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Abstract: In this paper, we have considered a numerical difference approximation for solving
two-dimensional Riesz space fractional convection-diffusion problem with source term over a
finite domain. The convection and diffusion equation can depend on both spatial and temporal
variables. Crank-Nicolson scheme for time combined with weighted and shifted Grünwald-Letnikov
difference operator for space are implemented to get second order convergence both in space and time.
Unconditional stability and convergence order analysis of the scheme are explained theoretically and
experimentally. The numerical tests are indicated that the Crank-Nicolson scheme with weighted
shifted Grünwald-Letnikov approximations are effective numerical methods for two dimensional
two-sided space fractional convection-diffusion equation.

Keywords: Crank–Nicolson scheme; weighted Shifted Grünwald–Letnikov approximation; space
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1. Introduction

Differential equation described fractional partial differential equations are appropriated to
explain complex problems like viscoelasticity, electroanalytical chemistry, biology, fluid mechanics,
engineering [1], physics [1,2], fractional operators [3] and flows in porous media [4–8]. Through the
advection and dispersion processes, pollutants create a contaminant plume within an aquifer,
the movement of which in an aquifer is described by transport model. One of the very rich transport
model is advection–dispersion model, which is used to describe the transport phenomena in different
fields of science. Solute transport is important to predict the solute concentration in aquifers, rivers,
lakes and streams too.

Due to the fractional derivative property of differential operator of space fractional derivative,
finding a numerical solution of fractional convection-diffusion equation is somehow difficult, specially
for high dimensional case. Numerical methods for numerical approximations of one dimensional
fractional convection-diffusion equations are the homotopy analysis transform method [9], the finite
difference method [2,10–12], the collocation method [13–16], the Galerkin method [17–20] and the finite
volume element method [21,22]. An improved matrix transform numerical method is proposed
in Reference [23] to solve one dimensional space fractional advection–dispersion model and its
analytical solution is found using padé approximation. Recently, space fractional convection-diffusion
with variable coefficients are solved using shifted Grünwald-Letnikov difference operator for space
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and Crank-Nicolson scheme for time that produce second order convergence both in time and space
with extrapolation was studied [24].

There are numerical schemes that used to solve two-dimension space fractional diffusion
problems such as the alternating direction implicit (ADI) method [25–30], the Galerkin finite element
method [31], the finite volume method [32] and the kronecker product splitting method [33].
ADI and CN-ADI spectral methods are used to solve two-dimensional Riesz space fractional
diffusion equation with a non-linear reaction term with respect to their error estimates have been
discussed (see References [34,35]). Reference [36] proposed a new group iterative scheme for
the numerical solution of two dimensional time fractional advection-diffusion equation based on
Caputo-type discretization of the fractional group scheme in combination with Crank-Nicolson
scheme. The Crank-Nicolson Galerkin-fully discrete approximation method for two-dimensional
space fractional advection–diffusion problem with optimal error estimation was investigated
by Reference [37]. In Reference [38], comparative study of the finite element and difference
method for two dimension space fractional advection–dispersion equation has been considered
by modeling non-Fickian solute transport in groundwater. For the comparison they have used
a backward-distance algorithm that used to extend the triangular elements to generic elements
in the finite element analysis and a variable-step vector Grünwald-Letnikov formula to improve
the solution accuracy of finite difference method. The stability and second order convergence are
proved [39] by a novel finite volume method for the Riesz space distributed order advection-diffusion
equation. Linear spline approximation for Riemann-Liouville fractional derivative and CNADI finite
difference method for time discretization are applied for solving two-dimensional two-sided space
factional convection-diffusion equation was explained (read the details in Reference [40]). Having
the advantage of reduce multi-dimensional problems to one dimension and easy to implement, the
ADI algorithm is the more selected technique for the discretization. Reference [41] has implemented
unconditionally stable compact ADI method for two-dimensional Riesz space fractional diffusion
problem with second order in time and fourth order accuracy in both spaces. Here, we need to construct
weighted and shifted Grünwald-Letnikov difference operator (WSGD) with the Crank-Nicolson-ADI
(CNADI)method for two-sided two dimension space fractional convection–diffusion problem to have
second order both in time and space. The weighted and shifted Grünwald-Letnikov combined with
CNADI also have been applied effectively for convection– dominance two-dimension two-sided
space fractional convection–diffusion equation. It is suitable to apply the weighted combined with
shifted Grünwald–Letnikov difference approximation for two-sided Riemann–Liouville fractional
derivative to have second order accurate in space. Therefore, it is important to get a numerical
scheme that leads to evaluate a two-sided two dimension space fractional convection–diffusion
problem. Thus, this study has focused to have temporal and spatial second order convergence
estimates for two dimensional two-sided space fractional convection–diffusion equations based on
accurate finite difference method without extrapolation approach. The scheme has been judged using
the Crank-Nicolson Peaceman Rachford alternating direction implicit (CNADI) method with the novel
weighted Shifted Grünwald–Letnikov difference approximation (WSGD) and the algorithm has been
supported with numerical simulation.

Consider the two-dimensional two-sided space fractional convection–diffusion problem with
constant coefficients:

∂u(x, y, t)
∂t

= cx
∂α1 u(x, y, t)

∂|x|α1
+ cy

∂α2 u(x, y, t)
∂|y|α2

+ dx
∂β1 u(x, y, t)

∂|x|β1
+ dy

∂β2 u(x, y, t)
∂|y|β2

+ p(x, y, t),

corresponding to initial condition:

u(x, y, 0) = g(x, y), 0 ≤ x ≤ Lx, 0 ≤ y ≤ Ly, (1)
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with the zero Dirichlet boundary conditions:

u(0, y, t) = 0; u(Lx, y, t) = 0;

u(x, 0, t) = 0; u(x, Ly, t) = 0,
(2)

where 0 < α1, α2 < 1, 1 < β1, β2 < 2, cx, cy ≥ 0 and dx, dy > 0 express the velocity parameter and
positive diffusion coefficients, respectively.

Here, u(x, y, t) is solute concentration expressed physically in References [42,43], and p(x, y, t)
is the source term so that the solute concentration transport is from left to right. For the case
of integer order (α1 = α2 = 1, β1 = β2 = 2), Equation (6) gives to the two-dimension classical
convection–diffusion equation (CDE). We have supposed that the two-dimensional space fractional
convection–diffusion problem has sufficiently smooth and unique enough solutions.

