φ θ Ψ fp
]T

(58)

Using this state vector X and Equations (42) and (55), one can determine the derivative of this
state vector,

.
X:

.
Φ = p + qs(Φ)t(θ) + rc(Φ)t(θ)
.
θ = qc(Φ) − rs(Φ)
.

Ψ = q s(Φ)
c(θ) + r c(Φ)

c(θ)
.
p =

Iy−Iz
Ix

qr + τx+τvx
Ix.

q = Iz−Ix
Iy

pr +
τy+τvy

Iy
.
r =

Ix−Iy
Iz

pq + τz+τvz
Iz.

u = rv− qw− gs(θ) + fvx
m

.
v = pw− ru + gs(Φ)c(θ) +

fvy
m

.
w = qu− pv + gc(Φ)c(θ) +

fvz−fp
m.

x = uc(Ψ)c(θ) − v[c(Φ)s(Ψ) − c(Ψ)s(Φ)s(θ)] + w[s(Φ)s(Ψ) + c(Φ)c(Ψ)s(θ)]
.
y = uc(θ)s(Ψ) + v[c(Φ)c(Ψ) + s(Φ)s(θ)s(Ψ)] −w[c(Ψ)s(Φ) − c(Φ)s(Ψ)s(θ)]
.
z = −us(θ) + vc(θ)s(Φ) + wc(Φ)c(θ)

(59)
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As can be seen from Equation (59), the system is strongly nonlinear, presenting major problems in
the design of a control system based on models. In order to be linearized, a Jacobian matrix is used,
at certain chosen equilibrium points. Given that it is desired that in the absence of a command the
system be maintained at a fixed point at a predetermined altitude, the equilibrium points are chosen as
described below.

Xe =
[

0 0 0 0 0 0 0 0 0 xe ye ze
]T

(60)

ue =
[

mq·g 0 0 0
]T

(61)

where g = 9.8 m
s2 is the gravitational acceleration and mq is the total mass of the quadrotor.

Also, since the trigonometric dependencies between the system states do not disappear even
after the linearization by the Jacobian method, a preliminary simplification is made. Thus, in order to
eliminate the trigonometric functions from the system model, all the values of the sine functions are
approximated with their argument, respectively the cosine functions with 1. The approximate model,
resulting from the simplification, has the form as described in (62).

.
Φ = p + qΦθ+ rθ
.
θ = q− rΦ
.

Ψ = qΦ + r
.
p =

Iy−Iz
Ix

qr + τx+τvx
Ix.

q = Iz−Ix
Iy

pr +
τy+τvy

Iy
.
r =

Ix−Iy
Iz

pq + τz+τvz
Iz.

u = rv− qw− gθ+ fvx
mq

.
v = pw− ru + gΦ +

fvy
mq

.
w = qu− pv + g +

fvz−fp
mq.

x = u− v(Ψ −Φθ) + w(ΦΨ + θ)
.
y = uΨ + v(1 + ΦθΨ) −w(Φ −Ψθ)
.
z = −uθ+ vΦ + w

(62)

In the state space form, the system is
.
X = h(X, u). Applying the linearization by the Jacobian

matrix method and using the equilibrium points expressed in (60) and (61), the linearized state space
system became:  .

X = Ae·X+ Be·u
y = C·X

(63)

with

Ae =
∂h(X, u)
∂X

∣∣∣∣∣∣ X = Xe

u = ue
=



0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 −g 0 0 0 0 0 0 0 0 0 0
g 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0



(64)
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Be =
∂h(X, u)
∂u

∣∣∣∣∣∣ X = Xe

u = ue
=



0 0 0 1
0 0 0 0
0 0 0 0
0 1

Ix
0 0

0 0 1
Iy

0

0 0 0 1
Iz

0 0 0 0
0 0 0 0
1

mq
0 0 0

0 0 0 0
0 0 0 0
0 0 0 0



(65)

C =


0 0 0 0 0 0 0 g 0 0 0 0
0 0 0 0 0 0 −g 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1/mq 0 0 0

 (66)

The same model can be described as a system of Equations as indicated in (67).

