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Abstract: The main purpose of this paper is to study the global existence and uniqueness of solutions
for three-dimensional incompressible magnetic induction equations with Hall effect provided that
||u0||H% o T 1boll 2 (0 < & < 1) is sufficiently small. Moreover, using the Fourier splitting method
and the properties of decay character r*, one also shows the algebraic decay rate of a higher order
derivative of solutions to magnetic induction equations with the Hall effect.
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1. Introduction

Supposing that p denotes the density, u describes the velocity field of the fluid, b means the
magnetic field and 7 is the pressure, a high-resolution, non-oscillatory, central scheme for the
Hall-MHD model [1,2] can be introduced in the following:

91 ou), (1)
b2
o ( pu { uu +< 2)13><3—bbt}, 2)
ot = —V xE, ®)
2
atU:—V-{(LH—n—bZ)u—l—ExB}, (4)
V-u=V-b=0. (5)

Systems (1)-(5) follow from the MHD equations after normalizing as the Geospace Environment
Modeling (GEM) challenge. The total energy, U, momentum, pu and magnetic field, b, can be coupled
through the following state equation:

U= ——+—+ =. (6)
Moreover, one expresses the electric field in the generalized Ohm’s law [1,2]:

E=—uxb+yj+ ”Xb 4 Vm (5‘3

AT (Y sy, 7)
j=Vxb, 8)

where L, J. and é; denotes the normalizing length limit, electron inertia and ion inertia, respectively.

For the simulations considered in the work, the electron pressure tensor — f— Y7 will be ignored [2].
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Considering the incompressible case, denoting p = 1, combining (1)—(8) together yields the
following three-dimensional system [1,3-5]:

divu = divb =0, )
atu—l—u-Vu—l-V(n—i—;b|2>—Au:b~Vb, (10)

2 . 2
ob — <58) oAb +u-Vb—b-Vu—Ab= ﬁro’c(b X roth) — <56> rot((u - V)rotb), (11)
Lo Lo Lo

(#,0)(-,0) = (uo,bo)(-) inR>. (12)

For simplicity, §; = 1 and (f—‘(’))z = 11in this paper.
If 5. = 0O, systems (9)—(12) reduce to the three-dimensional incompressible Hall-MHD system,
whose applications cover a very wide range of physical objects, for example, magnetic reconnection in
space plasmas, star formation, neutron stars and geo-dynamo. The global well-posedness, regularity
criterion and decay characterization of solutions to 3D incompressible Hall-MHD system were studied
by many authors [6-14]. It is worth pointing out that Wan et al. [15] assumed that the initial data
(ug, bp) € H™(R®) withm > 3, V-uy = V-by = 0, and ||u0||B%+£ + ||b0||B
2,00

y are sufficiently small,

2,00

proving that the 3D Hall-MHD system admits a unique globalr solution (u,b) € C(0,c0; H™(R3)),
which may be the latest result on the small initial data global well-posedness for the Hall-MHD system.

For systems (9)-(12), Fan et al. [16] established the existence of global weak solutions, existence of
local strong solutions and some blow-up criteria. They pointed out that if uy € L?>(R?), by € H'(R3)
and V - uy = V - by = 0, then there exists a weak solution (u, b) for systems (9)—(12), which satisfies
the energy inequality

. T
2 2 2 2 2 2 2 2
b|* + |Vb|*)d 2// v Vb ddt</ b Vho|?)dx.
/RS(IuI+||+| |")dx + A o (IVul™ +[Vb[P)dxdt < | (Juol” + [bol” + [Vbo|)dx

Latterly, Ma et al. [17] proved the global existence of strong solutions to 3D two-fluid MHD
equations provided that ||uo||H p + [|bo| At HbOHH% is sufficiently small. The main difference
between systems (9)—(12), the Hall-MHD system and the two-fluid MHD system is the nonlinear term
rot ((u - V)rotb). Because of the existence of this nonlinear term, it is difficult to obtain the global
well-posedness of systems (9)—(12) under the same assumption as Wan et al. [15] and Ma et al. [17].

The first purpose of this paper is to to prove the following theorem on the global well-posedness
of systems (9)—-(12).

Theorem 1. Let ¢ € (0,1) and m,p,K € N, K > max{m,3}. Assume that the initial data
(10, bo) € HX(R3) x HKHY(R3) with V - ug = V - by = 0 such that

ol 3+ + [1boll 2 < 77(a), (13)

for some small enough constant n(«) > 0. Then, there exists a unique global solution (u, b) for systems (9)—(12),
such that
18F A™ul|Z, + [|8f A™l[F2 + |9 A™ b 72 < C(lluollFx + l1bollZ), (14)

forallm+2p < K.

Remark 1. In the above and the following, A™ is defined by

m

A" f(x) = (=8)2 f(x) = /R3 1" f(§)e?edg. (15)
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The temporal decay rate of solutions is also an interesting topic in the study of dissipative
equations. One of the main tools to study the temporal decay rate is the Fourier splitting method,
which was introduced by Schonbek in [18,19]. Laterly, this method was well extended to investigate the
decay for the solutions of PDE from mathematical physics, see, e.g., Schonbek et al. [20] for the MHD
sysem, Brandolese et al. [21] for the viscous Boussinesq system, Dai et al. [22] for liquid crystal systems,
Weng [14] and Chae et al. [8] for the Hall-MHD system, Niche [23] for the Navier—Stokes—Voigt
equations, Ferreira et al. [24] for quasi-geostrophic equations, Zhao et al. [25] for third grade fluids, etc.

Recently, in order to characterize the decay rate of dissipative equations more profoundly,
Bjorland et al. [26] and Niche et al. [27] introduced the idea of decay indicator P, and decay character
r*. Latterly, Brandolese [28] improved the definition of the decay indicator and the decay character
by taking advantage of the insight provided by the Littlewood—-Paley analysis and the use of Besov
spaces. For more details on P, and r*, we refer to Section 2.

In consequence, it is desirable to understand the asymptotic behavior of the magnetic induction
equations with the Hall effect. With the aid of the classical Fourier splitting method and the properties
of decay character r*, the decay rate of solutions to systems (9)—(12) has been characterized:

Lemma 1 ([29]). Assume that (ug,by) € L2(R3) x HY(R3), V-uyg = V -by = 0and r* = r*(uy) =
*(by) € (—3,+00) is the decay character. Let (u,b) be the solution of systems (9)—(12) with initial value
(ug, by). Then

: 3 * 5
lu(®)[172 + Ib(0)[1F2 + [VB(1) |72 < C(L+ 1)~ ™nz+730, vt > o,
where the constant C depends essentially on ||ug|| 2, ||bo||;2 and ||Vbo||;2.

Lemma 2 ([30]). Suppose that m € N, Ko > max{3,m}, (ug,by) € HX0(R3) x HK*+(R3) and
Vug=V-by=0.Let r* = r*(up) = r*(by) € (—3,+00) be the decay character. Then, for the small
global-in-time solution (u, b), there exists a positive constant C = C(, ||ug || ., ||bol| yxo+1), such that

[A™u]2, + | A"D2, + |A™ b2, < C(1 ) min{3Erbm ) o laree t.