The remain arrangement of this paper is organized as follows—in Section 2, we introduce
some preliminary remarks, lemmas and definitions. We have shown the formulation of one
dimensional Riesz space fractional convection–diffusion problem with Crank-Nicolson and weighted
shifted Grünwald–Letnikov difference scheme in Section 3. In Section 4, we have described the
formulation with discretization of two-dimensional Riesz space fractional convection–diffusion
problem. In Section 5, unconditional stability and convergence order analysis of the scheme have done
using CNADI-WSGD. In Section 6, numerical simulations are implemented to show the importance of
our theoretical study and the conclusions are discussed in Section 7.

2. Preliminary Remarks

Definition 1. The Riesz differential operator which is given by analytic continuation in the whole range
0 < α ≤ 2 with α 6= 1 as:

∂αu(x, t)
∂|x|α = K [−∞Dα

x +x Dα
∞] u(x, t), (3)

where the fractional derivative,

−∞Dα
xu(x, t) =

(
d

dx

)n [
−∞ In−α

x u(x, t)
]

xDα
∞u(x, t) =

(
d

dx

)n [
x In−α

∞ u(x, t)
]

,
(4)

with n ∈ N and coefficient K = −1
2cos(απ/2) , are the left and right Riemann-Liouville fractional derivatives.

From this definition the fractional integral operators −∞ Iα
x u(x, t) and x Iα

∞u(x, t) are the left and right Weyl
fractional integrals as defined in Reference [44]:

−∞ Iα
x u(x, t) =

1
Γ(α)

∫ x
−∞

u(η, t)
(x− η)1−α

dη, α > 0,

x Iα
∞u(x, t) =

1
Γ(α)

∫ ∞
x

u(η, t)
(η − x)1−α

dη, α > 0.
(5)

Lemma 1 ([44,45]). Let α > 0 and Γ(.) represents gamma function, then the following are properties of
binomial coefficients:

1.
(

α
k
)
=
(

α−1
k

)
+
(

α−1
k−1

)
.

2. (−1)k (α
k
)
= (−1)k α(α− 1)(α− 2)...(α− k + 1)

k!
.

3.
Γ(k− α)

Γ(−α)Γ(k + 1)
= (−1)k (α

k
)
=
(

k−α−1
k

)
.
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4. limm→∞(−1)m−k
(

α−k−1
m−k

)
(m− k)α−k

= limm→∞ (−1)m−k (−α + k + 1)(−α + k + 2)(−α + k + 3)...(−α + m)

(m− k)−α+k)(m− k)!

=
1

Γ(−α + k + 1)
.

5. limm→∞

(
m

m− k

)α−k
= lim

(
1

1− k
m

)α−k

= 1.

Theorem 1. Let u(x) has n− 1 continuous derivatives on the closed interval [a, b] with the derivatives u(n)(x)
are integrable for x ≥ a or x ≤ b, then for each α(n− 1 < α ≤ n), the left and right Riemann-Liouville fractional
derivatives exist and coincide with the corresponding (left and right) Grünwald-Letnikov fractional derivatives.

Proof. The left standard Grünwald-Letnikov fractional derivative is given by the limit expression
on [a, x],

aDα
xu(x) = lim

h→0

1
hα

(
n

∑
k=0

(−1)k (α
k ) u(x− kh)

)
, (6)

where x−a
n = h = b−x

n , n− 1 < α ≤ n. Here our aim is to evaluate the limit described in Equation (6).
For the evaluation of the limit, we are assuming the function u(x) continuous on [a, x] and for α > 0,
we have:

aDα
xu(x) = lim

h→0

1
hα

(
n

∑
k=0

(−1)k (α
k ) u(x− kh)

)
= lim

n→∞
Uh(x), (7)

where Uh(x) =
1
hα

(
∑n

k=0(−1)k (α
k
)

u(x− kh)
)

. We need to transform Equation (7) to the following
form using the property 1 of Lemma 1.

Uh(x) =
1
hα

(
n

∑
k=0

(−1)k
(

α−1
k

)
u(x− kh)

)
+

1
hα

(
n

∑
k=0

(−1)k
(

α−1
k−1

)
u(x− kh)

)

=
1
hα

(
n

∑
k=0

(−1)k
(

α−1
k

)
u(x− kh)

)
+

1
hα

(
n−1

∑
k=0

(−1)k+1
(

α−1
k

)
u(x− (k + 1)h)

)
(8)

=
(−1)n

hα

(
α−1
n

)
u(a) +

1
hα

(
n−1

∑
k=0

(−1)k
(α−1

k

)
∆u(x− kh)

)
,

where ∆u(x − kh) = u(x − kh) − u(x − (k + 1)h) is the first order backward difference operator.
Similarly, we have to apply property 1 of Lemma 1 repeatedly m times, after simplification we get:

Uh(x) =
m

∑
p=0

(−1)n−p
(

α−p−1
n−p

)
h−α∆pu(a + ph)

+
n−m−1

∑
k=0

(−1)k
(

α−m−1
k

)
h−α∆m+1u(x− kh).

(9)

Now, we need to evaluate the limit of Equation (9).

lim
n→∞

Uh(x) = lim
n→∞

Uh f
(x) + lim

n→∞
Uhs(x),
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where Uh f
(x) = ∑m

k=0(−1)n−p
(

α−p−1
n−p

)
h−α∆pu(a + ph), which is the first sum and

Uhs(x) =
1
hα

(
∑n−m−1

k=0 (−1)k
(

α−m−1
k

)
∆m+1u(x− kh)

)
, denote the second sum. Let us find the limit

of pth-term of the first sum.

limn→∞ Uh f
(x) = limn→∞(−1)n−p

(
α−p−1
n−p

)
h−α∆pu(a + ph)

= limn→∞(−1)n−p
(

α−p−1
n−p

)
(n− p)α−p)

(
n

n− p

)α−p
(nh)−α+p ∆pu(a + ph)

hp

= (x− a)−α+p limn→∞(−1)n−p
(

α−p−1
n−p

)
(n− p)α−p) × limn→∞

(
n

n− p

)α−p

× limh→0
∆pu(a + ph)

hp =
u(p)(a)(x− a)−α+p

Γ(−α + p + 1)
.

