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Abstract: In this paper, we have considered a numerical difference approximation for solving
two-dimensional Riesz space fractional convection-diffusion problem with source term over a
finite domain. The convection and diffusion equation can depend on both spatial and temporal
variables. Crank-Nicolson scheme for time combined with weighted and shifted Griinwald-Letnikov
difference operator for space are implemented to get second order convergence both in space and time.
Unconditional stability and convergence order analysis of the scheme are explained theoretically and
experimentally. The numerical tests are indicated that the Crank-Nicolson scheme with weighted
shifted Griinwald-Letnikov approximations are effective numerical methods for two dimensional
two-sided space fractional convection-diffusion equation.
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1. Introduction

Differential equation described fractional partial differential equations are appropriated to
explain complex problems like viscoelasticity, electroanalytical chemistry, biology, fluid mechanics,
engineering [1], physics [1,2], fractional operators [3] and flows in porous media [4-8]. Through the
advection and dispersion processes, pollutants create a contaminant plume within an aquifer,
the movement of which in an aquifer is described by transport model. One of the very rich transport
model is advection—dispersion model, which is used to describe the transport phenomena in different
fields of science. Solute transport is important to predict the solute concentration in aquifers, rivers,
lakes and streams too.

Due to the fractional derivative property of differential operator of space fractional derivative,
finding a numerical solution of fractional convection-diffusion equation is somehow difficult, specially
for high dimensional case. Numerical methods for numerical approximations of one dimensional
fractional convection-diffusion equations are the homotopy analysis transform method [9], the finite
difference method [2,10-12], the collocation method [13-16], the Galerkin method [17-20] and the finite
volume element method [21,22]. An improved matrix transform numerical method is proposed
in Reference [23] to solve one dimensional space fractional advection—dispersion model and its
analytical solution is found using padé approximation. Recently, space fractional convection-diffusion
with variable coefficients are solved using shifted Griinwald-Letnikov difference operator for space
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and Crank-Nicolson scheme for time that produce second order convergence both in time and space
with extrapolation was studied [24].

There are numerical schemes that used to solve two-dimension space fractional diffusion
problems such as the alternating direction implicit (ADI) method [25-30], the Galerkin finite element
method [31], the finite volume method [32] and the kronecker product splitting method [33].
ADI and CN-ADI spectral methods are used to solve two-dimensional Riesz space fractional
diffusion equation with a non-linear reaction term with respect to their error estimates have been
discussed (see References [34,35]). Reference [36] proposed a new group iterative scheme for
the numerical solution of two dimensional time fractional advection-diffusion equation based on
Caputo-type discretization of the fractional group scheme in combination with Crank-Nicolson
scheme. The Crank-Nicolson Galerkin-fully discrete approximation method for two-dimensional
space fractional advection—diffusion problem with optimal error estimation was investigated
by Reference [37]. In Reference [38], comparative study of the finite element and difference
method for two dimension space fractional advection—dispersion equation has been considered
by modeling non-Fickian solute transport in groundwater. For the comparison they have used
a backward-distance algorithm that used to extend the triangular elements to generic elements
in the finite element analysis and a variable-step vector Griinwald-Letnikov formula to improve
the solution accuracy of finite difference method. The stability and second order convergence are
proved [39] by a novel finite volume method for the Riesz space distributed order advection-diffusion
equation. Linear spline approximation for Riemann-Liouville fractional derivative and CNADI finite
difference method for time discretization are applied for solving two-dimensional two-sided space
factional convection-diffusion equation was explained (read the details in Reference [40]). Having
the advantage of reduce multi-dimensional problems to one dimension and easy to implement, the
ADI algorithm is the more selected technique for the discretization. Reference [41] has implemented
unconditionally stable compact ADI method for two-dimensional Riesz space fractional diffusion
problem with second order in time and fourth order accuracy in both spaces. Here, we need to construct
weighted and shifted Griinwald-Letnikov difference operator (WSGD) with the Crank-Nicolson-ADI
(CNADI)method for two-sided two dimension space fractional convection-diffusion problem to have
second order both in time and space. The weighted and shifted Griinwald-Letnikov combined with
CNADI also have been applied effectively for convection— dominance two-dimension two-sided
space fractional convection—diffusion equation. It is suitable to apply the weighted combined with
shifted Griinwald-Letnikov difference approximation for two-sided Riemann-Liouville fractional
derivative to have second order accurate in space. Therefore, it is important to get a numerical
scheme that leads to evaluate a two-sided two dimension space fractional convection—diffusion
problem. Thus, this study has focused to have temporal and spatial second order convergence
estimates for two dimensional two-sided space fractional convection—diffusion equations based on
accurate finite difference method without extrapolation approach. The scheme has been judged using
the Crank-Nicolson Peaceman Rachford alternating direction implicit (CNADI) method with the novel
weighted Shifted Griinwald-Letnikov difference approximation (WSGD) and the algorithm has been
supported with numerical simulation.

Consider the two-dimensional two-sided space fractional convection—diffusion problem with
constant coefficients:

wulxy,t) _ ouleyt) | uxyt) o ofuloyt) o oPu(xy,b)
ot = Cx x| +cy ay[e2 +dy 3] [P +dy E +p(x,y,t),

corresponding to initial condition:

u(x,y,0) =g(x,y),0 <x <Ly, 0<y <Ly, 1)
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with the zero Dirichlet boundary conditions:

u(0,y,t) =0; u(Ly,y,t) =0;

()
u(x,0,t) = 0; u(x,Ly,t) =0,

where 0 < ay,a7 < 1,1 < 1,2 < 2,¢x,¢y > 0and dy, dy > ( express the velocity parameter and
positive diffusion coefficients, respectively.

Here, u(x,y,t) is solute concentration expressed physically in References [42,43], and p(x,y, t)
is the source term so that the solute concentration transport is from left to right. For the case
of integer order (v¢; = ap = 1,81 = B2 = 2), Equation (6) gives to the two-dimension classical
convection—diffusion equation (CDE). We have supposed that the two-dimensional space fractional
convection—diffusion problem has sufficiently smooth and unique enough solutions.

The remain arrangement of this paper is organized as follows—in Section 2, we introduce
some preliminary remarks, lemmas and definitions. We have shown the formulation of one
dimensional Riesz space fractional convection—diffusion problem with Crank-Nicolson and weighted
shifted Griinwald-Letnikov difference scheme in Section 3. In Section 4, we have described the
formulation with discretization of two-dimensional Riesz space fractional convection—diffusion
problem. In Section 5, unconditional stability and convergence order analysis of the scheme have done
using CNADI-WSGD. In Section 6, numerical simulations are implemented to show the importance of
our theoretical study and the conclusions are discussed in Section 7.

2. Preliminary Remarks

Definition 1. The Riesz differential operator which is given by analytic continuation in the whole range
0<wa<2uwitha #1as:

o*u(x,t)
o K[-eDy +x D] u(x,t), ©)

where the fractional derivative,

Dtu(x, t) = (;;) ool u(x, )]

N 4)

D) = () ittt ],
with n € N and coefficient K = m,
From this definition the fractional integral operators _ooI5u(x, t) and I&u(x, t) are the left and right Weyl
fractional integrals as defined in Reference [44]:

are the left and right Riemann-Liouville fractional derivatives.

i
@ L= g
1 f°° t)ad;y, a > 0.