On the basis of Lemmas 1 and 2, using the properties of decay character 7* and Fourier splitting
method, one can continue to study the decay characterization of solutions to systems (9)-(12), establish
the decay rate of higher-order derivative of solutions on both time and space. Note that the global
in-time existence and uniqueness can be guaranteed for sufficiently small initial data. The result can
be described as follows:

Theorem 2. Let m, p € N, K > max{3 + 2p,m +2p} and r* = r*(ug) = r*(by) € (—3,+c0) be the
decay character. Suppose that (ug,by) € HX(R?) x HK+H1(R®) with V - ug = V - by = 0. Then, there exists a
positive constant C = C(, ||ug|| gk, ||bol| gx+1), such that

||afAmuHi2 + ||afA’”b||%2 + HafAerle%Z S C(l + t)fmin{%+r*+m+2p,g+m+2p}’ (16)
for large t.

The rest of this paper is organized as follows. In Section 2, we give some preliminary results on
the properties of decay character r*. Section 3 is devoted to the proofs of Theorem 1. The proof of
Theorem 2 is given in Section 4. Conclusions are outlined in Section 5.
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2. Properties of Decay Character

2.1. Definition and Properties of Decay Character

The definitions of decay indicator Pr(ug) and decay character r* was first introduced in [26],
Brandolese [28] redefined them, which seems more precise.

Definition 1 ([28]). Suppose that vy € L2(R"), B, = {¢ € R" : |¢| < p} and A = (—A)%. If the following
two lower and upper limits exist, they are the lower and upper decay indicators of vy:

BERT —2r—n o~ 2
Pi(w))- = Jim o [ (6P,

—0t

Pi(e)) s = Jim o [ (@) P

When Pr(vg)— = Pr(vg)+, then Pr(vy) = Pr(vg)— = Pr(vg)4+ can be defined as the decay indicator
corresponding to vy.

Definition 2 ([28]). The upper and lower decay characters of vy € L?(R") are defined as
r(vo)+ =sup{r € R: P,(vg)4 < oo},
r(vg)— = sup{r € R: P(vp)— < co}.
Definition 3 ([28]). Ifvg € L2(R") is such that there exists r* € (—%,c0) such that
r*(vg) = max{r € R: P,(v9)+ < oo} = min{r € R: P,(v9)- > 0}.

then this number r* = r*(vg) can be called the decay character of vy. The decay character of vy in the two limit
situations is defined as follows:

r*(vg) = 400, ifr(vg)+ = r(vg)- = +oo,

NS

,ifr(vo)+ =r(vg)- = —

NS

r(vg) = —

Lemma 3 ([27]). Let vg € H*(R"), with s > 0. Then

(1) if =% < r*(vg) < oo, then =5 +s < ri(vy) < coand ri(vg) = s+ r*(vo);
(2) r¥(vg) = oo ifand only if r*(vg) = oo;
(3) r*(00) = —4 ifand only i % (00) = 3§ +.

Remark 2. The decay character r* = r*(vg) measures the “order” of 0o(¢) at & = 0 in frequency space.

The theory of [26,27] allows defining the decay character only in the following three situations:

(1) Either, 3r € (=% +5,+00) such that 0 < P} (ug) < oo, and in this case r is unique,
(2) OrVre (=% +s,+00), one has P (ug) = 0,
(3) OrVr e (=% +s,+00), one has P (ug) = +oo.

However, not in the other cases (e.g., it can happen that
Jr,r € (—g + s, +00) such that P; (ug) = 0 and P (up) = +o0.

In addition, it can also happen that the limit-defining P; (1) does not exist.
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2.2. Decay Characterization of a Linear Equation

Consider the linear part of (11):

v — Avy — Av =0,
{ e x€R", neNT. (17)

v(x,0) = vo(x),
Define the space H' (R3), such that
HU”%{l(Ra) = ||U||%2(R3) + HVUH%}/ s > 0.

Hence,

d 2 2

Z el +1IVol) +2( Vol 2 = 0.
In the Fourier space, the solution to (17) is

_ k2,
(g, 1) =e 1T 90(2),

and

aP [4 “:|2 P ‘éﬁzt

(¢, 1) = (—1 e 7 9(¢).

et = (17 (£ k) (&)

The Lz—decay characterization of solutions to system (17) was established by Niche [23].

Lemma 4 ([23]). Assume that vy € H'(R"), which has decay character r*(vy) = r*, is a solution to
system (17). Then

(1) If =5 < r* < Hoo, there exist two positive constants C1, C > 0, such that
Cr1+6)" ) < Jo(®)[72 + I Vo(b) |72 < Ca(1+ 1) EH;
(2) ifr* = —7, there exists C = C(e) > 0, such that
lo(®)172 + Vot [} = CA+1)75, Ve>0,

which means the decay of ||ZJH%2 + [|Vo(t) ||%2 is slower than any uniform algebraic rate;
(3) ifr* = +oo, there exists a C > 0 such that

[o()17 + [[Vo(t)|7, < CA+)"™, Vm >0,
that is, the decay of Hv||%2 + ||Vo(t) ||%2 is faster than any algebraic rate.
Therei s also a lemma on the H*-decay rate of solutions to system (17).

Lemma 5 ([31,32]). Suppose that Avg € H'(R") (s > 0) has decay character i = r(vg). Then

(1) If =5 < r* < Hoo, there exist two positive constants C1, C > 0, such that
i1+ E < A0 + AT o()|F < C1+H~ )
(2) ifr* = oo, there exists a C > 0 such that
[o()I7> + A o))}, < C(1+8)7", Vm >0,

that is, the decay of HASUH%2 + ||A5+17J||%2 is faster than any algebraic rate.



Mathematics 2020, 8, 1847 6 of 25

The following result regarding the decay characterization of solutions to (17) can be found in [32].

Lemma 6. Let vg € HXY(R") (s > 0) have decay character ri = r}(vg). Then, forall 0 < m +2p < K,
the following decay estimates hold:

(1) If =5 < r* < oo, then there exists a positive constant Cy such that
lBf A™0(B) 172 + 9f A" lo(1) |72 < Ci (14 1)),
(2) ifr* = oo, given any s > 0, there exists a positive constant Cy = Cy(s) such that
If A™o(B)[IZ2 + 0y A" Mo (t) 72 < Co(1+6)7%,
which means the decay is faster than any algebraic rate.