.
Φ = p
.
θ = q
.

Ψ = r
.
p = τx+τvx

Ix.
q =

τy+τvy
Iy.

r = τz+τvz
Iz.

u = −gθ+ fvx
mq

.
v = gΦ +

fvy
mq

.
w =

fvz−fp
mq.

x = u
.
y = v
.
z = w

(67)

2.4. Controller Design

The controller design method uses the linear model of the system (63). Considering that references
for the orientation of the quadrotor and for the altitude of flight will be transmitted from the remote
controller, and the system inputs depend on the angular velocities of the four engines, a number of
four controllers will be implemented for each direction of movement. Each controller can be designed
with any tuning algorithm, ensuring the cancellation of the steady state error and a short settling time.
An interesting choice is presented for example in [44]. If advanced controller tuning methods are used,
the performances could be increased. The idea of the present work is to implement a very low-cost
quadrotor, with the simplest control algorithm, but with results comparable with advanced control
methods. With this regard a simple PID controller is designed for each rotor, using the classical root
locus method [45]. For this method, given the characteristic polynomial of the closed-loop system,
the parameters of controller are chosen depending on the location of the poles of the system. Overshoot,
settling time and steady state error cancellation are imposed for each controller. Figure 1 illustrates
the block diagram of the control strategy chosen for this quadrotor, with the PID blocks detailed in
Figure 2. The proposed feedback control requires feedback signals and disturbance identification.
To obtain these signals, a sensor with 9 degrees of freedom, consisting of an accelerometer, a gyroscope,
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and a magnetometer is used. Signals from this sensor must be processed because they suffer from noise
disturbance and other drawbacks. For example the gyroscope has a flowing bias. This inconvenient is
mitigated by the estimator. Both data filtering and estimating the orientation of the aerial vehicle are
realized with the quaternion representation of the estimator (27,28). The nonlinear dynamic model (55)
is used as predictor in the control structure.Mathematics 2020, 8, 1829 14 of 25 
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In Figure 2 the signals are denoted as follows: r(k) is the reference signal at current iteration k;
c(k) represents the control signal at this current iteration k; y(k) is the output of the system, measured by
sensors at iteration k; e(k) is the error signal at iteration k; Kp, Ki, and Kd represent the proportionality,
integration, and derivation constant, respectively. Regarding the angular velocities of the motors,
it is necessary to ensure that they behave according to the control signals received from the angular
position and altitude controllers. In view of the microcontroller’s processing capacity and the relatively
large dimensions of the program used to obtain the inclination angles and the control law previously
determined, four electronic speed control modules (ESCs) will be used to control the angular velocities
of the motors.
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The verification of the designed controllers was first performed through a numerical simulation.
The non-linear model from Equation (55) was used to carry out all simulations. Several simulation
scenarios were adjusted in order to set the simulation closer to reality. Furthermore, some restrictions
related to the actuators were applied based on real data measurements. The delay of the actuators
was implemented because of the use of the electronic speed controller (ESC). Moreover, sensor noise
was implemented to the measured feedback signals. The evaluation of the designed controller was
done both in disturbance free, constant disturbance, and real disturbance conditions. In each case the
quadrotor has to follow the same trajectory, including takes off, flying from point A to B, and rotation
around the Z axis. As quality indicators chosen to discuss the efficiency of the proposed algorithm are
the steady state position error, overshoot, and settling time. In all cases the proposed simple control
structure exhibit very similar behavior to advanced, expensive solutions.