(10)

In order to evaluate the limit of second sum Uhs , we have to follow the property of binomial
coefficients of Lemma 1.

limn→∞ Uhs = limk→∞

(
1

Γ(−α + m + 1) ∑n−m−1
k=0 (−1)kΓ(−α + m + 1)

(
α−m−1
k

)
k−α+m

)
× limh→0 h(hk)−α+m ∆m+1u(x− kh

hm+1 .
(11)

From property 4 of Lemma 1, we have

lim
k→∞

(−1)kΓ(−α + m + 1)
(

α−m−1
k

)
k−α+m = 1. (12)

Moreover, if m− α > −1, then

lim
h→0

(
n−m−1

∑
k=0

h(hk)−α+m ∆m+1u(x− kh
hm+1

)
=
∫ x

a
(x− η)m−αu(m+1)(η)dη. (13)

By considering Equations (12) and (13) we have that:

lim
h→0

n−m−1

∑
k=0

(−1)k
(

α−m−1
k

)
h−α∆m+1u(x− kh) =

1
Γ(−α + m + 1)

∫ x

a
(x− η)−α+mu(m+1)(η). (14)

Now by combining Equations (10) and (14), we have finalized the general limit evaluation as:

aDα
xu(x) = limn→∞ Uh(x) = ∑m

p=0
u(p)(a)(x− a)−α+p

Γ(−α + p + 1)
+

1
Γ(−α + m + 1)

∫ x
a (x− η)−α+mu(m+1)(η)dη. (15)

By taking n = m + 1 or n− 1 = m with n− 1 < α ≤ n, the left Grünwald-Letnikov fractional
derivative over the closed interval [a, x] is written as:

aDα
xu(x) =

n−1

∑
p=0

u(p)(a)(x− a)−α+p

Γ(−α + p + 1)
+

1
Γ(−α + n)

∫ x

a
(x− η)−α+n−1u(n)(η)dη. (16)

Similarly, the right standard Grünwald-Letnikov fractional derivative on the closed interval
[x, b] is

xDα
b u(x) =

n−1

∑
p=0

u(p)(b)(b− x)p−α

Γ(p− α + 1)
+

(−1)n

Γ(n− α)

∫ b

x
(η − x)n−α−1u(n)(η)dη. (17)
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Thus, for a→ −∞, u(p)(x) approaches to zero and Equation (16) leads to have:

−∞Dα
xu(x) =

1
Γ(n− α)

∫ x

−∞
(x− η)n−α−1u(n)(η)dη,

=
1

Γ(n− α)

∂n

∂xn

∫ x

−∞
(x− η)n−α−1u(η)dη,

(18)

which gives the left Riemann-Liouville fractional derivative as we are expected and it is also exists
for n− 1 < α ≤ n. In a similar proof, we also have the right Riemann-Liouville fractional derivative
as b→ ∞:

xDα
∞u(x) =

(−1)n

Γ(n− α)

∫ ∞

x
(η − x)n−α−1u(n)(η)dη,

=
(−1)n

Γ(n− α)

∂n

∂xn

∫ ∞

x
(η − x)n−α−1u(η)dη.

(19)

Remark 1. The left and right Riemann-Liouville fractional derivative of the function u(x) with order α on a
bounded domain [0, L] are defined according to Theorem 1:

Left Riemann-Liouville fractional derivative:

0Dα
xu(x) =

1
Γ(n− α)

dn

dxn

∫ x

0
(x− ζ)n−1−αu(ζ)dζ. (20)

Right Riemann-Liouville fractional derivative:

xDα
Lu(x) =

(−1)n

Γ(n− α)

dn

dxn

∫ L

x
(ζ − x)n−1−αu(ζ)dζ. (21)

As it is discussed in Reference [46], the shifted Grünwald-Letnikov difference operator with
first order

∆(α)
+x,pu(x) =−∞ Dα

xu(x) + O(h), (22)

which is defined as,

∆(α)
+x,pu(x) =

1
hα

∞

∑
k=0

g(α)k u(x− (k− p)h),

∆(α)
−x,pu(x) =

1
hα

∞

∑
k=0

g(α)k u(x− (k− p)h),
(23)

approximates the left and right Riemann-Liouville fractional derivatives. Here p is an integer that
shifts the approximation p-shift to the right and gα

k = (−1)k (α
k
)

are the coefficients of the power series
for the function (1− z)α,

(1− z)α =
∞

∑
k=0

(−1)k (α
k ) zk =

∞

∑
k=0

gα
k zk (24)

for all |z| ≤ 1,with:

g(α)0 = 1, g(α)k =

(
1− α + 1

k

)
g(α)k−1, k = 1, 2, .... (25)

Lemma 2 ([47]). The coefficients g(α)k satisfy the following properties for 0 < α < 1.
g(α)0 = 1, g(α)1 = −α < 0,

g((α)2 < g(α)3 < ... < 0,

∑∞
k=0 g(α)k = 0, ∑m

k=0 g(α)k > 0, m ≥ 1.

(26)



Mathematics 2020, 8, 1878 7 of 27

Lemma 3 ([47]). The coefficients g(β)
k satisfy the following properties for the fractional order 1 < β < 2.
g(β)

0 = 1, g(α)1 = −β < 0,

1 ≥ g((α)1 ≥ g(α)2 ≤ ... ≥ 0,

∑∞
k=0 g(α)k = 0, ∑m

k=0 g(α)k < 0, m ≥ 1.

(27)

Applying the above Theorem 1, and weighted shifted Grünwald-Letnikov fractional derivative
derivation from Reference [46] for 0 < α < 1, 1 < β ≤ 2, the left and right Riemann-Liouville fractional
derivatives of u(x) over a bounded interval at each point x can be formulated as:

0Dα
xu(xm) =

1
hα

m+1

∑
k=0

ω
(α)
k u(xm−k+1) + O(h2)

xDα
Lu(xm) =

1
hα

Nx−m+1

∑
k=0

ω
(α)
k u(xm+k−1) + O(h2)

(28)

and

0Dβ
x u(xm) =

1
hβ

m+1

∑
k=0

ω
(β)
k u(xm−k+1) + O(h2)

xDβ
Lu(xm) =

1
hβ

Nx−m+1

∑
k=0

ω
(β)
k u(xm+k−1) + O(h2),

(29)

where

ω
(α)
0 =

α

2
g(α)0 , ω

(α)
k =

α

2
g(α)k +

2− α

2
g(α)k−1, k ≥ 1

ω
(β)
0 =

β

2
g(β)

0 , ω
(β)
k =

β

2
g(β)

k +
2− β

2
g(β)

k−1, k ≥ 1.

The properties of the weighted coefficients ω
(α)
k and ω

(β)
k are discussed below.

Lemma 4 ([48]). Assume that 0 < α < 1, then the coefficients ω
(α)
k have the following properties:

ω
(α)
0 =

α

2
> 0, ω

(α)
1 =

2− α− α2

2
> 0, ω

(α)
2 =

α(α2 + α− 4)
4

< 0,

ω
(α)
2 < ω

(α)
2 < ω

(α)
4 < ... < 0,

∑∞
k=0 ω

(α)
k = 0, ∑m

k=0 ω
(α)
k > 0, m ≥ 1.