—oolfu(x, t) =

dy, a >0,
©)

I&u(x,t)

X

F(oc

Lemma 1 ([44,45]). Let « > 0 and I'(.) represents gamma function, then the following are properties of
binomial coefficients:

Lo@= "))

(e —1)(a—2)..(a —k+ 1).
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m—k
m—k (—a+k+1)(—a+k+2)(—a+k+3)..(—a+m)
(m — k)=+k) (m — k)!

4. limm_)oo<_1)mfk (txfkfl) (m — k)zx—k

1
CT(—a+k+1)
—k
. m \*F 1\
5. limy e (m—k) = lim (1 — 5) =1

Theorem 1. Let u(x) has n — 1 continuous derivatives on the closed interval [a, b] with the derivatives u™ (x)
are integrable for x > aor x < b, then foreacha(n —1 < a < n), the left and right Riemann-Liouville fractional
derivatives exist and coincide with the corresponding (left and right) Griinwald-Letnikov fractional derivatives.

Proof. The left standard Griinwald-Letnikov fractional derivative is given by the limit expression
on [a,x],

o . 1 % k(o
oDju(x) = lim o2 | ) (=1)" (R u(x —kh) |, ©6)
k=0

where =4 = h = h_Tx, n—1 < a < n. Here our aim is to evaluate the limit described in Equation (6).
For the evaluation of the limit, we are assuming the function u(x) continuous on [4, x| and for a > 0,
we have:

Diu(x) = lim -1 <i(—1)k (g)u(x—kh)> — lim Uy (x), )

=1
h— =0 n—co

1
where Uy, (x) = o (ZZ=0(_1)k (&) u(x — kh)). We need to transform Equation (7) to the following
form using the property 1 of Lemma 1.

U = (é}‘”k () u(x—km) i (é(—l)k (i) u(x—km)
1 [ o 1 (& o
= = (kgo(—l)k (& 1)u(x—kh)> + o <k§(—1)k+l (& 1)u(x—(k+1)h)> ®)

_ (_1)11 n— ula i nil_ o ulx —
= 5 () <>+ha<2< 1>’<(k Jau kh>>,

where Au(x —kh) = u(x —kh) — u(x — (k+ 1)h) is the first order backward difference operator.
Similarly, we have to apply property 1 of Lemma 1 repeatedly m times, after simplification we get:

m ©)
Y (FE(E) ht A (e — k),

Now, we need to evaluate the limit of Equation (9).

lim Uy (x) = lim Uy, (x) + lim Uy, (x),

n—00
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where Uhf( x) = Yilo(=1)"7P (ﬁ:ffl) h=*APu(a + ph), which is the first sum and
Uy, (x) = (Z” nl( )k (i_m_l) A"y (x — kh)), denote the second sum. Let us find the limit
of pth—term of the first sum.
limmy oo Uy, (¥) = Jimy oo (—1)"7 (ﬁ:ﬁ*l) h=*APu(a + ph)
e a=p p h
L _yn—p (a—p-1 _\a—p) n 7+A”(‘1+P)
— im0 () 0= () e 2L
—xtp1: n—p [&—p—1 a—p) . n a=-p (10)
= (x—a) " *"Plim, e(—1)"77 (nfp ) (n—p) x limy 0 " p

APu(a+ ph) ulP)(a)(x —a)—2tp
h?  T(—a+p+1)

X lil’nh_w

In order to evaluate the limit of second sum Uj,_, we have to follow the property of binomial
coefficients of Lemma 1.

. o . 1 n—m—1 a—m—1\ p.—a+m
limy, oo Uy, = limy_ e <r(_a+m+1)z (—1)FT(— a+m+1)( )k .
. ﬂHmAm Yu(x — kh
From property 4 of Lemma 1, we have
fim (—1)°T(—a+m+1) (571 ko =1, (12)
k—o0
Moreover, if m — a > —1, then
n—m—1 Am+1u(x —kh X
I )t :/ _ o ym—a,, (m+1) ) 1
hli%< k_;) h(hke) ™ —— (e )™ () (13)

By considering Equations (12) and (13) we have that:

n—m—1 1

. _1\k fa—m—1Y\ 3, —a Am+1 o _ * _ o \—a+m, (m+1)
fim 3, (1) (i) e a e k) = ey G ). a4

Now by combining Equations (10) and (14), we have finalized the general limit evaluation as:

(r) —g)—atp
WD) = limy e Uy (x) =y, M@= a) 1

X\ —atm, (m+1)

By takingn =m+1orn —1 = mwithn —1 < a < n, the left Griinwald-Letnikov fractional
derivative over the closed interval [g, x| is written as:

— (P) x _ a)—zx—&-p 1 X
x _ —a+n—1,,(n)
oD ; a+p+1) + T(—a+n) /a (x—1) u\™ (n)dn. (16)

Similarly, the right standard Griinwald-Letnikov fractional derivative on the closed interval
[x,b] is

- — x)p—« _1\n b
xDyu ; _[Hil)} +FEn1—)0¢) =yt (. (17)
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Thus, for a — —oo, u(P)(x) approaches to zero and Equation (16) leads to have:

Diu(x) = gy [

1 ant rx e
= a0 e

which gives the left Riemann-Liouville fractional derivative as we are expected and it is also exists
for n —1 < « < n. In a similar proof, we also have the right Riemann-Liouville fractional derivative
as b — oo:

(18)

[ — ( 1) n—ua— n
Doul®) = 15— =) gy, o
_ an 1) ) aaxn /x (17 . x)”f’xflu(ly)dﬂ.

O

Remark 1. The left and right Riemann-Liouville fractional derivative of the function u(x) with order a on a
bounded domain [0, L] are defined according to Theorem 1:

Left Riemann-Liouville fractional derivative:

il _ 1 d" * _ \n—1-a
DR(x) = Fr i fp (1O (O (20)
Right Riemann-Liouville fractional derivative:
i3 _ (71)71 d" k n—1—a
D) = =y g . € (@) e1)

As it is discussed in Reference [46], the shifted Griinwald-Letnikov difference operator with
first order
AP pu(x) =—c Diu(x) +O(h), (22)

which is defined as,
1 e8]
ALpu() = g L giulx = (k= p)h),
(23)
AEX),IJM l’l“ ng X— k p) )
approximates the left and right Riemann-Liouville fractional derivatives. Here p is an integer that

shifts the approximation p-shift to the right and g = (—1)k (#) are the coefficients of the power series
for the function (1 — z)",

(1-2"=Y (-1 @) =) gt (24)
k=0 k=0
for all |z| < 1,with:
g =1, ¢ = (1 -2 ;{r 1) g, k=12,.. (25)

Lemma 2 ([47]). The coefficients g]((“) satisfy the following properties for 0 < a < 1.

(a)*lgg)——a<0,

gé( ) < gé )< .. <o, (26)

T og(a) = OIkaZOg,((a) >0,m>1.
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Lemma 3 ([47]). The coefficients g,(f ) satisfy the following properties for the fractional order 1 < p < 2.

