Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity
Abstract
:1. Introduction
2. Physical Model
3. Husimi Distribution (HD)
3.1. Husimi Function
3.2. Wehrl Entropy
4. Squeezing Phenomenon
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Mohamed, A.-B.A. Quantum correlation of correlated two qubits interacting with a thermal field. Phys. Scr. 2012, 85, 055013. [Google Scholar] [CrossRef]
- Bennett, C.H.; Brassard, G. Quantum cryptography: Public key distribution and coin tossing. Theor. Comput. Sci. 2014, 560, 7. [Google Scholar] [CrossRef]
- Pljonkin, A.P. Vulnerability of the Synchronization Process in the Quantum Key Distribution System. Int. J. Cloud Appl. Comput. 2019, 9, 50. [Google Scholar] [CrossRef] [Green Version]
- Pljonkin, A.; Rumyantsev, K.; Singh, P.K. Synchronization in Quantum Key Distribution Systems. Cryptography 2017, 1, 18. [Google Scholar] [CrossRef] [Green Version]
- Puigibert, M.l.G.; Askarani, M.F.; Davidson, J.H.; Verma, V.B.; Shaw, M.D.; Nam, S.W.; Lutz, T.; Amaral, G.C.; Oblak, D.; Tittel, W. Nonclassical Effects Based on Husimi Distributions in Two Open Cavities Linked by an Optical Waveguide. Phys. Rev. Res. A 2020, 2, 013039. [Google Scholar] [CrossRef] [Green Version]
- Sete, E.A.; Eleuch, H. High-efficiency quantum state transfer and quantum memory using a mechanical oscillator. Phys. Rev. A 2015, 91, 032309. [Google Scholar] [CrossRef] [Green Version]
- Baumgratz, T.; Cramer, M.; Plenio, M.B. Quantifying Coherence. Phys. Rev. Lett. 2014, 113, 140401. [Google Scholar] [CrossRef] [Green Version]
- Bennett, C.H.; DiVincenzo, D.P. Quantum information and computation. Nature 2000, 404, 247. [Google Scholar] [CrossRef]
- Von Neumann, J. Mathematical Foundations of Quantum Mechanics; Princeton University Press: Princeton, NJ, USA, 1955. [Google Scholar]
- Shannon, C.E.; Weaver, W. Mathematical Theory of Communication; Urbana University Press: Chicago, IL, USA, 1949. [Google Scholar]
- Obada, A.-S.F.; Hessian, H.A.; Mohamed, A.-B.A. Effects of a phase-damping cavity on entanglement and purity loss in two-qubit system. Opt. Commun. 2008, 281, 5189. [Google Scholar] [CrossRef]
- Husimi, K. Some properties of the Husimi function. Proc. Phys. Math. Soc. Jpn. 1940, 22, 264. [Google Scholar]
- Yazdanpanah, N.; Tavassoly, M.K.; Juárez-Amaro, R.; Moya-Cessa, H.M. Reconstruction of quasiprobability distribution functions of the cavity field considering field and atomic decays. Opt. Commun. 2017, 400, 69. [Google Scholar] [CrossRef] [Green Version]
- Miller, C.A.; Hilsenbeck, J.; Risken, H. Asymptotic approximations for the Q function in the Jaynes-Cummings model. Phys. Rev. A 1992, 46, 4323. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Eleuch, H. Coherence and information dynamics of a Λ-type three-level atom interacting with a damped cavity field. Eur. Phys. J. Plus 2017, 132, 75. [Google Scholar] [CrossRef]
- Hessian, H.A.; Mohamed, A.-B.A. Quasi-Probability Distribution Functions for a Single Trapped Ion Interacting with a Mixed Laser Field. Laser Phys. 2008, 18, 1217–1223. [Google Scholar] [CrossRef]
- Furusawa, A.; Sørensen, J.L.; Braunstein, S.L.; Fuchs, C.A.; Kimble, H.J.; Polzik, E.S. Unconditional Quantum Teleportation. Science 1998, 282, 706. [Google Scholar] [CrossRef] [Green Version]
- Sorensen, A.; Molmer, K. Spin-Spin Interaction and Spin Squeezing in an Optical Lattice. Phys. Lett. A 1999, 83, 2274. [Google Scholar] [CrossRef] [Green Version]