(30)

Lemma 5 ([46]). Assume that 1 < β ≤ 2, then the coefficients ω
(β)
k have the following properties:

ω
(β)
0 =

β

2
> 0, ω

(β)
1 =

2− β− β2

2
> 0, ω

(β)
2 =

β(β2 + β− 4)
4

< 0,

1 ≥ ω
(β)
0 ≥ ω

(β)
3 ≥ ω

(β)
4 ≥ ... ≥ 0,

∑∞
k=0 ω

(β)
k = 0, ∑m

k=0 ω
(β)
k < 0, m ≥ 2.

(31)

3. Numerical Approximation for One Dimensional Two-Sided Convection-Diffusion Problem
with Source Term

We have considered the one-dimensional two-sided space fractional convection–diffusion equation,

∂u(x, t)
∂t

= cx
∂αu(x, t)

∂|x|α + dx
∂βu(x, t)

∂|x|β
+ p(x, t), (x, t) ∈ (0, L)× (0, T) (32)
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with initial condition:
u(x, 0) = g(x), 0 ≤ x ≤ L,

and with zero Dirichlet boundary conditions:

u(0, t) = 0, u(L, t) = 0, 0 < t ≤ T,

where 0 < α < 1, 1 < β < 2.
The analytic solution for Riesz space fractional convection–diffusion equation is developed

in Reference [49] using the spectral representation on a finite interval [0, L]. Reference [50] used
Laplace transform and Fourier transform method for finding analytical solution of Riesz space
fractional convection–diffusion problem with initial and zero Dirichlet boundary conditions. Here our
discretization is based on the finite interval [0, L] into a uniform mesh with the space step h = L/Nx

and the time step τ = T/Nt, where Nx, Nt are positive integers and the set of grid points is denoted
by xm = mh and tn = nτ for 0 ≤ m ≤ Nx and 0 ≤ n ≤ Nt. Let tn+1/2 = (tn+1 + tn)/2 with
0 ≤ n ≤ Nt − 1.

We have used the following notations for our formulation:

un
m = u(xm, tn), pn+1/2

m = p(xm, tn+1/2), δtun
m =

un+1
m − un

m
τ

, cx ≥ 0, dx > 0.

The Riesz space fractional convection–diffusion equation for 0 < α < 1, 1 < β < 2 can be written
with following expression.

∂αu(x, t)
∂|x|α = −Kα (0Dα

x +x Dα
L) u(x, t),

∂βu(x, t)
∂|x|β

= −Kβ

(
0Dβ

x +x Dβ
L

)
u(x, t) (33)

Theorem 1 allows us to use the Riemann-Liouville fractional derivative definition for the
formulation of the problem. The weighted shifted Grünwald-Letnikov derivative formula for
approximating the two-sided fractional derivative is derived in References [46,48] for space fractional
derivative and Crank-Nicolson scheme for time are used.

un+1
m − un

m
τ

=
Kαcx

hα

[
m+1

∑
k=0

ω
(α)
k

un+1
m+1−k + un

m+1−k
2

+
Nx−m+1

∑
k=0

ω
(α)
k

un+1
m−1+k + un

m−1+k
2

]

+
Kβdx

hβ

[
m+1

∑
k=0

ω
(β)
k

un+1
m+1−k + un

m+1−k
2

+
Nx−m+1

∑
k=0

ω
(β)
k

un+1
m−1+k + un

m−1+k
2

]
+ pn+1/2

m ,

(34)

where Kα =
−1

2cos(πα/2
, Kβ =

−1
2cos(πβ/2

. Then we have,

un+1
m − c̄x

2

(
m+1

∑
k=0

ω
(α)
k un+1

m−k+1 +
Nx−m+1

∑
k=0

ω
(α)
k un+1

m+k−1

)

− d̄x

2

(
m+1

∑
k=0

ω
(β)
k un+1

m−k+1 +
Nx−m+1

∑
k=0

ω
(β)
k un+1

m+k−1

)

= un
m +

c̄x

2

(
m+1

∑
k=0

ω
(α)
k un

m−k+1 +
Nx−m+1

∑
k=0

ω
(α)
k un

m+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β)
k un+1

m−k+1 +
Nx−m+1

∑
k=0

ω
(β)
k un

m+k−1

)
+ τpn+1/2

m ,

(35)

where c̄x = Kαcxτ
hα , d̄x =

Kβdxτ

hβ .
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Assume Un
m be the numerical approximation of the solution un

m, then the CN-WSGD formulation
for RSFCDEs become:

Un+1
m − c̄x

2

(
m+1

∑
k=0

ω
(α)
k Un+1

m−k+1 +
Nx−m+1

∑
k=0

ω
(α)
k Un+1

m+k−1

)

− d̄x

2

(
m+1

∑
k=0

ω
(β)
k Un+1

m−k+1 +
Nx−m+1

∑
k=0

ω
(β)
k Un+1

m+k−1

)

= Un
m +

c̄x

2

(
m+1

∑
k=0

ω
(α)
k Un

m−k+1 +
Nx−m+1

∑
k=0

ω
(α)
k Un

m+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β)
k Un

m−k+1 +
Nx−m+1

∑
k=0

ω
(β)
k Un

m+k−1

)
+ τpn+1/2

m .

(36)

By denoting,

a =



ω
(α)
1 ωα

0 0 · · · 0 0

ωα
2 ω

(α)
1 ωα

0 · · · 0 0

ωα
3 ω

(α)
2 ωα

1 · · · 0 0
...

...
...

. . .
...

...

ω
(α)
m−2 ω

(α)
m−3 ω

(α)
m−4 · · · ω

(α)
1 ω

(α)
0

ω
(α)
m−1 ω

(α)
m−2 ω

(α)
m−3 · · · ω

(α)
2 ω

(α)
1


,

b =



ω
(β)
1 ω

β
0 0 · · · 0 0

ω
β
2 ω

(β)
1 ω

(β)
0 · · · 0 0

ω
(β)
3 ω

(β)
2 ω

(β)
1 · · · 0 0

...
...

...
. . .

...
...