=160 = p <o,

128" 2" <. >0, @)
Yito 8;&0‘) =0, g,(f‘) <0,m>1.
Applying the above Theorem 1, and weighted shifted Griinwald-Letnikov fractional derivative

derivation from Reference [46] for 0 < « < 1,1 < B < 2, the left and right Riemann-Liouville fractional
derivatives of u(x) over a bounded interval at each point x can be formulated as:

1 m-+1
oDyu(xm) = I E wk u (Xm—ks1) +O(H?)
(28)
L v (w) 2
»Diu(xm) = e Y W u(xpgko1) +O(R)
k=0
and )
1 m+
ODﬁu(xm T B 2 wk‘B)u (Xm—ks1) +O(h )
(29)
B 193 mH (B) 2
«Dru(xm) = B W u(Xyk-1) + O(h%),
k=0
where
« o 2—u
o = 2t ot = el + —gi”i)l,k >1
B _ Bp ) _ B 2=
woﬁ = 2gO , wk’g zgkﬁ > gk k=1
The properties of the weighted coefficients wlia) and wlgﬁ ) are discussed below.
Lemma 4 ([48]). Assume that 0 < a < 1, then the coefficients w,E“) have the following properties:
—n— a2 2 _
W = % >0, Wl =278 “2 T so0l = MoZta—d) +4“ D <y,
wéa) < wéa) < wi‘x) < .. <0, (30)
Yieo w,@ =0, Yi w,ﬁ“) >0,m>1.
Lemma 5 ([46]). Assume that 1 < B < 2, then the coefficients w,ﬁﬁ ) have the following properties:
—_B—p2 2 _
w(()ﬁ):§>0, WP 2B F o ) — BB +4ﬁ Yo
1> c(}(()ﬂ) > wgﬁ) > wiﬁ) > .. >0, (31)

ro o0 =0, v ol <om>2.
3. Numerical Approximation for One Dimensional Two-Sided Convection-Diffusion Problem
with Source Term
We have considered the one-dimensional two-sided space fractional convection—diffusion equation,

u(x,t)  "u(x,t) d Pu(x,t)

TR G T +p(x,t),(x,t) € (0,L) x (0,T) (32)
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with initial condition:
u(x,0) =g(x), 0<x<IL,

and with zero Dirichlet boundary conditions:
u(0,t) =0,u(L,t)=0, 0<t<T,

where 0 <a <1,1 <p <2

The analytic solution for Riesz space fractional convection—diffusion equation is developed
in Reference [49] using the spectral representation on a finite interval [0, L]. Reference [50] used
Laplace transform and Fourier transform method for finding analytical solution of Riesz space
fractional convection—diffusion problem with initial and zero Dirichlet boundary conditions. Here our
discretization is based on the finite interval [0, L] into a uniform mesh with the space step h = L/ Ny
and the time step T = T/ N;, where Ny, N; are positive integers and the set of grid points is denoted
by x,, = mhand t, = ntfor0 < m < Nyand 0 < n < N;. Let t, 1,2 = (ty41 + tn)/2 with
0<n<N—1

We have used the following notations for our formulation:

u?n-H — Uy

n n+1/2 moce >0, de>0.

Uy = (X, tn), P " = P (Xm, tyga/2), Oty =

T

The Riesz space fractional convection—diffusion equation for 0 < &« < 1,1 < § < 2 can be written
with following expression.

Pu(x,t)

o*u(x,t)
Ul ) _ g (oD% 1 DY) ulx, ), P

p —Kg (onf Fy Df) u(x, t) (33)

Theorem 1 allows us to use the Riemann-Liouville fractional derivative definition for the
formulation of the problem. The weighted shifted Griinwald-Letnikov derivative formula for
approximating the two-sided fractional derivative is derived in References [46,48] for space fractional
derivative and Crank-Nicolson scheme for time are used.

+1 +1
uptt —uf, Kacx "ilwlga) Uy T Uy g n Zmﬂwk AR T 1+k1
T h« 2 2
k=0
(34)
Kad m--1 n+1 4oyn —m+1 un-i—l 4Lyt
flﬁx kzwlgﬁ) m+1— k2 m+1—kJr Z wlgﬁ) m71+k2 m—1+k _|_pn+1/2
-0
-1 -1
hereKy= ——, K= —+——_Th h
where Ba 2cos(mtac /2’ p 2cos(mtB/2 enwehave,
i G (SN @ USET @) e
n n n
Y kz;,)wk mk+1 T 2 W Upk—1
7 m+1 Nx m—+1
x (B), n+1 (B), n+1
5 (kZ;,) Wy Z W ”?n+k1>
- [mt1 SIS (35)
= iy, Z wk ”m k1 T Z Wy Uy
_x m+1 +1 Ny—m+1 B) n +1/2
T Z“’k Uy g + Z W U1 | TP

KgdxT
where ¢ = K";{‘;’(T,d ‘Zﬁx .
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Assume UJ;, be the numerical approximation of the solution u};,, then the CN-WSGD formulation
for RSFCDEs become:

b G (R WU M ()t
n n n
U Y kzo Uy e + Z w Uy e

(s +1 ot (B)y n+1
n n
Z “’k Um k1t Z P A

Ny—m+1 (36)
= Uy + <Z“’k U g1 + kZ w? 1’111+k1>
=0
d_x m—+1 Ny—m+1 (‘B) +1/2
TS Zwk mok Y @ W | T
k=0
By denoting,
W™ w0 0 0
Wt W s 0 0
] e w® 0 0
N O I X
o o o 14 o
W1 Wm-2 “p-3 Wy Wy
(B)
wlﬁ wg 0
E
b — w3’3 wZﬁ wlﬁ 0 0
By o
Wn1 Y2 W3 Wy Wy
we have, B
d
A= foaT) o S o). @
Therefore, the system of equations takes the form:
(I— AU = (I+ A)U" + Tp™3, (38)

where I is the (Ny — 1) x (N¢ — 1) identity matrix with A,, ; as the matrix coefficients. These matrix
coefficients form =1,2,3,..,Ny —1,j = 1,2,.., Ny — 1 are defined by:

5x (w(()a) +(AJ£“)> + 735 (w(ﬁ) +w§5)) , j=m—1,
Cx dy .
> (w(()a) —i—ng)) —i—? (a}( )—i—w(ﬁ)), j=m+1,
Apj=16 wi“) + d_xcuif;), j=m, (39)
Cdmfjjt 2 m—j+l
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For the convenience of implementation, using the matrix form of the grid functions,

ut o= upthuptt . ug )"

n-+1/2 n+1/2 _n+1/2 n+1/2]T

p [P} ' P2 e PNy—1

4. Formulation and Discretization of Two-Dimensional Riesz Space Fractional Convection
Diffusion Equation with CNADI-WSGD Scheme

The analytic solution for two-dimensional Riesz space fractional anomalous diffusion equation
is obtained by using the Fourier series expansion with homogeneous Dirichlet boundary condition.
Let us take a bounded domain as Q) = [0, Ly x [0, L], Q = [0, T] for our discretization of the problem.
Here our aim is to find the full numerical approximation of the two-dimensional Riesz space fractional
convection—diffusion problem with zero Dirichlet boundary condition over a finite domain (3 x ;.