2.3. Decay Characterization of the Linear Part for Systems (9)-(12)

For the linear part of systems (9)—(12):

iy — Ait =0,
b — Ab — AF =0, \

x € R’ (18)
i(x,0) = ip(x),

Combining the results of Niche [23], Niche et al. [27], Anh et al. [33], Zhao [30], we obtain the
following three lemmas:

Lemma 7 ([32]). Assume that (fip,by) € L2(R3) x H(R3), which has decay character r*. Then
(1) If—% < r* < 400, there exist two positive constants C1, Cy > 0, such that
Cr(1+8)~CF) < flat)[3 + B2 + | VB2 < Co(1+ 1)~ G+,
(2) ifr = —%, there exists C = C(e) > 0, such that
12 ()12 + 1B(DII72 + IVB(DII7 > CA+6)7F, Ve >0,

which means the decay of ||i(t) ||%2 + |Ib(t) ||%2 + |IVb(t) ||%2 is slower than any uniform algebraic rate;
(3) ifr* = oo, there exists a C > 0 such that

a7z + IBOI72 + VB[ < C(L+HT", ¥m >0,
that is, the decay of || (t) ||%2 + ||b(t )H + || Vh( )||%2 is faster than any algebraic rate.
Lemma 8 ([32]). Suppose that (A%ilg, A°bg) € L?(R3) x H'(R3) (s > 0) has decay character r}. Then
(1) If—% < r* < 400, there exist two positive constants C1, Co > 0, such that
Cy(1+ 8~ G < A% ()| + | A1) |2 + [ ASVB() |2 < Co(1+£)~ (347759,
(2) ifr* = oo, there exists a C > 0 such that
IASE(E) |2 + [AB() 12 + AT < CO+8)™, ¥m >0,

that is, the decay of | A (t)[|2, + | ASB(t) |12, + || ASVB(t) |3, is faster than any algebraic rate.
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Lemma 9 ([32]). Suppose that K € Z*. Let (iip, bg) € HX(R3?) x HX*1(R3) have decay character r*. Then,
forall 0 < m+2p < K, the following decay estimates hold:

(1) If—% < r* < oo, then there exists a positive constant Cq such that
- - * 3
lof A™a(#)|I72 + [f A™B(D) 172 + 19f A" 1B() |72 < Ca(1 4 )~ 722
(2) ifr* = oo, given any s > 0, there exists a positive constant Cy = Cy(s) such that
19 A™a(t) (172 + 9y A™B(1) 172 + lof A" 1B (1|72 < Ca(1+1)7°,
that is, the decay is faster than any algebraic rate.

3. Proof of Theorems 1

One first proves that (14) holds for p = 0.
Testing by u and b, respectively, adding them together gives

> (Il + 12+ [V6[2) + 9wl + |90 = 0. 19)

Taking A to (11), testing by Ab, respectively, it yields that
Ld
2dt

— / A~ Vb) Abdx + / A(b- Vi) Abdx

(1Bl + 1A261: ) + [ A2]1

+/ (rot(b X rotb)) Abdx — /R3 A(rot((u - V)rotb)) Abdx (20)

<Cllull 311Vl 61421l 2 + ClIBI| o | Ve 3| A% ] 12
+C(IVb] 5[Vl e + 1Bl [ A%l 2)[|A%B ] 2 + C| Ve ]| A% 12
<C(llull 3 + 1Bl IV + IIWHZ%H),

where one has used

‘ /R3 A(rot((u - V)roth)) Abdx

<

/R3 A((u - V)rotb) Arotbdx — /RS((u - V)Arotb) Arotbdx

<C|| Vil A% .

Taking A3 7 to (10), testing by A2y, it yields that

1d|
2 dt

——/]RSA7+5(u~Vu)A7+Eudx+/RSA%+S(b-Vb)A%“udx

[ATFu]2, + | AT 2,

3 5 3 5 21
<Cllullgs A2 ull || A2 ul| 2 + Cl|b]| oo [| A2 | 2| A2 0|2 @

1 3 3
<ClIA2ull 2 | AZFeul|Z, + ClIb] oIV o | AZ ]| 2

1 5 5
<Cl|AZul| 2 | AT ulF2 + ClIbl 2 (IVBIF0 + A2 ullZ2),
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Combining (19)—(21) together gives

d

7 (IIMII2 3.t ||b|ﬂ2> + VUl 3.+ 1Vl < Clull, 3.+ 1Bl2) (VI + 17Ul 5 ).

Combining condition (13) with proof by contradiction, the global bound as follows can
be obtained:

t
ull® 5+ 10172 + [ (IVull? 5, +[VEIF)dT <C, V>0 (22)
H2 0 H2

From the local well-posedness result (see [16]), (19) and (22), one easily proves that Theorem 1
holds for p =0, i.e,,

IA™ul|Z2 + [A™B]1 72 + | A" 01172 < C(l[uollFx + llbollFc), (23)

provided that K > max{m,3}.

In the following, the time derivatives of the solution in terms of the space derivatives will be
bounded. Let A = (I — A), then A~! = (I — A)~1. Applying 9" A™ to the solution of systems (9)—(12),
it yields that

13} A" ullF, < CCIFA™2ullF + 3] A™ (u - Vu) |72 + 9] A™ (0 - VD)|32), (24)

Iof " A" (b — Ab) I3
<C(lI9F A" 2|7, + [|0f A™ (u - V) |72 + 0 A™ (b - Vu)|7 (25)
+9F A"V x [bx (V x D[z + 9] A"V x [(u- V)(V x )] 72)-
and )
9 " A"l
<C(llgf AT A™2b||T, + [|9f AT A™ (u - VB) 72 + (|0 ATIA™ (b V) |7, (26)
+{Of ATTATN x [bx (V x b)][|7 + [|9f AT AV x [(u- V)(V x b)][[72)-
Using Gagliardo-Nirenberg inequality, the second term on the right hand side of (24) can be
bounded as

p m
1) A™ (1 - V) |12, ;) Zo ChCm |08 A™u|2, ol P AM—m+1y | 2,
A (27)
<C Z Z 1P A™ 2] 2, |30 TP ARy 2,
Similarly,
Y A™ (b VD) |13 <CZO ZOIIB"A“‘+2bII 2|0 P AT ||, (28)
p=0m
[0 AL A (u - VB)||2, + [0} ATIA™ (b - V) |12
<Clof A" (u- Vb) |13, + [0 A™ (b - Vu)|[7, 29)

L& 1 - _ 1 - _
<C Y Y (IaPA™ 2ul o] P A2, + [[9f A 2l 3 P A2 mp |2, )
p=0m=0

In addition,
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[0f ATTA™Y x [b x (V x b)] |12,
<C|of A"V x [bx (V x b)]||2,

P m+1
<CY. Y. ChChilof A™b|fw 0] P A2 |7, (30)
p=0m=0
P, 1 2 —-p 2 2
<C Y, Y. P A™ D] 2]|9f AT 20| 2 [l0f TP A7,
p=0m=0
and ) X
[0f A™TAMY x [(u - V)(V X b)][[72
<Cl|of A"V x [(u- V)(V x b)][17
P, retl 2 pP—p 3 2
<CY. Y CChallof Amullflof P AT ™b] 1 31)
p=0m=0
2, el 1 2 p—p 3 2
<CY. Y IOFA™  ul 2 llof A™2ul| 2[|0f P AT 1,
p=0m=0
Moreover,
1 1 +1
lof " AT 1bF, <C(l]9f T A™b|IF2 + [Jof T A™ b)) )
+1 +1
<C(|[of T A™b|I72 + [[of T A (b — Ab)|[72).
Putting (24)—(32) together gives
+1 +1 +1
[0 Al + 3] T ATBIE: + 0] AT o )

SC(Haqu%-]nH-Z + Hafb”%-]m-ﬂ + HafAb”%-]m-%-Z)r
which means, for all m, p, K € N such that K > max{m, 3} + 2p,
19f A™u||32 + [[0f A™b|72 + [19] A" 172 < C(lluolIF + [1boll3x + [1ABo I 3x)-
This complete the proof.
4. Proof of Theorem 2

4.1. Auxiliary Lemmas

In [29], the author established the following result:

Lemma 10 (see [29]). Let (ug,bg) € L?(R3) x H'(R®) with divug = divby = 0. Suppose that (u,b) is the
solution of systems (9)—(12) with initial value (uo, by). Then

[ HF<cC

¢ 2
2R+ 12 ( [ (eto) I + 10005 ) ] : (34)

and
2l¢[%t

_ R t 2
e T by ()12 + (1812 + 121 + 121°) ( | oy 22+ ||b<t>||%2>ds) ] TGS

bg,HIP <C

In order to characterize the decay estimates of systems (9)—(12), the following lemma is introduced.