ω
(β)
m−2 ω

(β)
m−3 ω

(β)
m−4 · · · ω

(β)
1 ω

(β)
0

ω
(β)
m−1 ω

(β)
m−2 ω

(β)
m−3 · · · ω

(β)
2 ω

(β)
1


,

we have,

A =
c̄x

2

(
a + a>

)
+

d̄x

2

(
b + b>

)
. (37)

Therefore, the system of equations takes the form:

(I − A)Un+1 = (I + A)Un + τpn+ 1
2 , (38)

where I is the (Nx − 1)× (Nt − 1) identity matrix with Am,j as the matrix coefficients. These matrix
coefficients for m = 1, 2, 3, ..., Nx − 1, j = 1, 2, ..., Nx − 1 are defined by:

Am,j =



c̄x

2

(
ω
(α)
0 + ω

(α)
2

)
+

d̄x

2

(
ω
(β)
0 + ω

(β)
2

)
, j = m− 1,

c̄x

2

(
ω
(α)
0 + ω

(α)
2

)
+

d̄x

2

(
ω
(β)
0 + ω

(β)
2

)
, j = m + 1,

c̄xω
(α)
1 + d̄xω

(β)
1 , j = m,

c̄x

2
ω
(α)
m−j+1 +

d̄x

2
ω
(β)
m−j+1, j < m− 1,

c̄x

2
ω
(α1)
j−m+1 +

d̄x

2
ω
(β)
j−m+1, j > m + 1.

(39)
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For the convenience of implementation, using the matrix form of the grid functions,

Un = [Un+1
1 , Un+1

2 , ..., Un
Nx−1]

>

pn+1/2 = [pn+1/2
1 , pn+1/2

2 , ..., pn+1/2
Nx−1 ]>.

4. Formulation and Discretization of Two-Dimensional Riesz Space Fractional Convection
Diffusion Equation with CNADI-WSGD Scheme

The analytic solution for two-dimensional Riesz space fractional anomalous diffusion equation
is obtained by using the Fourier series expansion with homogeneous Dirichlet boundary condition.
Let us take a bounded domain as Ω = [0, Lx]× [0, Ly], Ωt = [0, T] for our discretization of the problem.
Here our aim is to find the full numerical approximation of the two-dimensional Riesz space fractional
convection–diffusion problem with zero Dirichlet boundary condition over a finite domain Ω×Ωt.

Consider the two-dimensional two-sided space fractional convection-diffusion problem with
constant coefficients as:

∂u(x, y, t)
∂t

= cx
∂α1 u(x, y, t)

∂|x|α1
+ cy

∂α2 u(x, y, t)
∂|y|α2

+ dx
∂β1 u(x, y, t)

∂|x|β1

+dy
∂β2 u(x, y, t)

∂|y|β2
+ p(x, y, t), (x, y, t) ∈ Ω×Ωt,

u(x, y, 0) = g(x, y), (x, y) ∈ Ω,

u(0, y, t) = 0, u(Lx, y, t) = 0, (y, t) ∈ [0, Ly]×Ωt,

u(x, 0, t) = 0, u(x, Ly, t) = 0, (x, t) ∈ [0, Lx]×Ωt,

(40)

where 0 < α1, α2 < 1, 1 < β1, β2 < 2, cx, cy ≥ 0 and dx, dy > 0 express the velocity parameter and
positive diffusion coefficients. Here the function u(x, y, t) is specified as solute concentration under
the groundwater. The Riesz space fractional-order derivative is defined as:

∂α1 u(x, y, t)
∂|x|α1

= Kα1

[
0Dα1

x +x Dα1
Lx

]
u(x, y, t),

∂α2 u(x, y, t)
∂|y|α2

= Kα2

[
0Dα2

y +y Dα2
Ly

]
u(x, y, t),

∂β1 u(x, y, t)
∂|x|β1

= Kβ1

[
0Dβ1

x +x Dβ1
Lx

]
u(x, y, t),

∂β2 u(x, y, t)
∂|y|β2

= Kβ2

[
0Dβ2

y +y Dβ2
Ly

]
u(x, y, t),

(41)

where

Kα1 =
−1

2cos(πα1/2)
, Kα2 =

−1
2cos(πα2/2)

Kβ1 =
−1

2cos(πβ1/2)
, Kβ2 =

−1
2cos(πβ2/2)

and also from the coincides Theorem 1, we have the following left and right Riemann-Liouville
fractional derivative definition for two dimension space fractional derivative.

0Dα1
x u(x, y, t) =

1
Γ(1− α1)

∂

∂x

∫ x

0
(x− η)−α1 u(η, y, t)dη,

xDα1
Lx

u(x, y, t) =
−1

Γ(1− α1)

∂

∂x

∫ Lx

x
(η − x)−α1 u(η, y, t)dη,

0Dβ1
x u(x, y, t) =

1
Γ(2− β1)

∂2

∂x2

∫ x

0
(x− η)1−β1 u(η, y, t)dη,

xDβ1
Lx

u(x, y, t) =
1

Γ(2− β1)

∂2

∂x2

∫ Lx

x
(η − x)1−β1 u(η, y, t)dη,

(42)

where Γ(.) denotes the gamma function. In a similar way, we can express the Riesz space fractional

operators
∂α2 u(x, y, t)

∂|y|α2
and

∂β2 u(x, y, t)
∂|y|β2

of orders α2, β2, (0 < α2 < 1, 1 < β2 < 2) corresponding
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to y−direction. For time and space discretization, we use CNADI scheme and WSGD operator
respectively. Let un

m,j be the approximated solution of u(xm, yj, tn), tn+1/2 = (tn + tn+1)/2, pn+1/2
m,j =

p(xm, yj, tn+1/2), hx =
Lx

Nx
, hy =

Ly

Ny
, for the uniform space steps hx, hy and time-step τ = T/Nt,

0 < m < Nx − 1, 0 < j < Ny − 1, 0 < n < Nt − 1.
Therefore, the weighted and shifted-Grünwald-Letnikov difference operator with CN scheme for

2D-RSFCDE is expressed in the following formulation.

un+1
m,j − un

m,j

τ
=

kα1 cx

hα1
1

(
m+1

∑
k=0

ω
(α1
k

un+1
m−k+1,j + un

m−k+1,j

2
+

Nx−m+1

∑
k=0

ω
(α1)
k

un+1
m+k−1,j + un

m+k−1,j

2

)

+
kα2 cy

hα2
2

(
j+1

∑
k=0

ω
(α2)
k

un+1
m,j−k+1 + un

m,j−k+1

2
+

Ny−j+1

∑
k=0

ω
(α2)
k

un+1
m,j+k−1 + un

m,j+k−1

2

)

+
kβ1 dx

hβ1
1

(
m+1

∑
k=0

ω
(β1
k

un+1
m−k+1,j + un

m−k+1,j

2
+

Nx−m+1

∑
k=0

ω
(β1)
k

un+1
m+k−1,j + un

m+k−1,j

2

)

+
kβ2 dy

hα2
2

(
j+1

∑
k=0

ω
(α2)
k

un+1
m,j−k+1 + un

m,j−k+1

2
+

Ny−j+1

∑
k=0

ω
(β2)
k

un+1
m,j+k−1 + un

m,j+k−1

2

)
+ pn+1/2

m,j .