Consider the two-dimensional two-sided space fractional convection-diffusion problem with
constant coefficients as:

ou(x,y,t) "u(x,y,t) 92u(x,y,t) aﬁlu(x,y, t)

o G aam YT gy SR
M +p(x,yt), (x,yt)€QxQy,
olylP (40)
u(x,y,0) =g(x,y), (v,y) €Q,
u(0,y,8) =0, u(Ly,y,t) =0, (y,) € [0,Ly] x O,
u(x,0,t) =0, u(x,Ly,t) =0, (x,t) €[0,Ly] x

+dy

where 0 < a1, ap <1,1 < By, B2 <2,¢r, ¢y > 0anddy,d, > 0 express the velocity parameter and
positive diffusion coefficients. Here the function u(x, y, t) is specified as solute concentration under
the groundwater. The Riesz space fractional-order derivative is defined as:

"u(x,y,t) 2u(x,y,t)
W = Koq |:0D§1 +x Dii:| u(x/y/ t)/ W = Kaz [OD;Z —l—y DZ§:| u(x,y, t), (41)
alglu(x, Y, t) B1 B1 aﬁZM(xlyl t) B> B>
W = Kg, [ODx +x DLX} u(x,y,t), W = Kp, {ODy +y DLJ u(x,y,t),
where
-1 -1 -1 -1

Ky = 2cos(may /2)’ Kap = 2cos(may /2) Ken = 2cos(mtB1/2)’ Ke. = 2cos(7tBa/2)

and also from the coincides Theorem 1, we have the following left and right Riemann-Liouville
fractional derivative definition for two dimension space fractional derivative.

w 1 J [* -
oDx'u(x,y,t) = F(l—m)ﬁ/o (e =)~ uln,y, )y,
o1 _1 a Lx —q
«Dpu(x,y.t) = 7r(1_a1)g/x (7 =)™ u (g, y, ),

; L ; (42)
oDy u(x,y,t) I’(Z—,Bl)axz/o (x —n)" " Plu(n,y, t)dy,

B1 1 Al 1-p1
xDLXu(X,y,f) = HT,BQBTCZ/X (7 —x) u(n,y,t)dn,

where I'(.) denotes the gamma function. In a similar way, we can express the Riesz space fractional
2 B2
o2u(x,y,t) and oP2u(x,y,t)
Ay|* Aly|P>

operators of orders ay, B2, (0 <wap <1,1< By <2) corresponding
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to y—direction. For time and space discretization, we use CNADI scheme and WSGD operator

respectively. Let uﬁw- be the approximated solution of u(xu, Yj, tn), tuy1/2 = (bn +tny1)/2, p”“/ 2
L L
p(xm,yj, tur1/2), hx = Nx hy = ﬁy for the uniform space steps hy, hy and time-step T = T/N;,
x Y

0<m<Ny—1,0<j<Ny—1 0<n<N—1
Therefore, the weighted and shifted-Griinwald-Letnikov difference operator with CN scheme for
2D-RSFCDE is expressed in the following formulation.

“ﬁ;,;'l Ui ke Cy "ilw(lxl u;lztllﬁ—l,j U ks +inm+1w( )”szk 1, T Usk—1,j
T o \&G " “ P “
1 i+1 n+1 n
koc Cy H :111-; k+1 +u m] k+1 Ny ) n1]+k 1t um,j+k—1
h’ZXZ <Z 2 + kzo ka‘Z 2
k n+ 4+t ) —m+1 n+1 +oyh ) (43)
/51 2 Won— k+1,j m—k+1,j + Z w(‘Bl) W tk— 1,j m+k—1,j
hﬁ1 k=0 2 P 2
k 1 B S Ny—j+1 Ly
ﬁ m] k+1 m] k+1 (B2) “m,j+k—1 m]+k 1 1/2
To simplify our formulation, it is possible to symbolize the following operator as:
K. c m+1 Ny—m+1
Aa(cal)” J qux (Z wlgmu% k1, T Z w}gﬂq) Upyk-1j | + O(h})
1 k=0
Ky, j+1 Ny ]+l )
A;QZ)”?n,j = hizy <Zwlglx2)”n; k1T Z “’k Uy isk—1 | T O(h3)
2 0 (44)
(b0 _ Kpdx (W 6 B 2
Ax Umj = hﬁl Z Wi Uy k+1,j + Z Wi m+k—1,j + O(hl)
| —
Kp,dy W ]+1 (B2) 2
A&52)””;11,]‘ = h’éz <k2 “’kﬁ2 U j—k+1 T 2 w? Uy ivk—1 | +O(h2).
= =0
By grouping like terms from Equations (43) and (44), we have
T T
(1= 5 (a0 4+ alfV) = 2 (A7) + A+ ) [ urd -
T T T
where T;lw- represent truncation error that can satisfy | T S k (T2 + h? + h3)
Let us define the operators:
AJ((”‘) — Ay(cal) + A;ﬁl)
A;‘B) —_ ASXZ) + Ay%),

with these operator definitions, the CNADI-WSGD scheme for the 2D-RSFCDE with homogeneous
Dirichlet boundary conditions can be defined as an operator form:

[1 I (A,(;") + A,(f”)} uttl = [1 + 1

: o = (88 + AP s o2 (46)

2
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An alternating direction implicit Peacemann-Rachford is reduced a two-dimensional problem in
to a one dimensional problem with a better computational efficient. For CNADI the operator can be
expressed in the product form as:

(1 _ IASJX)) (1 _ IA(Ig)) unfl

2 2 i
_ I () (B) n+1/2 _ : _
= (14 580) (14 28 ) up 4 Spni 1S mSNe—1, 1S SN —1, (@7)
T apb 1
which produce an additional perturbation error in the form of ZA?‘(Ay (qu; — Uy ].) that has Taylor
expansion as:
2 3
T AP (1 — T (Al | ABDY (ple2) 4 ABY )
o (g ) = (a0 al) (8 e o)),
+ 70 <T2 + h% + h%) . (48)

As compared to the approximation errors, the additional perturbation errors is insignificant
and the scheme defined in Equation (45) has second order accuracy in both space and time which is
O (% + hj + h3).

The problem defined by Equation (47) can be simulated by the following efficient

Peacemann-Rachford ADI approximation as it was presented in Reference [46] by considering u* as

an intermediate solution to make a numerical solution u} at time t, to the numerical solution u"*}l

time t,, 1. The corresponding iterative algorithms are:

at

Algorithm 1:  The first step is to solve the problem in the x-direction for each fixed y; to find an
intermediate solution u}, j in the form:

(17§A(ﬂ<)) = (1+ A(ﬁ)) 2p%wz' (49)

Algorithm 2: The next step is to solve the problem in y-direction for each fixed x,, as:

(1 B %A§“)> unm,+j1 _ (1 + L A(ﬁ)) zp:zntl/z‘ (50)

Algorithm 3: We need to apply the homogeneous Dirichlet boundary conditions:

Mg,j = M(O,yj, tn) = 0, Man,]- = u(Lx/]/j, t}’l) = 0,
= u(xy,0,t,) =0, ”:Z,Ny = u(xm,Ly, t,) =0.

um,O

Therefore now compute the boundary condition for the intermediate solution u}, f which can be
derived from subtracting Equation (50) from (49) to get:

ur, = 1(1_7A(l3)) n+l 1<1+ A<ﬁ>) " (51)

m]

Therefore, the boundary conditions for u;, j needed to solve each set of equations.

iy = B0 e300 50
g = 2010 ) =
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By setting U” be the numerical approximation to exact solution u!! ., we get the finite difference

approximation for Equatlon (47):

g

T (a) T (B) +1 ( ) T (B) +1/2
ur = {ufl, ey uan,lf ufz, ey ”an,zf ey u’lez, unNJlrll\éz}
+1/2  _ +1/2 +1/2 _n+1/2 11/2 +1/2 )
p” - |:p{ll ,- /Pan J’Tz ’- ,pan ,. ’p;lNz . ’panNz}

5. CNADI-WSGD Scheme for Theoretical Analysis of 2D-RSFCDE with Source Term

5.1. Stability and Convergence Analysis of CNADI-WSGD Scheme

For discussing the stability and convergence of the scheme, we need to write our problem in
matrix form. Thus, the Equation (49) can be put as:

(1= A)uj = (I+A)ul + 2p, 1 <1< Ny —1 (54)
with
n _ n n n T
up = (”1,1/ Up,1reer ”qu,l) ’
* * * * T
u = (”1,11 U1 eer “Nx—u) ’

p o= (px,ytn), P2,y ), o PN, 1 Y1 tn)) |

and the coefficient of matrix A = (a, ;) (Ne—1)

X (Ny—1)"
%(w(()ﬂtl)_i_wgal)) + 2 ( (ﬂl)_’_wgﬁl))’ ]’:m_l/
Cx [ (a) (a1) (B1) (B1) o
" ol 4ol + 5 (o) o), o,
Am,j = c}w§“1)+dxwl’5 D, j=m, (55)
G () dx o (B)
zx nf—j+1+7xwm1j+l' j<m—1,
Gyl B B) s,

2 j—m+1 2 ]m+l’]

In a similar way, Equation (50) can be given in matrix form:

(I-B)ag™ = (I+B) @), 1<q<Ny—1, (56)
where,
antl = (un+1 il )T
q - g1l 77%q2 7 qu 1 ’

T
o * * *
uq = (uq,ll Mqlz,..., uq,Ny—l) ’
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and B = (bm/f)(Ny—l)x(Ny—l)’

buj = § Gt +dyi™, j=m, 57)

d
3 ¥ (B2)
Wy > Wi

j>m+1

Kﬁ]de d_ . K‘Bzdy’l‘.

where, ¢, = x

’ vy —
He Hy

Theorem 2. Assume that 0 < aq, 0y < 1,1 < By, B2 < 2, the coefficient matrices defined in Equations (55)
and (57), then the diagonal matrix and coefficient matrix satisfy:

Ny—1
|amml > Y am,
j=0,m#1
Ny—1
bum| > Y, |bmg|.m=1,23,.,N,—1, (58)
j=0,m#1

,m=1,2,3,..,Ny—1,

tells us that A and B which are defined in Equations (54) and (56) are strictly diagonally dominant.

Proof. First we will consider the diagonal dominance of the coefficient matrix Ay j- Since K, =

1 1 K
>0and Kg, = <0for0 < <1,1< By <2implies that ¢; = TRy Cx

2cos(mtay /2) 2cos(1tB1/2) hit
- TKﬁldx
Oand d, = 5 < 0.
hl1
_ G N o x (B (B)
ammi1 = 5 (@§ + i) + 5 (of) + ). (59)
From Lemmas 4 and 5, we have:
2
—4
W) ) — tx21 oy (@ +41x1 ) <,
2
—4
w(().Bl) +(U£/51) _ ﬁzl I ﬁl(ﬁl ‘Zﬁl ) <. (60)
Since ¢; > 0 and dy < 0, then we have:
_ G )L Lo ((B1) . (BD)
anmit = o (0 + o) + 2 (o + i) <0,
G @) (@)Y (B (BY)
Apm—1 = > (Wo + w, )—i— > (“’o + w, ) < 0. (61)

By looking Lemmas 4 and 5, we have seen that wg'xl) > 0 and wiﬁ U< 0, hence,

A = c}w%‘xl) + d_xwyﬁ) > 0. (62)
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As we have shown from Lemma 4, when k > 3, w,i“]) < 0, then c'xwlg'xl) < 0. Similarly by seeing

Lemma 5, when k > 3, wlgﬁ 2 > 0, then d_xwlgﬂ 1) < 0. These indicates that the coefficient matrix Ap,j <0

forj>m+1,j<m-—1

Ny—1

> ) am;

j=0,m#1

om=1,23,..,Ny — 1,

|am,m

which means matrix A defined by the coefficient matrix 4, ;, is strictly diagonally dominant. In the
same way, the diagonally dominant result for matrix B can also be found as matrix A. [

5.2. Stability Analysis of the CNADI-WSGD Method

In order to study the stability and convergence analysis for the CNADI-WSGD scheme , we are
focused on the following description.

N
Let x, = { viv={vy;i}: {{xm = mhy;y; = jhﬁ:*_o}j_yo} be the mesh grid function. For any

V = Vy,; € X, we define our point-wise maximum norm as:

[[Wlleo = max vy, (63)
mj)Exn

and the discrete L2-norm

(64)

Our next aim is to show the stability of CNADI-WSGD method which is defined as in the
matrix form:
(I-A)((I-B)U"™ = (I+A)((I+B)U"+ 1" (65)

where the matrices A and B define the operator %A,(;X) and %A(ﬁ ) respectively. The vector T"*! absorbs

y 7
n+1/2

the source term p;, j and the Dirichlet boundary condition in the formulated problem.

Theorem 3. Let U]} j be the numerical solution of the exact solution u), i then CNADI-WSGD finite difference
method (53) is unconditionally stable for 0 < a1, 0 < 1with1 < Bq, B2 < 2.

Proof. The matrices A and B are of size (Ny —1) (N, — 1) x (Nx —1) (N, —1). The commutative
property defined in Reference [51], allows us to obtain the unconditional stability of
CNADI-WSGD method. The matrix A which is (N, —1) x (N, —1) block diagonal matrix
whose blocks are (Ny —1x Ny —1) square super triangular matrices which is expressed as
A =diag (Al, Ao, ..., ANy_l). In the same way, the matrix B is a block matrix with (Ny — 1) x (Ny — 1)
square diagonal matrices. The matrix B can be written as B = [by,j|, where each b, ; is an
(Ny —1) x (Ny — 1) matrix such that by, ; is a diagonal matrix by, ; = diag (by,j, by, j, ., by,j) where by, ;
is the (m, )"
diagonal dominant with entry a,, , > 0. The sum of the absolute value of the off-diagonal entries on
the row m of matrix A is:

entry of the matrix B defined above. As we have seen from Theorem 2 , matrix A is



Mathematics 2020, 8, 1878 16 of 27

Ny—1

Y amjl = ZO || +

j=0,7m

Ny,—1

+ Y Jam,

j=m+2

i dx (61 N (S ()
= (zw;§ +;@jgu>,z (JWVL4+2f%H>
j= j=m+2

= 6 () ) — e () + o)

< T (Gebthr Folta) - B (Fefthar Gl
=6 () 4 ) = d (o + ),

_ _C-xkéwlgal _Jxéw]E& — 6 () 4 @)~ (lf) 4 ),

- c‘xwi”‘l +d_xa)§ﬁ1) —& ) a)lg'xl —de ) w,i’gl,
k=0 k=0

+ ‘am,m+l| + |am,m71| ’

= c‘xwg"‘l + d_xwlgﬁ1 =

implies that,
Ne—1
Yo am] < lamm] -
j=0,j#m
Next we need to show that the eigenvalue of matrix A is negative real parts. For 0 < a1 < 1,
1 < By < 2, we can see that,

- m—+1 Ny—m+1 7 m+1 Ny—m+1
bt = l®) — o) < zx( 5 ) P ) +dzx< 5y w}((m))
k=0k#1 k=0,#1 k=0k#1 k=0,#1

(67)

Ny—m+1 i m+1 Ny—m+
+ ‘wl(cﬂl) > +2X< Z ‘wl((ﬁl) + Z ‘ WP
=0, k=0,k#1 k=0,#1

)

and N N
Zx: wlg"‘l) + ZX: W}Eﬁl) < _ (wgﬂq) _Hugﬁl)) ‘
k=0 k=0

Therefore,
‘)\1 _ C—xwgl"l) d w(ﬁl)

< - (el + dwlf).