Lemma 11. Suppose that the assumptions listed in Lemma 10 are satisfied. Then, for p > 0,
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N oE2f A t 2
|afll((:,f)‘2 §C\§|4p€ 2(¢] tluo(g,t)|2—|—C’§|4P+2 l:/o (Hu”%z + Hb|%2)ds]

p=l p (36)
+C Y Y a2 atul 2 0P ul 2,
p=01=0
and
e 2 4p 2 mzzf A 2 w2 | [ 2 2 2
B{B(E D2 <Clgle 57 e, 0 + CIEr# 2 | [l -+ bl3)as|
g dp—d4p—2 2 4 (37)
+CY Y gl 1+ 27+ 121
p=01=0
x ([[0ku]| 221108 ~"b]|2, + [|9}b]132 108 w12 + [10L0]| %, [10F ' b]|13).
Proof. Note that
p-1 P .
Ha(E ) =(~1)PIEPePag (@) + Yo (—1)P P g 2298 (u- Vu — b - Vb) (G, 1)
p=0 (38)
t — —
+/0 (—1)p|§\2pe_‘5|2(t_5)(uoVu—b'Vb)(g,s)ds.
In addition,
9 (- Vu—b- V) (&, )| <[af L giuiu(&, )| + [0} L &bb (S, t)]
] ]

(39)

p
- —1
<C Y (e[ (lotull 2108 ull 2 + [1030]| 2 [10F Bl 2)-
=0

Adding (38) and (39) together, by using (34), it yields (36). On the other hand, the following
equality holds:

|2 p—1

Ob(E, 1) =(—1)P|ge TR bo(2) + Y (—1)P P eV [uh Vb — b Vu
p=0
+V 5 [(Vxb) x b] + V x [~ V(V x b)]] (&) 0
¢ e gy r— _—
+/0 (—1)P|[2pe Tl ) (17 Vb— b Vu+ V x [(V xb) x 1]
+V X [u-V(V x )] (&5)ds.
Moreover,
— — p
08 (1- Vb —b-Vu) (& 6)] < C Y1l (l0tull 21108 bl 2 + 1946 2108 ull 2), (41)
1=0
— p
0PV % ((V x b) x b)(&,1)| < CY_ [&[2[|0tb]| 2 [|0) ']l 2, 42)

1=0

and

—

p
0PV x (u-V(V x 0)(& 1) < CY_|ePlIobull 2107 bl 2 + 180l 2 )10F ull2),  (43)
1=0

Combining (40)—(43) together, applying (35), the estimate (38) is obtained, and the proof
is completed.
O
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4.2. Proof of Theorem 2

Theorem 2 is proven using the mathematical induction in this subsection.
First of all, the fact that Theorem 2 holds for the case p = 1 is proven:

Lemma 12. Let m € N, K > max{5,m + 2} and r* = r*(ug) = r*(by) € (—3,+00) be the decay character.
Suppose that (ug,by) € HX(R3) x HKH(R3) with V - ug = V - by = 0. Then, there exists a positive constant
C= C(Hu()HHK, HbOHHK“)r such that

1A u]|2, + 3eA"D]|%, + [[8:A™H1B]|2, < C(1 4 )~ min{EHr s m 3t for farge t. (44)

Proof. In order to prove Lemma 12, one first proves the case m = 0. Applying d; to (10) and (11),
multiplying both side by d;u and 9;b respectively, integrating over R?, gives that

14,
2.dt
<|(1t- 3w, duu)| + | (b - 3, d¢b)| + |(4 - 9 AD, 3b)| + |(b - 3 Ab, dyu)| + |(b - 9 AD, 3 AD)|

+ (0t - V(V x b),V x b)| + | (¢ - 0t Au, u)| + | (3¢b - 0¢Au, b)| + | (91 - ¢ Ab, b)|
+ (3¢ - 9sAb, u)| + |(9¢b - 9t Ab, Ab)| + |(u - V(V X bt), V X by)|
<llull s l|0eAul| 2 [[0rull o + [[bll o [|0r Al 2|01 o + [l 3 ]| 9eAD 2 [19¢D ]l s
+ (16115 [10eAD 2 [[Beell 6 + 1|6 |9 AD|[F2 + | A%D]| 31| 9¢AD | 2] e
+ [ullpallosell s l|9eAull 2 + 1[0l 13 [|9ebll 16 |9 Autl| 12 + [[uel| 3] 0:b| L6 ]| 0r Ab[ 2
+ 1|6l s |0l 6|9 ADI 2 + ([ AL 3]10:D]l 6|8 Ab || 2 + || A [[3: A 172

91|72 + 196b1 7> + [19:Ab[1T2) + [|9e A7 + [|9:Ab 7

1 1 1 1 1 5 3
<(IA2ullp2 + |A2D] 12 + | AZul| 2 + || Ab|| %, || A%D| 2, + | AZb]| 2 + || AZb]| 2
+ [Juell ) ([[0e A 72 + [|0:AD|72)

1
§§(HatAu||%2 + HatAbHiz), for large ¢,

where
(1/[ . V(V X bt),V X bt) =0.

has been used. Then,
d 2 2 2 2 2
E(HatuHLz +1[0¢b|72 + [[0:AD|72) + [[0eAul|2 + [[0:Ab][72 <0,  for large t. (45)

Applying Plancherel’s theorem to (45) gives

& [ 1w o + 0+ 12 b, ] ag
| (46)

2 —~ —~
+ ./]11{3 7 _|E||€2 {|atu(§,t)|2 + (14 |¢]?)|0:b(¢, t)\z} d¢ <0, forlarget.

Set

._ 3172 8'(t) Cl4) — TR3
Bt = {e e BIeP < 0L B =R\ B,

where g(t) is a differentiable function of ¢ satisfying

2(0) =1, ¢'() > 0 and 2g(t) > ¢(t), Vt > 0.

Multiplying (46) by g(t) gives
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{ ) [ [ 0P + 0+ e b 07 e}
/ (19, P + (1 + &) [b(&, 02| g, for larget

It then follows from Lemma 11 that

g [ [ 0P + (1 + |P)Ia(E, )P de
<ct[ge [ [e—25'2f|ﬁo<c>2+ 1+ IePye

0[50 [ 1 (Iute) it + I+ IR IR ) deds

‘Zfﬁztu}o@)z] agds
47)

t t 2
+C/0 ¢(s) /B(S) |€|6(1 + |éf|2 + |§|4) {/o (||u(T)||%2 + Hb(T)|i2)dT] d¢ds, for large t.