(43)

To simplify our formulation, it is possible to symbolize the following operator as:

∆(α1)
x un

m,j =
Kα1 cx

hα1
1

(
m+1

∑
k=0

ω
(α1
k un

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k un

m+k−1,j

)
+ O(h2

1)

∆(α2)
y un

m,j =
Kα2 cy

hα2
2

(
j+1

∑
k=0

ω
(α2)
k un

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k un

m,j+k−1

)
+ O(h2

2)

∆(β1)
x un

m,j =
Kβ1 dx

hβ1
1

(
m+1

∑
k=0

ω
(β1
k un

m−k+1,j +
Nx−m+1

∑
k=0

ω
(β1)
k un

m+k−1,j

)
+ O(h2

1)

∆(β2)
y un

m,j =
Kβ2 dy

hβ2
2

(
j+1

∑
k=0

ω
(β2)
k un

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k un

m,j+k−1

)
+ O(h2

2).

(44)

By grouping like terms from Equations (43) and (44), we have:[
1− τ

2

(
∆(α1)

x + ∆(β1)
x

)
− τ

2

(
∆(α2)

y + ∆(β2)
y +

)]
un+1

m,j

=
[
1 +

τ

2

(
∆(α1)

x + ∆(β1)
x

)
+

τ

2

(
∆(α2)

y + ∆(β2)
y

)]
un

m,j +
τ

2
pn+1/2

m,j + τTn
m,j,

(45)

where Tn
m,j represent truncation error that can satisfy

∣∣∣Tn
m,j

∣∣∣ ≤ k̂
(
τ2 + h2

1 + h2
2
)
.

Let us define the operators:

∆(α)
x = ∆(α1)

x + ∆(β1)
x

∆(β)
y = ∆(α2)

y + ∆(β2)
y ,

with these operator definitions, the CNADI-WSGD scheme for the 2D-RSFCDE with homogeneous
Dirichlet boundary conditions can be defined as an operator form:[

1− τ

2

(
∆(α)

x + ∆(β)
x

)]
un+1

m,j =
[
1 +

τ

2

(
∆(α)

x + ∆(β)
y

)]
un

m,j + τpn+1/2
m,j . (46)
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An alternating direction implicit Peacemann-Rachford is reduced a two-dimensional problem in
to a one dimensional problem with a better computational efficient. For CNADI the operator can be
expressed in the product form as:(

1− τ

2
∆(α)

x

) (
1− τ

2
∆(β)

y

)
un+1

m,j

=
(

1 +
τ

2
∆(α)

x

) (
1 +

τ

2
∆(β)

y

)
un

m,j +
τ

2
pn+1/2

m,j , 1 ≤ m ≤ Nx − 1, 1 ≤ j ≤ Ny − 1, (47)

which produce an additional perturbation error in the form of
τ2

4
∆α

x∆β
y

(
un+1

m,j − un
m,j

)
that has Taylor

expansion as:

τ2

4
∆α

x∆β
y

(
un+1

m,j − un
m,j

)
=

τ3

4

((
∆(α1)

x + ∆(β1)
x

) (
∆(α2)

y + ∆(β2)
y

)
ut

)n+1/2

m,j

+ τ3O
(

τ2 + h2
1 + h2

2

)
. (48)

As compared to the approximation errors, the additional perturbation errors is insignificant
and the scheme defined in Equation (45) has second order accuracy in both space and time which is
O
(
τ2 + h2

1 + h2
2
)
.

The problem defined by Equation (47) can be simulated by the following efficient
Peacemann-Rachford ADI approximation as it was presented in Reference [46] by considering u∗m,j as

an intermediate solution to make a numerical solution un
m,j at time tn to the numerical solution un+1

m,j at
time tn+1. The corresponding iterative algorithms are:

Algorithm 1: The first step is to solve the problem in the x-direction for each fixed yj to find an
intermediate solution u∗m,j in the form:(

1− τ

2
∆(α)

x

)
u∗m,j =

(
1 +

τ

2
∆(β)

y

)
un

m,j +
τ

2
pn+1/2

m,j . (49)

Algorithm 2: The next step is to solve the problem in y-direction for each fixed xm as:(
1− τ

2
∆(α)

x

)
un+1

m,j =
(

1 +
τ

2
∆(β)

y

)
u∗m,j +

τ

2
pn+1/2

m,j . (50)

Algorithm 3: We need to apply the homogeneous Dirichlet boundary conditions:

un
0,j = u(0, yj, tn) = 0, un

Nx ,j = u(Lx, yj, tn) = 0,

un
m,0 = u(xm, 0, tn) = 0, un

m,Ny
= u(xm, Ly, tn) = 0.

Therefore now compute the boundary condition for the intermediate solution u∗m,j which can be
derived from subtracting Equation (50) from (49) to get:

u∗m,j =
1
2

(
1− τ

2
∆(β)

y

)
un+1

m,j +
1
2

(
1 +

τ

2
∆(β)

y

)
un

m,j. (51)

Therefore, the boundary conditions for u∗m,j needed to solve each set of equations.

u∗0,j =
1
2

(
1− τ

2
∆(β)

y

)
un+1

0,j +
1
2

(
1 +

τ

2
∆(β)

y

)
un

0,j

u∗Nx ,j =
1
2

(
1− τ

2
∆(β)

y

)
un+1

Nx ,j +
1
2

(
1 +

τ

2
∆(β)

y

)
un

Nx ,j. (52)
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By setting Un
m,j be the numerical approximation to exact solution un

m,j, we get the finite difference
approximation for Equation (47):(

1− τ

2
δ
(α)
x

) (
1− τ

2
δ
(β)
y

)
Un+1

m,j =
(

1 +
τ

2
δ
(α)
x

) (
1 +

τ

2
δ
(β)
y

)
Un

m,j + τpn+1/2
m,j (53)

Un =
[
un

1,1, ..., un
N1,1, un

1,2, ..., un
N1,2, ..., un

1,N2
, ..., un+1/2

N1,N2

]>
pn+1/2 =

[
pn+1/2

1,1 , ..., pn+1/2
N1,1 , pn+1/2

1,2 , ..., pn+1/2
N1,2 , ..., pn+1/2

1,N2
, ..., pn+1/2

N1,N2

]>
.