3. Results

Figure 3 presents the resulted low-cost quadrotor UAV. It has four motors controlled by electronic
speed controllers rotating as described in Figure 4. Each motor is mounted on a plastic arm, which in
turn is attached to the carbon fiber central structure. All pieces were chosen so that the assembly has
the lowest weight and, at the same time, to maintain the condition of the center of gravity described in
the previous section.
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In each step of the design, the aim was to understand the functionality of each component of the
system and to describe the relationships between them using block diagrams. In this regard Figures 5
and 6 detail the block diagrams of each subsystem, highlighting the type of data provided by/for
each element.
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In accordance with these block schemes and the dimensions imposed by the mechanical elements,
a series of electrical components were chosen. These have been selected so that they can achieve
the specifications of the desired control, allow flexibility in resolving errors and have low cost. Also,
from the point of view of the processing capacity and the number of input and output signals,
respectively, a microcontroller was chosen that satisfies these conditions.

The wiring diagram and the implemented UAV system are presented in Figure 7.
The corresponding remote controller schemes are in Figure 8, where (a) represents the wiring diagram
designed in Eagle, while (b) is the implemented circuit.
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Figure 7. The designed (a) and implemented (b) electronic circuit of UAV.

Measurements were realized without using the developed estimator. Figure 9 presents the raw
results of the gyroscope, accelerometer and magnetometer for a linear movement. It can be concluded
that in the case of noisy signals, such an approach is not usable in a feedback control structure. It is
obvious the necessity of the estimator.
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The quaternion-based estimation algorithm described in the previous section was implemented on
the microcontroller. In order to test the obtained system, a reference sequence of the form: 0, maximum
value to the right, maximum value to the left was applied. The obtained results are plotted in Figure 10.
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The designed nonlinear model was tested, obtaining the results from Figure 11.
The designed control algorithms were also implemented on the microcontroller. The obtained

results in the worst-case scenario, windy conditions, are plotted on Figure 12, presenting the response
of the closed loop system to a step reference on each of the four directions of movement.

The performance was measured for different operation scenarios, including different step inputs
on each axis, wind-free and windy conditions. The results for one of the “classical” scenarios—16◦ step
input for angular position on X and Y axis and 45◦ on Z axis, 5 m altitude, with relatively high wind
speed—are presented in Table 1, highlighting good performances. All these results are comparable with
the results of advanced control algorithms in [25–36], without needing expensive hardware equipment.
In [26], where the studied quadrotor is similar with our prototype, a LQR controller is used for altitude
and a PD controller for position, resulting in a settling time for a step input between 2 and 3.7 s and
overshoot 13–20%. Using a backstepping controller combined with the PD, the settling time varies
between 2.10 and 3.70 s and the overshoot between 12 and 14%. The LQR controller used both for
altitude and position, the settling time are 2.7–3.35 s, while the overshoot is 19–25%. The combination
of the backstepping controller with LQR leads to values varying between 2.7–3.3 s, overshoot 15–25%.
In our experiments the overshot does not exceed 13.75% neither in worst case and the largest settling
time is 1.2 s. The model identification adaptive control (MIAC) used in [28] leads to settling time
between 0.8 and 1.4 s, while with the Model Reference Adaptive Control (MRAC) from the same
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study, the achieved settling time is of 0.75–2 s, very close to our values. The main advantages of these
two (MIAC and MRAC) controllers are the overshoot cancellation, but the cost is the control effort.
Analyzing the active disturbance rejection controller designed in [11], the presented settling times are
0.85–1.5 s for a 20◦ step input, overshoot is 7–25%, comparable with our results. The advantage of the
high-order sliding mode-based fixed-time active disturbance rejection control from [11] is that it tracks
the unknown disturbances in about 3 s.
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Table 1. The obtained performance measures.