The eigenvalue A, of matrix A satisfy,

— (c‘xwgl"l) + d_xwgﬁl)) < c‘xwgal) + d_xwgﬁl) <A <0 (68)
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According to Greschgorin Theorem [52], the given eigenvalue of matrix A have non-positive
real parts. Here we have noted that matrix A has an eigenvalue of A; if and only if (I — A) has an
eigenvalue of (1 — A;) if and only if (I — A) =1 (I + A) has an eigenvalue of (1+ A1) /(1 — A;). From the
first part of this statement, we can concluded that all eigenvalues of the matrix (I — A) have a spectral
radius which is larger than unity indicates the matrix is invertible. Thus, every eigenvalue of the
(I — A)~Y(I + A) has a spectral radius which is less than 1. Similarly, we can show that matrix B also
satisfy the same property as matrix A. From the scheme (53), we can express the error "1 in U"*! at
time f,,11 and the error " in U" at time ¢, as:

= (I—A)TI-B) ' (I+A)(I+B)e", (69)

where the identity matrix I is (Ny — 1) x (N, — 1) square. Hence, Equation (53) can be put in the form:

= (=) a+a)" (=B (1+B))" e (70)

Letting Ay and A, be an eigenvalue of matrices A and B respectively, then it results from
Equation (69) that the real parts of A; and A; are both negative. The spectral radius of each matrix is less
than unity, which has followed that ((I — A)~1(I+ A))" and ((I — A)~"}(I + A))" which converges
to null matrix (see Reference [46]). Therefore, we have concluded the scheme defined in Equation (53),
is unconditionally stable. [J

5.3. Convergence Analysis of CNADI-WSGD Scheme

First of all we can express the truncation error of CNADI-WSGD difference method. So, it is easy
to conclude that:

2
u(Xm, Yo tnsr) — (X, Vi tn) _ <au(x,y,t)>n+1/ Lo -
T at m,j
oy ) | duly, "
+cy
alx| aly|* m,j
B 1 a (X, Y tng1) e 0" 2u(Xm, Yj, tny1)
2 x| Y aly[*
1 [ 0u(xXm,yj tn) 0" 2u(xXm, Yj, tn) 5
b (oG e ) o)

0" u(Xm, Yj, tn) 021 (X, Yj, tn)
Cx +cy
9x|& dly|*
Ny—m+1

m+1
= (Z “’( Pty gyt Z WIE 1)u:ln+k—1,j> (72)

Ny—m+1 (
14 14
+ (Zwkz Wy i1 + Z w, 2) mﬁkl)—kO(h%—i—h%),

where 0 < ay,ap < 1. It is the same to have a truncation error of O(7?) and O (h% + h3) for

1< Bq,B2 <2,
Therefore, the truncation error from Equation (43) is given by:

Tt = O(T> + Th? + Th3).
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Theorem 4. Assume ul, iy be the analytic solution, and let U” be the approximation solution of the finite
difference method (65), then for all 1 < n < N, we have the estzmate

[t = Up illeo < C(22 + 1§ +13), (73)

where [[u, ; — Uy, illeo = maxi<mng1<j<n, 1y, — Uy il = leg -

hy, hy and T with ||.|| stands for the discrete Lz—norm.

Proof. Assume that e} be the error at grid points (xy,, Yjs t;) can be defined as e, i =uy i " j and

T
denote e = e?,l’eg,lf""ean—l,l’e’il,Z’""eNx*Lz’""eeryfl’""eNx*LNy*1> .

By looking to Equation (43), the error satisfies:

& [mtl ( " Ny—m+1 —y j+1 Ny—j+1
n+1 X n+1 (a1) n+1 n+1 (a) n+1
Cmj T 5 kz(;) Cn k1, T Z W lwik-1 ) T Z k1 T Z Wy k-1
7 (mtl ) Ny—m+1 ) _y j+1 Ny—j+1 (Ba) i1
4 1 n+1 1 n+1 7Yy n+1 2 n+
+ 2 2 Wi €y k+1,f + 2 Wy m+k—1,j 2 2 m] k+1 + 2 Wi mj+k71

. m+1 Ny—m+1 (@)
— "‘1 ot
- m] Z Wi m k+1,j + Z W Cmyk-1j | T

N‘gl

j+1 Ny—j+1 )
[ 0(
<Zwk ? m] k+1 + Z Wi : m]+k 1) (74)
k=0

di (" ) Mgt ) dy (N5 6o RN
- 3 ]{Z‘()wklez—k+l,j+ Y W e k1) Y kZOwk k1 T 2 ‘*’k Enjk—1

+  TO(T*+ 12+ H3).
We have ¢! = 0, we have from Equations (43) and (74) if n = 0,

1 - Ny—m+1 (@) / & j+1 (a2) 1 Ny—j+1 () 1

X o1 [4%) X

Ry, m,j E Z c‘)k m k+1,j + Z Wi=0Cm+k—1, + ) Z Wi " j—k+1 + Z W " Cjpk—1
k=0 k=0 =

(75)

de ("5 ) Mt B 1 L (5 e Ny ’“ (62) 1
2 2
2 Y @ ey 1 W ey ) Zwk mJ R DL
k=0 k=0 =0
ifn >0,
Rn-ﬁjl i

N‘{I

j+1 (a2) Ny—j+1
1) n+1 (a1) n+1 a2) n+1 (a2) n+1
Z‘Uk Cn—k1,; T Z “’k 0lmrk—1j | T Z“’k Cmj—k+1 T Z Wi k1
(76)

de (& () + < e o ! (B2) 1 ]H (B2) n41
1 n 1 ﬂ 2 11 2 n
(Bt L et )+ 2 (Bt L ).

N‘%

€m ,j+k—1

where Rf;’;l < Te(t? + h% + h%),m =12.,N—1,j=12,.,Ny—1,n=1,2,.., Ny — 1, cis positive
constant independent of time step and space size. We have used the mathematical induction to
prove our Theorem 4. Let n = 1 and assume |em,]f
following expression.

= Maxq<m<N,—1,1<j<N,—1 |e}n’j|, we have the
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e oo

IN

Assume that if 1 < 7,|le"|| < TC(T? + h? + k) hold and let n

mMax) <m<Ny—1,1<j<N,— 1|€

e oo

IN

Gy m—+1 N Ny—m+1 (a)
1) 1
e Sy Zwk k+1]|Jr Z W le
=0
_ j+1 Ny —j+1 (2)
Y a2)1,1
) Z m/ k+1|+ Z Wi |€m]+k 1|
k=0 k=0
_ Ny
x (B1) (a1) 1
9 Z |e —k+1,] Z wk |em+k 1/|
k=0 =0
_y j+1 Ny— ]+1 ) )
D Zw m] k+1|+ Z wk em,f+k—1|
k=0
o Nx m+1 (@) 1
1
D) (U k+l,]+ Z Wk Gk 1]
=0 =0
- ]+1 Ny— ]+1 )
Y (w2) 1
2 Zw m] k1 T Z “k G k-1
k=0
7 m—+1 Nx m—+1
x (B1) 1 (1) )1
7 (kZ:‘)wk 6 k+l]+ 2 Wi eerk 1])
7 [+l Ny— ]+1
y (B2) ,1 (B2) 1
D3 Ewk 1it,j— k+l+ Z Wi em]Jrk 1 ’
k=0
’R ‘<TCT +H 1)