5. CNADI-WSGD Scheme for Theoretical Analysis of 2D-RSFCDE with Source Term

5.1. Stability and Convergence Analysis of CNADI-WSGD Scheme

For discussing the stability and convergence of the scheme, we need to write our problem in
matrix form. Thus, the Equation (49) can be put as:

(I − A) u∗l = (I + A) un
l +

τ

2
p, 1 ≤ l ≤ Ny − 1 (54)

with

un
l =

(
un

1,l , un
2,l , ..., un

Nx−1,l

)>
,

u∗l =
(

u∗1,l , u∗2,l , ..., u∗Nx−1,l

)>
,

p = (p(x1, yl , tn), p(x2, yl , tn), ..., p(xNx−1, yl , tn))
> ,

and the coefficient of matrix A =
(
am,j
)
(Nx−1)×(Nx−1),

am,j =



c̄x

2

(
ω
(α1)
0 + ω

(α1)
2

)
+

d̄x

2

(
ω
(β1)
0 + ω

(β1)
2

)
, j = m− 1,

c̄x

2

(
ω
(α1)
0 + ω

(α1)
2

)
+

d̄x

2

(
ω
(β1)
0 + ω

(β1)
2

)
, j = m + 1,

c̄xω
(α1)
1 + d̄xω

(β1)
1 , j = m,

c̄x

2
ω
(α1)
m−j+1 +

d̄x

2
ω
(β1)
m−j+1, j < m− 1,

c̄x

2
ω
(α1)
j−m+1 +

d̄x

2
ω
(β1)
j−m+1, j > m + 1.

(55)

In a similar way, Equation (50) can be given in matrix form:

(I − B) ūn+1
q = (I + B) ū∗q , 1 ≤ q ≤ Nx − 1, (56)

where,

ūn+1
q =

(
un+1

q,1 , un+1
q,2 , ..., un+1

q,Ny−1

)>
,

ū∗q =
(

u∗q,1, u∗q,2, ..., u∗q,Ny−1

)>
,
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and B =
(
bm,j
)
(Ny−1)×(Ny−1),

bm,j =



c̄y

2

(
ω
(α2)
0 + ω

(α2)
2

)
+

d̄y

2

(
ω
(β2)
0 + ω

(β2)
2

)
, j = m− 1,

c̄y

2

(
ω
(α2)
0 + ω

(α2)
2

)
+

d̄y

2

(
ω
(β2)
0 + ω

(β2)
2

)
, j = m + 1,

c̄yω
(α2)
1 + d̄yω

(β2)
1 , j = m,

c̄y

2
ω
(α2)
m−j+1 +

d̄y

2
ω
(β2)
m−j+1, j < m− 1,

c̄y

2
ω
(α2)
j−m+1 +

d̄y

2
ω
(β2)
j−m+1, j > m + 1

(57)

where, c̄x =
Kα1 cxτ

hα1
1

, c̄y =
Kα2 cyτ

hα2
2

, d̄x =
Kβ1 dxτ

hβ1
1

, d̄y =
Kβ2 dyτ

hβ2
2

.

Theorem 2. Assume that 0 < α1, α2 < 1, 1 < β1, β2 ≤ 2 , the coefficient matrices defined in Equations (55)
and (57), then the diagonal matrix and coefficient matrix satisfy:

|am,m| >
Nx−1

∑
j=0,m 6=1

∣∣am,j
∣∣ , m = 1, 2, 3, ..., Nx − 1,

|bm,m| >
Ny−1

∑
j=0,m 6=1

∣∣bm,j
∣∣ , m = 1, 2, 3, ..., Ny − 1, (58)

tells us that A and B which are defined in Equations (54) and (56) are strictly diagonally dominant.

Proof. First we will consider the diagonal dominance of the coefficient matrix am,j. Since Kα1 =
1

2cos(πα1/2)
> 0 and Kβ1 =

1
2cos(πβ1/2)

< 0 for 0 < α1 < 1, 1 < β1 ≤ 2 implies that c̄x =
τKα1 cx

hα1
1

>

0 and d̄x =
τKβ1 dx

hβ1
1

< 0.

am,m+1 =
c̄x

2

(
ω
(α1)
0 + ω

(α1)
2

)
+

d̄x

2

(
ω
(β1)
0 + ω

(β1)
2

)
. (59)

From Lemmas 4 and 5, we have:

ω
(α1)
0 + ω

(α1)
2 =

α1

2
+

α1(α
2
1 + α1 − 4)

4
< 0,

ω
(β1)
0 + ω

(β1)
2 =

β1

2
+

β1(β2
1 + β1 − 4)

4
> 0. (60)

Since c̄x > 0 and d̄x < 0, then we have:

am,m+1 =
c̄x

2

(
ω
(α1)
0 + ω

(α1)
2

)
+

d̄x

2

(
ω
(β1)
0 + ω

(β1)
2

)
< 0,

am,m−1 =
c̄x

2

(
ω
(α1)
0 + ω

(α1)
2

)
+

d̄x

2

(
ω
(β1)
0 + ω

(β1)
2

)
< 0. (61)

By looking Lemmas 4 and 5, we have seen that ω
(α1)
1 > 0 and ω

(β1)
1 < 0, hence,

am,m = c̄xω
(α1)
1 + d̄xω

(β1)
1 > 0. (62)
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As we have shown from Lemma 4, when k ≥ 3, ω
(α1)
k < 0, then c̄xω

(α1)
k < 0. Similarly by seeing

Lemma 5, when k ≥ 3, ω
(β1)
k > 0, then d̄xω

(β1)
k < 0. These indicates that the coefficient matrix am,j < 0

for j > m + 1, j < m− 1.

|am,m| >
Nx−1

∑
j=0,m 6=1

∣∣am,j
∣∣ , m = 1, 2, 3, ..., Nx − 1,

which means matrix A defined by the coefficient matrix am,j, is strictly diagonally dominant. In the
same way, the diagonally dominant result for matrix B can also be found as matrix A.

5.2. Stability Analysis of the CNADI-WSGD Method

In order to study the stability and convergence analysis for the CNADI-WSGD scheme , we are
focused on the following description.

Let χh =

{
ν : ν =

{
νm,j
}

:
{{

xm = mh1; yj = jh2
}Nx

m=0

}Ny

j=0

}
be the mesh grid function. For any

ν = νm,j ∈ χh, we define our point-wise maximum norm as:

||ν||∞ = max
(m,j)∈χh

|νm,j|, (63)

and the discrete L2-norm

||ν|| =

√√√√h1h2

Nx−1

∑
m=1

Ny−1

∑
j=1

ν2
m,j. (64)

Our next aim is to show the stability of CNADI-WSGD method which is defined as in the
matrix form:

(I − A) ((I − B)Un+1 = (I + A) ((I + B)Un + Tn+1 (65)

where the matrices A and B define the operator
τ

2
∆(α)

x and
τ

2
∆(β)

y , respectively. The vector Tn+1 absorbs

the source term pn+1/2
m,j and the Dirichlet boundary condition in the formulated problem.