The right hand side of (47) is estimated in the following. For the first term, by using the estimates
from Lemma 6, it yields that

5 le2

t _

ROV, [e—zfzfmo(@nz 1+ [P o >|2] dgds
<C/ g(5)([0r(s) (12 + 1B (5) 122 -+ 110 AB(s) [22)ds #8)
<C/ ¢(s)(145)~min{r+Z2}gs,

where (i1, b) is the solution to the linear system (18). For the second term, after integrating in polar
coordinates in B(t), one can deduce that

t
C [[5/6) [ 16 (o)1t + 1006) s + ) Bl 3 ) et

<C/g )(1+8)"3(1+s) 2min{r+3.3} g (49)

<C/ )(1 4 5)~ min{2r +2.23ds,  for large t.

In addition, if r* + % < %, the following estimate holds:

t 2 .
{/0 (||u(T)||%2 + ||b(T)||%2)dT] <C(1+4t)72" 71, forlarget,

then the third term of the right hand side of (47) can be estimated as

t t 2
C g [, 1IS+1ER+ 1214 | [ iR+ lbol)ar] dzas -

* t *
<C/ ¢ (s)(1+s *%(1—1—5)727 “lds < C/ g (s)(1+s)~ ~%4s, for large t.
0

Ifre+3>3,
2
[/ (Jlu(T)]| 2+||b(T)||%2)dT:| <C, forlarget,

the third term of the right hand side of (47) satisfies
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C[[56 [, 1P+ izt [ Qo + ool dzas

08 B(s) 0 L? L? (51)
< C/Otg’(s)(les)_%ds, for large t.
7 9}. Then p(t) = C(1+14)"2.

For a fixed r*, choose g(t) = (1+t)", for some m > max{r* + 5,3
It follows from (47)—(51) that

104]|%2 + [|9¢b||72 + ||0: A3
<C(1+H)™™+C(1+ t)fmin{r*+%,%} +C(1 +t)fmin{2r*+%,%}
(52)

1 9

+ C(l + t)—min{Zr*+7,§
<C(1+ t)_mi“{r“r%'%}, for large t.

Suppose that Lemma 12 holds for m < N € N7, then one can prove that it also holds for
m = N+ 1. Applying 9;AN*1 to (10) and (11), multiplying both side by 9;AN*1u and 9;AN*1b

respectively, integrating over R?, gives

1d
L2 (0, aN a2, 4 |2 AN B[R, + 24N,
+ Hat/\N-&-Zu”%Z + ||atAN+2b||%2
LN - N
p=0m=0
+ (af/\mb . atAN-&-Zu,a}*pAN-&-l—mb) _ (af/\mu AN+, a}*PAN-&-l—mb)

+ (afA’”b . atANJer, a}prNJrlfmu) + (afA’"b . atAN+2b, a}*PAN+27mb>
(O A" - 9 AN 2D, 9P AN I )|
=Lh+DL+1L+ 14+ I5+ I

Note that

N+1
n<Y g, [|(Amu-atAN+2u,atAN+1—mu)| + \(at/\mu.atAN+2u,AN+1—mu)|}
m=0

<Cllullsl|0eAN*2ul[ 2|0 AN ut]| 16 + Cll A 3]0 AN 2| 2|0 AN | 6

N+1

£C Y A" s 1 AN a2 [0 AN
m=2
N-1

+C Y oA ull [0 ANF2ul| 2 AN 5
m=0

+ ClIOeANul| 6 06 AN 20| 2| Aue]| 13 + ClEAN Nt | 6|0 AN 2| 2]

N+1
1 1 _
<ClIAZul 20 ANT2u|2, + C Y |A™ 2u| 2 [[0e AN 20| 2|9, AN T2 | 12
m=2
3 N+2. 113 N, 3 N m+1 N+2 N+3—m
+ ClAZu 2|0 AN 20l 2, [0e AN u| 2, + C Y 10eA™ | 2]|0e AN 2| 2 | AN T2 0|
m=0

1 3 N+1 1 B
< L 10AN 22, 4 ClATu| B AN ulE € Y ARl AN
m=2
N-1 s
+C ) ||8tAm+1u||i2||AN+7_mu||%2, for large t.
m=0
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Similarly,

1 3 N+l 1 N
I §§||atAN+2”H%z + Cl|AZb||7,]|0:AND|2, + C Y [|A™F2D)12, |9, AN T2 D)2,

m=2
N-1 R
+C Y 0N ||, [[ANTE |12, for large ¢,
m=0
and
I+ 1y
1 3 3
§§||3tAN+2b|I%z +C(I[AZul[To + [[AZ0]|7) ([0 ANu| T2 + [[8:ANDI7,)

N
+CY,

+1 1 1
(A" 2ulF, + A" 20| 7) ([0 AN 2" ul T + [[0:AN 270 72)

m=2

m=0

N-1
3_ 3_
+C Y (o A™ 2, + ([0 A2, ) (| ANT 2T w2, + |ANT2TM||2,),  for large t,

The following estimate also holds:

N+1
<Y Cli, [|(Amb O ANT2D, 9 ANTZ MR | 4 (2 A™D - 9, AN 2D, AN+2*mb)|]
m=0

<[[Bll 10eAN*20I[72 + [ ADI| 3 0 AN 20| 2[|0: AN Bl 6 + | ADI] 2119 AN 2D ]| 2|9 AN 1

N+1 N-1
+ 2 A"B] 110 AN 20 2 |9 AN 2D o + } [19A™ b1 [[9eAN 20| 2 AN 5
m=3 m=0
+ [19eANB]| o 0 AN 2D 2 AD]| 5 + 0 AN bl o |0e AN 2]l 2| Al 5
<i 9, AN+2p12 3011219, ANDI12 RSl mt3p12, 119, ANT3—mp|2
<7 IOeAN DI + I AZDIL 19:ATBIT + ) [[A™ 2Dl 10, A 72
m=3
N-1 5
+ ). ||8tAm+1b||%2||AN+7*mbH%2, for large t,
m=0

Moreover, I, satisfies

N+1
To= Y. Clipy [I(A™ - 9:AN 20, 0 AN =0) | 4| (3, A™u - 9 AN 26, AN+ ) |
m=0

<Cl(u- VANT2by, ANT2by) + || Au|| 1= [|0: ANT2B]12, + || A%u| 5]|0: AN 2D 12 [ 0: AN D) 16

N+1
A%l 2 9 AN 2] 2 B AND e + 3 A" ][0 AN+ 2|9 AN+
m=4
+ [0e AN 6|0, AN 2B 2| AD | 5 + 1|19 AN ul| 6 |9 ANT2D |12 | A%D ]| 15
N-1
X 110l 9 AN+ 20| 2 AN 2
m=0
1 7
SEHatAN+2bH%2 + [|A2D)|%, |0, AND||7, + | Aul|7, (|0, ANTb]|7,
N 12 N+4 R 1,12 1| AN+3 2
+ Y A 2uf| 5 o AN B2, 4+ Y (oA |7, [|AN T2 )|7,,  for large t,
m=4 m=0

where

HatANHvH%Z < sHatAN*sziz + C€H8tANvH%2.
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1 1
has been used. Note that ||v]|.~ < C[[Av]|}, \|A2v||iz. By using the previous decay results, it yields that

d
1A ul|, + |9 AN, + ([0 AN2DI|Z,) + [[0: AN 2uF, + [0, AN 20,

<C(1+ t)fmi“{zru%*N’%*N}, for large t.