Movement Overshoot
[%]

Settling Time
[sec]

Steady State
Position Error

Front-back 13.75 0.65 0
Left-right 12.5 0.51 0

Rotation around the central axis 0 1.2 0
Up-down 2 0.8 0

Comparing our results with the results of the bioinspired controller from [10], the present results
are still competitive. Moreover, imposing different settling time and overshoot in the design stage, it is
possible to set a different transient response. Reducing the overshot will increase the settling time and
vice versa. Obviously, designing an advanced controller could increase the performances, but the idea
of present work was to analyze the most simple algorithm, a PID controller.
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4. Conclusions

The present research is focused on a low-cost, but performing UAV system design. Taken as a
whole, such a flight system presents great difficulties in obtaining positioning data, in particular due
to their complex determination or estimation algorithms. In addition to the high complexity of the
estimation algorithms, the problem of measurement errors and the resolution of the sensors must often
be taken into consideration, so that the control structures are provided with the most accurate data.
The offered solution is the quaternion-based estimation. In addition, the tuning of the proportional,
integrative, and derivative terms of the control laws is another major problem of the UAV system.
Also, the nonlinearities present in such a system introduce challenging problems.

The prototype described in the previous sections offers solution for all these problems.
As future works a global positioning system (GPS) would be added to the equipment model in

order to acquire more functionalities.
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Abbreviations

Notations Used
Ae, Be, C matrices of the state space representation
b propulsion coefficient
c(k) the control signal at this current iteration k
c(Ψ) cos(Ψ)

s(Ψ) sin(Ψ)

c(θ) cos(θ)
s(θ) sin(θ)
c(Φ) cos(Φ)

s(Φ) sin(Φ)

d aerodynamic resistance coefficient
dsensor orientation of the sensor
dref orientation of the reference system
e(k) the error signal at iteration k
êz the unit vector on the Z axis of the reference coordinate system
ê3 unit vector on the Z axis of the coordinate system attached to the quadrotor
fcom composition of functions
fx,fy,fz forces acting on the quadrotor on the X, Y and Z axes
F gradient of function f
Fa vector of forces acting on the quadrotor
fp total propulsion force developed by the engines

fv =
[

fvx fvy fvz
]T disturbances or forces that are opposed to the rotation of each engine on the X, Y

and Z axes
g the gravitational acceleration
ga the gyroscope moments caused by the combined velocities of the four motors
I inertia matrix, with components Ix, Iy, Iz on each axis
Kp, Ki, Kd the proportionality, integration, and derivative constant

l
the distance from the center of gravity of the quadrotor to the center of rotation of
the engine

m magnetic field
Ma angular velocities vector applied to the quadrotor
mq mass of the quadrotor
of objective function
Pa vector of the linear and angular velocities of the quadrotor
Pk weighting factor
Pp vector of the linear and angular positions of the quadrotor
R rotation matrix
q̂ quaternion
D
E q̂ quaternion of system E with respect to the reference system D
A
B R rotation matrix of the coordinate system B with respect to the reference system A
q̂0 initial point
q̂k+1 future orientation
q1 q2 q3 q4 components of the quaternion q
r(k) the reference signal at current iteration k
“rx, “ry, “rz components of the unity vector “r
TS sampling period
Tv(Φ, θ) matrix of angular velocities transformations
u input vector
ue input vector at equilibrium point
vp vector of the derivatives of the linear positions of Pp

va vector of the linear velocities of the vector Pa
.
va linear acceleration
wx wy wz angular positions on X, Y and Z axes

W angular positions vector
X state vector
Xe state vector of equilibrium point
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xe, ye, ze equilibrium points on the X, Y and Z axes
y output vector
y(k) the output of the system, measured by sensors at iteration k
Greek Letters
α, β constants
Ψ, θ, Φ Euler angles
τa vector of angular velocities generated by the velocity differences of the four motors

τx τy τz
angular velocities on the X, Y and Z axes generated by the velocity differences of the
four motors

τv vector of angular velocities produced by air currents on each motor
τvx τvy τvz angular velocities produced by air currents on each motor on the X, Y and Z axes
µ algorithm step
µt variable step at time t
ωa vector of the angular velocities of the vector Pa

ωp vector of the derivatives of the angular positions of Pp

Ωa =
[

Ω1 Ω2 Ω3 Ω4
]

vector of angular velocities of the four motors
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