\ Thus,

c

oS N\X. S

NS

N‘R | N‘QI

N‘<|

m+1 ( Nx
wk
k=0
<]+1
k=0
m+1
Y w
k=0
j+1 (
Y wy
k=0
+

‘<TCT 4+ 1)

(a1) r+1
k+1]Jr Z Cl’k Chtk—1]

Ny— ]+1

+ Z “’k“2

r+}
1, j+k—1
Nx—m—i-l

(@1) r+1
Z‘ “k k-1
r+1

Ca f—‘:—k—l) ‘

r+1

(a2)
“k m] k+1

(B1)

r+1
k e

ih—k+1,] +

1
) AT
2 r+1 2
m] k+1+ Z @k

x (m1) r+1 Mgt (1)) r+1
S5 (Z Yol k1] o erh+k1,f>
Ny—j+1
( ::]1 k+1| + Z wktx2 :nJr]}+k—1|>
Ny—m+1
( @) LA Jt Z wk“1)|e;1++1k 11)
j Ny— ]+l
(k Owlgﬁz ‘er-&-l k+1| + Z wkﬁz) er:}l_,_k_1|>

1]

)

r+1, let |,
1]

19 of 27

(77)

(78)
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Therefore, there exists a positive constant ¢* such that

r+1
m,j

< c"(T2 + h% + h%),

[e9)

e

which completes the proof. [J

6. Numerical Simulations

1. Consider the one dimensional RSFCDEs over a bounded domain with initial and Dirichlet
boundary conditions:

du(x,y,t)  o*u(x,t Pu(x,t
u(x,0)=0,0<x<1,

u(0,t) =u(1,t) =0,0<t < T,

with the source term:

prt) = Pl (B+at)®(1—x)
+ chi;t(ie:/z [r(32— o) (xz_a +(1- x)H)
- r(412— - (P4 -2 ) + F(52ioc) (x*+ (=2t ]
+ 2ci}sczl;e:/2 [r(32— B) (#F+a-x27)
-z (412_ ; (PP a-2F) + F(Szfﬁ) (P + -0 ]

The exact solution is
u(x, t) = tPe®x2(1 — x)2.

All the numerical simulations are done based on the finite space domain ) x ); where Q) =
[0,1] x [0,1] and Q¢ = [0,1]. The order of convergence both in space and time are calculated using
the formula:

~EM, Dlleo/|E(h/2,T/2) ]00
Order, = 10g(2) ,
Ordery — \\E(hx,hyff)|Ioo/lIE(hx/Zhy/Z,T/Z)IIoo/
log(2)

where order; is the rate of convergence for one-dimensional two-sided space fractional

(79)

convection—diffusion equation and order; is rate convergence of two dimensional two-sided space
fractional equation. ||E(/, T)||e is the maximum error for one dimensional space fractional problem
and ||E(hy, hy, T)|| for two dimensional space fractional problem, denoted as Max — Error. As we
have seen in Table 1, the second order convergence and the maximum error are confirmed at each
grid size for convection-dominance (i.e., cx > dy) for one dimensional two-sided space fractional
convection—diffusion equation with different space fractional order. As we have refined the grid
size, the suitable maximum error is obtained. The convergence order and maximum error for a
diffusion-dominance (i.e., ¢y < dy) one dimensional two-sided space fractional convection—diffusion
problem are shown in Table 2. Figure 1 shows the good agreement of exact and numerical solution
of one-dimensional convection—diffusion equation with the coefficients c, = 0.5,dx = 1.5 and with
fractional orders « = 0.75, = 1.85 at Ny = N; = 100 grid points.
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Table 1. Convergence order and maximum error are produced with convection-dominance for example
latT =1,cy =2,d = 0.25.

«=0.1 « = 0.45 « = 0.85

h=7t Max— Error Ordery Max— Error Ordery Max — Error Ordery

1/10 83x 1073 - 1.21 x 1072 - 1.70 x 1072 -
B=125 1/20 22 %1073 1.9156 32x1073 1.9189 44 %1073 1.9500
1/40 55354 x107* 19907 8.0831 x 10~%  1.9851 1.1 x 1073 2.0000
1/80 1.3870 x 107%  2.0030 2.0291 x 10% 19941 27919 x 10~% 1.9782
1/160 3.4320x 1075 2.0086 5.0701 x 1075 2.0008 6.9932x 107>  1.9972

1/10 8.8x 1073 - 1.24 x 1072 - 1.81x1072 -
B=185 1/20 24 %1073 1.8745 33x1073 1.9098 48 %1073 1.9149
1/40  6.0999 x 107% 19762 85839 x 10~%  1.9428 12x1073 2.0000
1/80 15478 x107% 19786 2.1846 x 10% 19743 3.1912x 10~%  1.9109
1/160 3.8968 x 1075 1.9899 55120 x 10> 1.9867 8.0991 x 10°°>  1.9783

Table 2. Convergence order and maximum error produced with diffusion-dominance for example 1 at
T=1,cy=025d =2

a=0.1 « = 0.45 « = 0.85

h=7t Max— Error Ordery Max — Error Ordery Max — Error Ordery

1/10 83 x 1073 - 123 x 1072 - 1.75 x 1072 -
B=125 1/20 21x1073 1.9827 32x10°3 1.9425 45 %1073 1.9594
1/40 53416 x107* 19750 7.9693 x 10~*  2.0055 11x 1073 2.0324
1/80 1.3389 x 107% 19962 1.9979 x 10~% 1.9960 2.8337 x 10~*%  1.9567
1/160 3.3498 x 107> 1.9989 4.9986 x 10~°  1.9989  7.0902 x 10~°  1.9988

1/10 95x 1073 - 1.42 x 1072 - 2.01 x 1072 -
B=185 1/20 25%x1073 1.9260 3.7 %1073 1.9403 53 x 1073 1.9231
1/40  6.3804 x 107% 19702 95140 x 10~*  1.9594 13 %1073 2.0275
1/80 1.6126 x 10~* 19843 24052 x 10~* 19839 34116 x 10~*  1.9300
1/160 4.0532 x 107> 1.9923  6.0459 x 107°  1.9921 85774x 1075  1.9918

0.07 T T T T T T T T T
—Exact
# Numerical
0.06 [ 1
0.05 b
. 0.04r
R
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0.03 X 5
0.02 \ 7
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0 . . . . . L . L "
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% (space)

Figure 1. Comparison of exact and numerical solution for one-dimensional convection—diffusion
equations (CDEs) at « = 0.75, B = 1.85 for numerical example 1.



Mathematics 2020, 8, 1878

2. Consider two-dimensional diffusion problem.(cy = ¢, = 0)

u(x,y,t) P

Pru(x,y,t)

oP2u(x, y,t

ot -

a|x|ﬁ2

IolylP

+p(x,y,t)

u(x,y,0) = 2(1-x)2?*(1-y)?0<x<1,0<y <1,

u(x,y,t)|sa=0,0<t<T, 1< By, B2<2,

with the source term:

pryt) = Fi(t+1)P (1 - x)Ppat + 112 (1 — y)?
b ) [ (2P -0 )
- g ()
* gtV iy (P a0t )
- r(ﬁ 5 (PP ra-yP)+ r(52—4ﬁ2)

22 of 27

(x84 (1= xR ]vz(l “? (80)

(v =yt P) 2o

Table 3 shows that the maximum error and order of convergence for two-dimensional two-sided
space fractional diffusion equation with different space fractional orders by taking cx = 0 = c¢y.
For this numerical simulation, we have used same step-size for space and time (i.e., iy = h, = 7).
The maximum time domain that used to obtain all the numerical results is T = 1 and the diffusion
coefficients are dy = 2 = d,,. The surface plot of u(x,y,t) with the diffusion coefficients d, = 2.5,

dy = 1.5, 41 = 1.25, B> = 1.85 at the mesh points i; = hy = T = 0.01 is given in Figure 2.