Applying the Plancherel’s theorem to (53) gives

o [ [aANF (0 + (1-+ leP)a AN b, )] de

2 NI —_—
+ /Rs 1 f||g|z “atAN-I—lu(g/t)P + (14 |E2) 9 ANFIp(E, t)|2} dz

<C(1+ t)fmin{27*+%+N’%+N}, for large t.

Multiplying (54) by g(t), it yields

7 {50 [ [0 e o+ 1+ EPaAN o, 2

<g'(0) [ [I0ANTI(@ P + (4 EP)I0AN b, ] dg

+Cg(t) (14 t) min{2 " +F AN TN} - for large t.

dg}

Hence
s [ [BAN (@, 0 + (1 + 6P) 0 ANTb(g, 2] de
<Ct [§6) [ [PAVTIUE DP + (1-+ [EPRAN TN, O] dzds
+c/ )(1 4 ) min{2r BN BN} g
sc+/g%)/ G2 [, 0P + (1418 @b e, 0] deds
+ C/ )(1+s) mm{27*+%+N’%+N}ds, for large t.
It then follows from (36), (38) and (55) that

3 [, [PANTU(E, 2 + 1+ [2P) AN b e, )] de

t
< / 2N+6
<c+ [ [, K

t
+C [[5/6) [[ 18 (el + )L + () allo(s) ) dgds

lz[?

t t 2
+C [T [PV Rl | [ ol + o) e | deas

+ C/ )(1+5s) min{27*+%+N’%+N}ds, for large t.

em”maaﬁ+u+w2>wﬂ|m<wlﬁﬁ

(53)

(54)

(55)

(56)
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Consider the first term of the right hand side of (56):

5 e,

g [, e [ez'“flﬁom% (14 [gP)e T (g >I2] dzds

<C/ )(1+5) —min{r +3+N, 5 +N} 5o

(57)

For the second term, after integrating in polar coordinates in B(t),

€[00 [ 6PN (1l + 006+ o) s o) ) des
gc/0 &(s)(1+5) 5 N(1 4 5)-2min{r+3.3} g (58)

t 3 * , 13 17
<C g/(S)(l-FS)*mm{zr +3 N HNb g for large t.
0

In addition, if r* + % < %, the third term of the right hand side of (56) can be estimated as

t t 2
C[[ge) [, 1PN+ 2P + 12t | [ o)+ Do) Bye | s
<C/ g (s)(1+5s) %7N(1+s)*2r**1ds (59)
<C/ g (s)(1+s)~*" N s, for large t.

Ifr* + % > %, then, the third term of the right hand side of (56) satisfies
2

C [[ge) [, 1PN+ 2P + 12t | [ o)+ Do) Byde | azas o

<C/g J(1+5s)” (N+7 )ds for large .

The last term satisfies

C/ 1 +S min{Zr*Jr%JrN,%JrN}ds
(61)
<C/ )(1 4 )" min{2" +ZHN TN} g for large £.

For a fixed r*, we choose g(t) = (1+t)", for some m > max{r* + 3 + N, 11 + N}.
Thenp(t) = C(1+ t)’% and from (56)—(61), it yields that

19e AN w5 + ([0 ANTIB|IZ, + [0, AN D]
<C(1+ t)_mm{r““%J’N’LZlJFN}, for large ¢. ©2
Through mathematical induction, one concludes that for P =1and 0 < M + %P <K,
19:AMu|2, + |2:AMB|2, + 0:AMB|2, < C(1+ ) ™n{ " +3+M3+M} for larget.  (63)
Hence, the proof is complete. [

Now, suppose that Theorem 2 holds for p < Py € N, and prove it also holds for p = Py + 1.
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Lemma 13. Let m € N, K = max{5 + 2Py, m + 2Py + 2} and r* = r*(ug) = r*(by) € (—3,+c0) be the
decay character. Suppose that (ug,by) € HX(R?) x HKHY(R3) with V - ug = V - by = 0. Then, there exists a
positive constant C = C(, ||ug|| gx, ||bo|| gx+1), such that

Py+1 Py+1 Py+1
[0 A uF + 1950 AT + 1950 AT DI, b
< C(1 4 ¢)~min{ 3+ Hm2(R+1), +m2(R 1)} for large t.

Py+1
0;°

Proof. First, assume that m = 0. Applying af 0+ t6 (10) and (11), multiplying both side by u and

af(’“b, respectively, integrating over R3, it yields that

1d
2dt

Py+1
S Z [' (af” ’ allf)OJrlAu, afOH_pu)\ + |(afb . afO+lAu’afo+1—Pb)|
p=0

Py+1 Py+1 Py+1 Py+1 Py+1
(9" aelTa + 110" 0IIZ2 + 1195 AbIIT2) + 19, AullZz + 19" Ab |7

+[(@u -0 AL, 3 )| + (8 b - 3 AL, T TP u) | + | (9] b - 3T AL, TP Ab) I}
Py+1 Pl

+ (-9 AL, 3T AZD) | + Y (00w - 90T AB, 3, T TP AD)).
p=1

A simple calculation shows that

1d, .p+1 Po+1 Py+1 Py-+1 Py+1
5 75 I9F ul[F2 + 10,7 b)172 + 19" AD|IZ,) + 10,0 Aul|7, + (10, T Ab||T,
Py
Po+1 Po+1 Py+1 Py+1—
<2[ul| s 100 Al 2|0, ull o + Y 1107 ull o 100 Al 2|0, Pl 5
p=1

Do
Py+1 Py+1 Py+1 Py+1—
+2(bl| 5119 Aull 2110, bl s + Y 1107 Bl s 10,0 Al 2], P bl s
p=1

D
Py+1 Py+1 Py+1 Py+1—
+2f|ul| 3110, ABI 2118, bl s + Y 10Full 610" Ab| 210, b5
p=1

Dy
Py+1 Py+1 Py+1 Py+1—
+2/1bll (10" Ab[| 210, ull s + Y 197Dl 1619, Ab[ 2 [10," T P ull s
p=1
Py+1 Py+1 Py+1
+ 1Bl |9 ABIIZ2 4 110, bl o1, Al 2 || AD| 5

Do
Py+1 Py+1—- Py+1
+ 3 1197 bllps [0, bl 20, P Al s + || Aul| [0, A7
p=1

D
Py+1 Py+1 Po+1 A b Po+1—
+ [|A%D]| |0, AB[| 2119 a6 + Y (19F ull s |9 A2l A5
p=1

1, Pp+1 Po+1 Do Potl—p A 1
< (10, Auf2, + 10,2 T Ab|Z,) + C Y ([10) AullZ, + (|9 Ab|I2,) (10, P Azul3,
p=1

+ 0 P AZbIE + 9 T AZbI R + 9,7 AZD|R:), forlarge £

N |

Applying the previous decay estimates, it yields that



Mathematics 2020, 8, 1847 18 of 25

d | Py+1 Py+1 Po+1 Po+1 Po+1
E(HatOJr |22+ 19,27 0)172 + 19" AD|I2,) + 110, Aulf7, + 110, Ab||7,

Dy
Potl—p . 1 Po+1—p o 1 Po+1—p o 3
<C Y (lof Aullfa + [0 AbIIZ2) ([0, PAZul 7o + 10, "A2b| 72 + [0, " AZD7,

= (65)
112" ATl
Sc(l+t)fmin{27*+?+2po,lz—7+2Po}’ for large t.
Using Plancherel’s theorem to (65) gives
d —_— —_—
o L [T 0P + (e la o, R ag
|&]? Pot1. 2 2\ (AP0t 2} (66)
d
o T [ @ 0P + g e(E 0 P dg
<C(1 4 )~ min{2r +3¥ 2R, Y +2P0} for large .
Multiplying (66) by g(t) gives
d —_— —_—
5 {30 [ [ e 0P+ -+ 162 o 0 de |
<g'() /B(t) {|950+1”(Cft)2+(1+ |§|2)|af°+1b('§/t)|2} g
+ Cg(t)(1 4 )~ min{2r + 242, 742R)  for Jarge £.
Hence . -
s6) [ [oF a0+ 1+ )0 Tbie, 0] e
<ct [g/e) [ [P Tu@n R+ 0+ PP e P |z )

+ C/ )(1 4 )~ mind2r” T2 2P T 2R} s for large t.