- Flouris, K.; Jimenez, M.M.; Debus, J.-D.; Herrmann, H.J. Landau levels in wrinkled and rippled graphene sheets. Phys. Rev. B 2018, 98, 155419. [Google Scholar] [CrossRef] [Green Version]
- Jabri, H.; Eleuch, H. Quantum fluctuations inside a microcavity with a pair of quantum wells: Linear regime. JOSA B 2018, 35, 2317. [Google Scholar] [CrossRef]
- Qasymeh, M.; Eleuch, H. Quantum microwave-to-optical conversion in electrically driven multilayer graphene. Opt. Express 2019, 27, 5945. [Google Scholar] [CrossRef]
- Fang, M.F.; Zhou, P.; Swain, S. Entropy squeezing of an atom with a k-photon in the Jaynes-Cummings model. J. Mod. Opt 2000, 47, 1043. [Google Scholar] [CrossRef]
- Wineland, D.J.; Bollinger, J.J.; Itano, W.M.; Heinzen, D.J. Squeezed atomic states and projection noise in spectroscopy. Phys. Rev. A 1994, 50, 67. [Google Scholar] [CrossRef]
- Hillery, M. Quantum cryptography with squeezed states. Phys. Rev. A 2000, 61, 022309. [Google Scholar] [CrossRef] [Green Version]
- Sete, E.A.; Eleuch, H.; Das, S. Semiconductor cavity QED with squeezed light: Nonlinear regime. Phys. Rev. A 2011, 84, 053817. [Google Scholar] [CrossRef]
- Korbicz, J.K.; Gühne, O.; Lewenstein, M.; Häffner, H.; Roos, C.; Blatt, R. Generalized spin-squeezing inequalities in N-qubit systems: Theory and experiment. Phys. Rev. A 2006, 74, 052319. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.A.; Eleuch, H.; Obada, A.-S.F. Quantum effects in two-qubit systems interacting with two-mode fields: Dissipation and dipole-dipole interplay effects. Results Phys. 2020, 17, 103019. [Google Scholar] [CrossRef]
- Yu, M.; Fang, M. Steady and optimal entropy squeezing of a two-level atom with quantum-jump-based feedback and classical driving in a dissipative cavity. Quantum Inf. Process. 2016, 15, 4175. [Google Scholar] [CrossRef]
- Liu, X.-J.; Luo, A.; Peng, Z.-H.; Jia, C.-X.; Jiang, C.-L.; Zhou, B.-J. Generation and Preparation of the Sustained Optimal Entropy Squeezing State of a Motional Atom Inside Vacuum Cavity. Int. J. Theor. Phys. 2018, 57, 138. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Abdalla, M.S.; Khalil, E.M. Statistical properties of two-mode parametric amplifier interacting with a single atom. Physica A 2004, 336, 433. [Google Scholar] [CrossRef]
- Obada, A.-S.F.; Ahmed, M.M.A.; Faramawy, F.K.; Khalil, E.M. Entropy and entanglement of the nonlinear Jaynes-Cummings model. Chin. J. Phys. 2004, 42, 79. [Google Scholar]
- Golkar, S.; Tavassoly, M.K. Atomic motion and dipole–dipole effects on the stability of atom-atom entanglement in Markovian/non-Markovian reservoir. Mod. Phys. Lett. 2019, 34, 1950077. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A. Non-local correlations via Wigner Yanase skew information in two SC-qubit having mutual interaction under phase decoherence. Eur. Phys. J. D 2017, 71, 261. [Google Scholar] [CrossRef]
- Eberly, J.H.; Narozhny, N.B.; Mondragon, J.J.S. Periodic Spontaneous Collapse and Revival in a Simple Quantum Model. Phys. Rev. Lett. 1980, 44, 1323. [Google Scholar] [CrossRef]
- Brune, M.; Raimond, J.M.; Goy, P.; Davidovich, L.; Haroche, S. Realization of a two-photon maser oscillator. Phys. Rev. Lett. 1987, 59, 1899. [Google Scholar] [CrossRef]
- Louisell, W.H. Coupled Mode and Parametric Electronics; Wiley: New York, NY, USA, 1960. [Google Scholar]
- Kumar, S.; Mehta, C.L. Theory of the interaction of a single-mode radiation field with N two-level atoms. II. Time evolution of the statistics of the system. Phys. Rev. A 1981, 24, 1460. [Google Scholar] [CrossRef]