Table 3. Convergence rate and maximum error produced for example2at T =1,dy =2 =dy, hy = hy = 7.

B1 =125 B1=15 B1 = 1.95
hy,hy,T Max — Error Order, Max — Error Order, Max — Error  Order;
1/10 2.57 x 1072 - 2.75 x 1072 - 1.56 x 1072 -
B2 =185 1/20 55x 1073 2.2243 6.3 x 1073 2.0283 32x1073 2.2854
1/40 74176 x 107%  2.4894 12x 1073 23923 7.9692x107%  2.0056
1/80 1.6630 x 1074 2.1565 24526 x107% 22907 19977 x 10~*  1.9961

u(x,y.t)

y 0

0.8

= 06

X
S04 4

0.2

Figure 2. Surface of u(x, y, t) for two-dimensional diffusion equation with max — error = 1.7563 x 1074,

B1 = 1.25, B = 1.85 for numerical example 2.
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3. Let us consider the two-dimensional Riesz space fractional convection—diffusion problem with
bounded domain:

du(x,y,t)  0Mu(x,y,t 02u(x,y, t aﬁlu(x,y,t 8/52u(x,y,t

at = Cx a|x|961 Cy a|y|0l2 + X a|x|l31 y a|y|ﬁ2 +p(x/]//t)
u(x,y,0)=00<x<1,0<y <1,
u(x,y,t)on =0,0<t <T,

with the source term:

plryt) = e (B +ah)® (1 - 2% (1 - y)?
+ ZCE’;EZT:/B [ 2 - ) (- )
- r(ﬁal (P -2y ) + r(52—4al) (x4 (1= xyt) ]y2(1 —y)?
+ ZCOSZZ;:/tz) [r(z i ) (yz_az +(1- y)Hz)
s P At s (e ) [ 2
+ 2cj;€f%lle:/t2) {F(Zzﬁl) R ﬁl)
- F(413/31 (F P+ (=2 P) s r( (x4_ L (1 x)th) }y (1—y)?
+ zcjzéf;;:/tz) [1"(23,62) (F -y 52)
ot (P ) s (R -yt ) |20

The exact solution is,
u(x,y,t) = tPe*x2(1 — %)%y (1 — y)2.

In Table 4, we have found a numerical results that produce second order convergence rate
and maximum error for two sided two dimensional space fractional convection—diffusion equation
with diffusion-dominance (¢x = 0.25 = ¢y,dy = d, = 2) phenomena. For this simulation we
have taken a fixed value for B,(B2 = 1.75) and for ay(a; = 0.5) with different values for ay, By.
Similarly in Table 5, we have considered the convection-dominance (cy = 2 = ¢, dy = d;, = 0.25)
two-sided two-dimensional space fractional convection—diffusion problem with fixed B, (B2 = 1.75)
and for fixed wp(ay = 0.5). The order of convergence and maximum errors are calculated using
the formula expressed in Equation (79). In Figure 3 the surface plot of exact and numerical
solutions for two-dimensional convection—diffusion equations are investigated by considering the
coefficients ¢y = ¢y, = 2.5,dy = dy = 1.5 with orders a1y = 0.75,a; = 0.75,8; = 1.85,8, = 1.85 at
Ny = Ny = N; = 100 mesh grid points.
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Table 4. Convergence order produced with diffusion-dominance for example 3at T = 1,cy = 0.25 =
ey, dy =2 =dy,hy = hy = 7.

a1 = 0.5 x1 = 0.75 a1 = 0.95
hy,hy,T Max — Error Order, Max — Error Orders Max — Error  Order;
1/10 2.00 x 102 - 2.09 x 102 - 2.6 x1073 -
B =125 1/20 5.7x1073 1.8110 6.1 %1073 1.7766  6.4607 x 10~*  2.0087
1/40 1.7 x 1073 1.7454 1.9 x 1073 1.6828 1.4898 x 10~%  2.1166

1/80 28802 x 1074 1.9962  6.6947 x 1074 1.7467 29810 x 107>  2.3213

1/10 152 x 1072 - 2.06 x 1072 - 234 x 1072 -
B =185 1/20 3.6 x 1073 20780  5.00x1073  2.0426 55x%x 1073 2.0890
1/40 76214 x 10~%  2.2399 1.1x1073 21844 1.0001 x 1073  2.4595
1/80 1.0496 x 107% 24602 17907 x 10~%* 26189 1.8006 x 10~%  2.4735
1/160 19729 x 1075 24114 2.7175x107° 25202 3.5515x 1075  2.3420

Table 5. Convergence order produced with convection-dominance for example3at T =1,cy =2 =
cy,dx =025 =dy,hy = hy = T.

a1 = 0.5 a1 = 0.75 ®q1 = 0.95
hx,hy,T Max — Error Order, Max — Error Order,  Max — Error  Ordery
1/10 1.51 x 1072 - 1.09 x 1072 - 41x1073 -
B1 =125 1/20 2.00x1073 2.3163 1.9x1073 2.5203 1.4 %1073 1.6502

1/40 5.8273 x 107*  1.7791  4.8275x10~* 19767 27307 x 10~*  2.3581
1/80 1.8883 x 1074 1.6257 1.5338 x 107*  1.6542 55304 x 107° 23038

1/10 1.80 x 1072 - 1.75 x 102 - 1.39 x 1072 -
B1 =185 1/20 43 %1073 2.0656 41 %1073 2.0937 24 %1073 2.5340

1/40 87170 x 10™% 23024 7.6626 x 10™%* 24197 55154 x107%  2.1215

1/80 1.7428 x 1074 23224 13016 x 107% 25575 1.29899 x 10~%  2.0861

06 06
0.4 0.4

02 " 0.2
Space y Time t o o Space y

Time t 0 o0

Figure 3. The surface of u(x,y;t) for a; = 0.75,ap = 0.75, 1 = 1.85, B = 1.85 for numerical example 3.
7. Conclusions

In our study, we have developed an algorithm for two-dimensional two-sided space fractional
convection—diffusion problem using the CNADI difference method for time discretization combined
with WSGD scheme for the approximation of space fractional derivative. We have used a
shifted category of standard Griinwald-Letnikov difference method and weighted version of the
shifted Griinwald-Letnikov difference approximation with CNADI scheme to have unconditionally
stable and second order convergence both in space and time without extrapolation. Moreover,
unconditional stability and second order convergence is justified for convection-dominance two-sided
two dimension space fractional convection—diffusion equation. Our theoretical study and analysis
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has been confirmed by our numerical simulation in Section 6. We will consider the space fractional
reaction convection—diffusion equation in our near further research.
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Nomenclature

CN Crank-Nicolson scheme.

ADI Alternating direction implicit method.

CNADI Crank-Nicolson alternating direction implicit method.
WSGD Weighted shifted Griinwald-Letnikov difference operator.
RSFCDE Riesz space fractional convection—diffusion equation.

2D-RSFCDE  Two-dimensional Riesz space fractional convection—diffusion equation.
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