It then follows from (36), (38) and (67) that

) [ (19 a0 + @+ 1) o )] e

2 o L7 4 .
<c+ [[g© J 61 [e-zlﬁl lao ()2 + (1 + [22)e zlfé”wo(é)ﬁ] dgds

t D p
_ —1 -1
FC['Q6) [ L L aful + b1 (130wl + 0] bl )dcds 69

(s) p=01=0
t t 2
O[5 [+ P+ 21 | [ o)+ (o) e | azas
—I—C/ )(1+5s) —min{2r'+ 2 +2R, 7 +2R} g for large t.

For the first term of the right hand side of (68),

[ [, e [e-zlél“ao@nz +(1+]ePe”

<C/ 1+S 7’+ +2P0)d

1f|§2t|f?0(§)|21 dzdgds
(69)
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For the second term, after integrating in polar coordinates in B(t),

-1 -1
g, 22|c|‘“’0+2 ([0l + 100132 (1] ulEs + 0] ' bIF,)dzds

pOl

<C tg( )(1—|—S) (2P072p+%)<1_~_S)7min{r*+%+21,%+21}<1+S) min{r*+3+2p-21,3 +2p— 21} g (70)

<C/ ¢(s)(1+s)"min{2"+3+2R, 2 42R} g for large t.
In addition, if r* + % < %, the third term of the right hand side of (68) can be estimated as
L 4P)+6 2 N 2 2 ?
C [ 80 [ eI+ 124 | [ (ol + o) )| des
<c/ J(145)"3-2P0(1 4 5)"2" s (71)

g( )(1+5)" @ +242R) g for large t.

A
o\

3 5
If?’*—FZZj,

¢ 2
C g [, IS 1+ 1214 | [l + [bolfe)ar] dzas
(72)
<C/ )(1+5)"@RF2)ds,  for large t.
The last term satisfies
C/ )(1 4 )~ min{2r -2 +2P0 F2Ro} g
(73)
<C/ )(1 4 s)~min{2r" + 5270, 2 42R) g5 for large t.
For a fixed r*, choose g(t) = (1 + )", for some m > max{r* + % + 2P0,% + 2Py}
Then p(t) = C(l—i—t)’% and from (68)—(73),
107wl + (102 B2, + 197 ]2, < C(1 4 £) MRt E 2R3 2R for larget.  (74)

Suppose that Lemma 13 holds for m < N € N, then one can prove it also holds form = N + 1.
Applying 9" "' AN*1 to (10) and (11), multiplying both sides by aF**'AN*1y and /0! AN+1p,
respectively, integrating over R?, it yields that

1d
5 g (10 AN G 4 9 T ANTIB |, + [0 AN B )

Py+1 Py+1
110 AN u| T, + o, AN 0|7,
P()-‘rl N-+1

Po+1 Py+1— _
Z Z CP0+1CN+1 [ (afAm“ : atoJr ANT2y, 9" PANT ")l
p=0 m=0

+ (@AM - 9T ANFRy, 9T ANTIT ) | | (@F A - 90T ANT2p, 9,0 TP ANH L)
+ |(afAmb . af0+1AN+2u, afo+1—PAN+1—mb)| + ‘(af/\mb . afO‘HAN—l—ZbI af0+1—PAN+2—mb)|
+] (afAmu . afo+1AN+2b, afo+1—pAN+3—mb) q

=h4+ L+ L4+ 1+ 5+ I
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First of all, I; satisfies

N+1
B< Y ORI ] 07 AN+ 2u] T AN

m=0
N+1 Po+1 Pl s Nio N

+ 3 Ol A AN 2 AN
m=0
Py N+1 ) T, S

+ Z Z CP +1CN+1||atAmMHL6HatO ANT u||L2||at0 AN+ —m||L3
p=1m=0

1
76||3P0+1AN+2u”2

N+1 1 3
+C | Y (A ulf o AN+ 2, 4 ||af°“Am“u||%z||AN+zmun%;)]
m=0
Py N+1
Z Z ||aPAm+2uH |af0+1—PAN+2—mu”%2‘|
p=1m=0
1

N+1 1
7||aP0+1AN+2u||%2 +C Z HAm-ﬁ-ju”%Z||afo+1AN+2—mu||%2

m=1

OO

N-1
3 3_
+Cllo T AN, | AZul2 +C Y o T AT L2, | AN+ Iy 12,

m=0
Py N+1 Pl
cl|). 2 ||8pAm+2uH 20,0 T PANTZTmy 12| for large t,
p=1m=|

where the following fact
Py+1 L apt1 Py+1
0,0 AN T |7, < E(Hato ANF2u|[2, 410, ANu||3,).
has been used. Similarly,

1 N+1 1 B
I §§||afo+1AN+2uH%2 +C Z ||Am+2b|‘%2“afo+1AN+2 mb”iz

m=1

N-1
3 3_
+Cll0 T AN, | A2D|2, + C Y (o T AT |2, | ANT 2| 2,

m=0
Py N+1 il
cl|Y. Z ||8pAm+2b|| 2|0, T PANTZEmp |2, | for large t,
p=1m=|

1, py+1 NAL 1 Py+1 _
I S§||8t°+ ANT2B|2, 4 C Y || A 2u2, )00 ANTET ||,

m=1

N-1
DPy+1 3 Py+1 3_
+Cllo, ANu|2, || A2b|7, 4 C ZO 19,0 A |2, | ANT2 | 7,
m=
Py N+1

clY. 2 ||8pAm+2u|| ||8f°+1_pAN+2mb||%2] , forlarget,
p=1m=|
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1, pyt1 NAL 1 Py+1 _
Iy Sgllat°+ ANT2D|2, 4 C Y ||AT 2|2, [0, AN T2y 2,
m=1