- Kuang, L.M.; Tong, Z.Y.; Oyang, Z.W.; Zeng, H.S. Decoherence in two Bose-Einstein condensates. Phys. Rev. A 2000, 61, 013608. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.; Eleuch, H. Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity. Eur. Phys. J. D 2015, 69, 191. [Google Scholar] [CrossRef]
- Redwan, A.; Abdel-Aty, A.-H.; Zidan, N.; El-Shahat, T. Dynamics of the entanglement and teleportation of thermal state of a spin chain with multiple interactions. Chaos 2019, 29, 013138. [Google Scholar] [CrossRef]
- Abdalla, M.S.; Obada, A.S.-F.; Khalil, E.M.; Mohamed, A.-B.A. Wehrl entropy information and purity of a SC charge qubit interacting with a lossy cavity field. Solid State Commun. 2014, 184, 56. [Google Scholar] [CrossRef] [Green Version]
- Milburn, G.J. Intrinsic decoherence in quantum mechanics. Phys. Rev. A 1991, 44, 5401. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, A.-B.A. Pairwise quantum correlations of a three-qubit XY chain with phase decoherence. Quantum Inf. Process. 2013, 12, 1141. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A. Bipartite non-classical correlations for a lossy two connected qubit-cavity systems: Trace distance discord and Bell’s non-locality. Quantum Inf. Process. 2018, 17, 96. [Google Scholar] [CrossRef]
- Courty, J.-M.; Spälter, S.; König, F.; Sizmann, A.; Leuchs, G. Noise-free quantum-nondemolition measurement using optical solitons. Phys. Rev. A 1998, 58, 1501. [Google Scholar] [CrossRef]
- Barut, A.O.; Girardello, L. New coherent states associated with non-compact groups. Commun. Math. Phys. 1971, 21, 41. [Google Scholar] [CrossRef]
- Vieira, V.R.; Sacramento, P.D. Generalized Phase-Space Representatives of Spin-J Operators in Terms of Bloch Coherent States. Ann. Phys. 1995, 242, 188. [Google Scholar] [CrossRef]
- Zyczkowski, K. Localization of Eigenstates & Mean Wehrl Entropy. Physica E 2001, 9, 583. [Google Scholar]
- Wehrl, A. General properties of entropy. Rev. Mod. Phys. 1978, 50, 221. [Google Scholar] [CrossRef]
- Mohamed, A.-B.A.; Eleuch, H. Quasi-probability information in a coupled two-qubit system interacting non-linearly with a coherent cavity under intrinsic decoherence. Sci. Rep. 2020, 10, 13240. [Google Scholar] [CrossRef]
- Van Enk, S.J.; Kimble, H.J. Quantum Information Processing in Cavity-QED. Quant. Inform. Comput. 2002, 2, 1. [Google Scholar]
- Obada, A.-S.F.; Mohamed, A.-B.A. Erasing information and purity of a quantum dot via its spontaneous decay. Solid State Commun. 2011, 151, 1824. [Google Scholar] [CrossRef]
- Sanchez-Ruis, J. Improved bounds in the entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 1995, 201, 125. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khalil, E.M.; Mohamed, A.-B.A.; Obada, A.-S.F.; Eleuch, H. Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity. Mathematics 2020, 8, 1830. https://doi.org/10.3390/math8101830
Khalil EM, Mohamed A-BA, Obada A-SF, Eleuch H. Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity. Mathematics. 2020; 8(10):1830. https://doi.org/10.3390/math8101830
Chicago/Turabian StyleKhalil, Eied. M., Abdel-Baset. A. Mohamed, Abdel-Shafy F. Obada, and Hichem Eleuch. 2020. "Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity" Mathematics 8, no. 10: 1830. https://doi.org/10.3390/math8101830
APA StyleKhalil, E. M., Mohamed, A. -B. A., Obada, A. -S. F., & Eleuch, H. (2020). Quasi-Probability Husimi-Distribution Information and Squeezing in a Qubit System Interacting with a Two-Mode Parametric Amplifier Cavity. Mathematics, 8(10), 1830. https://doi.org/10.3390/math8101830