N-1
3 3_
+Cllof T AND| 2, [ Azul?, + C Y [0 AT B|2, ANy 12,

m=0
Py N+1 Pl
clY. Z ||apAm+2b|| 2]19;° pAN"'Z_muH%Z , forlarge t.
p=1m=

For I5,

N1
Py+1 Py+1 Py+1 -
Is <[[bll |0 ANF2b| T, + Y CRa A" Bl s 10, AN D]l 210, AN D

m=1

N
Py+1 Py+1 Py+1 Py+1 —
+ 10, bl o197 AN 20 2 | AD|Is + 3 1190 AMB| o |0, ANF2B]| | ANFE 5

m=0
Do, NAL Py+1 Py+1—
+ Y Y 1AM 6102 AN o]0, TP AN T2
p=1m=0

N+1
Py+1 1 Py+1
*Ila CEANT2D|T, + C Y [ ATRD| Tl AN B 7,
m=2

OO

N-1
5_ 3 5
+ Y [ ANTR |2, 00T AT 12, 4 (| A2D|2, + || AZB]12%,)]|0 T AND| 12,
=0
Py N+1 Pl 5
+) 2 HapAmeH 2]10;° pAN+77mb||%2, for large t,
p=1m=

where ,
Py+1 Py+1 Py+1
[9;” AN+lb||%2§§(||ato ANT2D|2, + 1|0, AND|7)

has been used. In addition,

N+1
I <C[l[Au== [ ANT2DI[Z, + Y [[A™ ] ]| 9F T AN 2b| 2 |92 ANTI b
m=2

N
+ [0 T AN | 6 107 ANF 2| | A% | s + Y 1070 AU 6|07 T ANT 20| o | ANFETMD |

m=0
Po N+1 Py+1 A N+2 Py+1—p » N+3—
+ 3 ) loeA™ul[ell0, " AN 20, AT D 5]
p=1m=0

1 7
§<\|al’0“AN+2u||2 + 195 T ANTZBI|T) + ClIIAR w2 [0 AN 2,

N-1
1 _ 7_
+ 2 [AZ M2, [afo AN p| 2, 1 Y [lafo ATy |12, | ANF 2 p 12,
m=

Py N+1
7 Py+1— 7_
+ [ AZb| [0 ANU]2, + Y Y o AT 2,0, T PANTZT|12,],  for large t.
p=1m=0

Summing up, using the previous decay results gives

d o py+1 Py+1 Po+1
E(Hato+ ANTL |2, + (0,0 ANTIB|[2, 4 (|9, 2T ANT2p)|12,) 75)

<CO1+1)" min{2r*+%+N+2Po,%+N+2P0}, for large £.
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Applying Plancherel’s theorem to (75), it yields that

d N —_—
it /R3 [|af0+1AN+1u(§, D>+ (1+ |§|2)|afo+lAN+lb(€/t)|2:| de

[ TP o BT s
*./Rslﬂgv ['at (@ HI"+ A+ [} b(é‘,t)l]dé

<C(1+t)~ min{2r'+ 2 +N+2R, P +N42R) - for Jarge .

Multiplying (76) by g(t) gives

d —_— —_—
{300 [ [P TIAN U 0P 4 (1 Pl T AN b ) e
¢

<g(0) [, [T AN D+ (1 )R T AN )
+Cg(H(1+ 1)~ min{2r*+ 5 +N+2P;, 5 +N+2PO} for large t.

Hence
) [, [BPTAN e 0+ 1+ 1) TN (e 1) dg
<c [ [ [P TAN 0+ (1 Plal AN b, 0 2 deds
+ C/ )(1 4 5) = mind2r” TR ENA2R,FNT2Y g for large t.
It then follows from (36), (38) and (67) that

) [, [BRTAN (g D+ 1+ 1) TN (e ) | de

t
< ! 4Py+2N+6
<ct [[86) [l

e,

P g @)+ (14 e T (g >|2] dzds

-1 -1
we 5o [ ZD@i“’ﬂ*‘*HN (10422 + o3 ]22) (1] ~"ull22 + 0] "b|13)deds
p 01=

C t / 4Py+2N+8 2 4 b 2 d zd d
+ g(s) |C| A+ + 18 | (Hu( )22 + 1b(T)[|72)dT | dgds
+C / )(1 4 s)~min{2r + B 2P0 F2B} g for large £,

Consider the first term of the right hand side of (78),
L 4Py+4 | ,—2|E12t A 2 2 *2@762” 2
Jy &) [ BB e 2 @)+ (12 T (6 P | dedgs
<c [ )1 +o) N

For the second term, after integrating in polar coordinates in B(t),

-1 -1
C 19 [ I S ol ) 1]l 10

pOl

<C/ &' (s)(1 +5)~ min{2r N+ 42R, F+N+2R0} g for large t.

22 of 25

(76)

(77)

(78)

(79)

(80)



Mathematics 2020, 8, 1847 23 of 25

Moreover, if r* + % < g, the third term of the right hand side of (78) can be estimated as

t 2
C/ g/(s)/ |EHOFINF8 (] 1 E2 + |8 U lu(T)|| 2+||b(r)|i2)dr] dcds

(81)
<C/ )(1+5s) —(@r +N+ 2 4+2R) g, for large t.
Ifre+3>3,
t 2
C g0 [, NS £ 1214 | [ (o) + o) e | deas
(82)
<C/ g'(s)(1+s) (2P0+%+N)ds, for large ¢.
The last term can be estimated as
C/ )(1+5) —min{2r* + B +N+2P) B +N+2R} 4
(83)
<C/ )(1 4 5)~ min{2r+ FEN+2R, BN 2R} g for large t.

For a fixed r*, choose g(t) = (1+t)™", for some m > max{r* + 3 + N + 2Py, & + N + 2Py}
Then p(t) = C(1+ t)’% and from (78)—(83), one can obtain

||afo+1AN+1 Hz + HBP”HANHbHZZ + ||aPo+1AN+1b||%2 o
<C(1 4 )~ mindri+z 2+NF2P0, 3N H2R} g large t. &

This completes the proof of Lemma 13. [
The proof of Theorem 2 is given in the following.

Proof of Theorem 2. Lemma 12 implies Theorem 2 holds for the case p = 1. Then, supposing that
Theorem 2 holds for p < Py € NT, one can also obtain that it holds for p = Py + 1 (Lemma 13).
Hence, through mathematical induction, the proof of Theorem 2 is complete. [

5. Conclusions

The magnetic induction equation with Hall effect is a typical Hall-MHD equation. This model can
be used to describe the reconnection phenomenon by simulating flows with differential typical scales
Ly. From a mathematical point of view, the local well-posedness, global well-posedness and large time
behavior of solutions are very interesting. In the previous works of Fan et al. [11], the authors studied
the local well-posedness of strong solutions and gave the preliminary result on the small initial data
global well-posedness; Zhao [29,30] considered the large time behavior of solutions, established the
decay estimates for the weak solution (see also Lemma 1) and the strong solution (see Lemma 2). In this
paper, one only assumes that ||1 HH it || bo || 2 is sufficiently small, obtains the global well-posedness
of strong solution and establishes the a priori estimates on higher order time and spatial derivatives
of solutions. Moreover, by using the properties of decay character and the Fourier splitting method,
one also shows the optimal decay rates for higher order time and spatial derivatives of solutions. In a
sense, the results of this paper can be seen as an improvement of the previous results in [11,29,30].
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Nomenclature

V  Vfis the gradient of f

A the usual spatial derivatives of order /

C  the symbol of embedding

R3  3-dimensional Euclidean space

0 the density

u the velocity field of the fluid

b the magnetic field

T the pressure

Ly the normalizing length limit

de  electron inertia

6; ion inertia

P, the decay indicator

r*  the decay character
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