Theorem 3. Let Un
m,j be the numerical solution of the exact solution un

m,j, then CNADI-WSGD finite difference
method (53) is unconditionally stable for 0 < α1, α2 < 1 with 1 < β1, β2 ≤ 2.

Proof. The matrices A and B are of size (Nx − 1)
(

Ny − 1
)
× (Nx − 1)

(
Ny − 1

)
. The commutative

property defined in Reference [51], allows us to obtain the unconditional stability of
CNADI-WSGD method. The matrix A which is

(
Ny − 1

)
×
(

Ny − 1
)

block diagonal matrix
whose blocks are (Nx − 1× Nx − 1) square super triangular matrices which is expressed as
A = diag

(
A1, A2, ..., ANy−1

)
. In the same way, the matrix B is a block matrix with (Nx − 1)× (Nx − 1)

square diagonal matrices. The matrix B can be written as B = [bm,j], where each bm,j is an
(Nx − 1)× (Nx − 1) matrix such that bm,j is a diagonal matrix bm,j = diag

(
bm,j, bm,j, ..., bm,j

)
where bm,j

is the (m, j)th entry of the matrix B defined above. As we have seen from Theorem 2 , matrix A is
diagonal dominant with entry am,m > 0. The sum of the absolute value of the off-diagonal entries on
the row m of matrix A is:
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Nx−1

∑
j=0,j 6=m

∣∣am,j
∣∣ = m−2

∑
j=0

∣∣am,j
∣∣+ Nx−1

∑
j=m+2

∣∣am,j
∣∣+ |am,m+1|+ |am,m−1| ,

= −
m−2

∑
j=0

(
c̄x

2
ω
(α1)
m−j+1 +

d̄x

2
ω
(β1)
m−j+1

)
−

Nx−1

∑
j=m+2

(
c̄x

2
ω
(α1)
j−m+1 +

d̄x

2
ω
(β1)
j−m+1

)
,

− c̄x

(
ω
(α1)
0 + ω

(α1)
2

)
− d̄x

(
ω
(β1)
0 + ω

(β1)
2

)
<

m−2

∑
j=−∞

(
c̄x

2
ω
(α1)
m−j+1 +

d̄x

2
ω
(β1)
m−j+1

)
−

∞

∑
j=m+2

(
c̄x

2
ω
(α1)
j−m+1 +

d̄x

2
ω
(β1)
j−m+1

)
− c̄x

(
ω
(α1)
0 + ω

(α1)
2

)
− d̄x

(
ω
(β1)
0 + ω

(β1)
2

)
,

= −c̄x

∞

∑
k=3

ω
(α1
k − d̄x

∞

∑
k=3

ω
(β1
k − c̄x

(
ω
(α1)
0 + ω

(α1)
2

)
− d̄x

(
ω
(β1)
0 + ω

(β1)
2

)
,

= c̄xω
(α1
1 + d̄xω

(β1)
1 − c̄x

∞

∑
k=0

ω
(α1
k − d̄x

∞

∑
k=0

ω
(β1
k ,

= c̄xω
(α1
1 + d̄xω

(β1
k = |am,m| ,

(66)

implies that,
Nx−1

∑
j=0,j 6=m

∣∣am,j
∣∣ < |am,m| .

Next we need to show that the eigenvalue of matrix A is negative real parts. For 0 < α1 < 1,
1 < β1 < 2, we can see that,

∣∣∣λ1 − c̄xω
(α1)
1 − d̄xω

(β1)
1

∣∣∣ ≤ c̄x

2

(∣∣∣∣∣ m+1

∑
k=0,k 6=1

ω
(α1)
k +

Nx−m+1

∑
k=0, 6=1

ω
(α1)
k

∣∣∣∣∣
)
+

d̄x

2

(∣∣∣∣∣ m+1

∑
k=0,k 6=1

ω
(β1)
k +

Nx−m+1

∑
k=0, 6=1

ω
(β1)
k

∣∣∣∣∣
)

≤ c̄x

2

(
m+1

∑
k=0,k 6=1

∣∣∣ω(α1)
k

∣∣∣+ Nx−m+1

∑
k=0, 6=1

∣∣∣ω(α1)
k

∣∣∣)+
d̄x

2

(
m+1

∑
k=0,k 6=1

∣∣∣ω(β1)
k

∣∣∣+ Nx−m+1

∑
k=0, 6=1

∣∣∣ω(β1)
k

∣∣∣) .

(67)

We have noticed that,
∞

∑
k=0

ω
(α1)
k = 0,

∞

∑
k=0

ω
(β1)
k = 0,

and
Nx

∑
k=0

ω
(α1)
k +

Nx

∑
k=0

ω
(β1)
k < −

(
ω
(α1)
1 + ω

(β1)
1

)
.

Therefore, ∣∣∣λ1 − c̄xω
(α1)
1 − d̄xω

(β1)
1

∣∣∣ ≤ − (c̄xω
(α1)
1 + d̄xω

(β1)
1

)
.

The eigenvalue λ1 of matrix A satisfy,

−
(

c̄xω
(α1)
1 + d̄xω

(β1)
1

)
≤ c̄xω

(α1)
1 + d̄xω

(β1)
1 ≤ λ1 ≤ 0. (68)
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According to Greschgorin Theorem [52], the given eigenvalue of matrix A have non-positive
real parts. Here we have noted that matrix A has an eigenvalue of λ1 if and only if (I − A) has an
eigenvalue of (1− λ1) if and only if (I− A)−1(I + A) has an eigenvalue of (1+λ1)/(1−λ1). From the
first part of this statement, we can concluded that all eigenvalues of the matrix (I − A) have a spectral
radius which is larger than unity indicates the matrix is invertible. Thus, every eigenvalue of the
(I − A)−1(I + A) has a spectral radius which is less than 1. Similarly, we can show that matrix B also
satisfy the same property as matrix A. From the scheme (53), we can express the error en+1 in Un+1 at
time tn+1 and the error en in Un at time tn as:

en+1 = (I − A)−1 (I − B)−1 (I + A) (I + B) en, (69)

where the identity matrix I is (Nx − 1)×
(

Ny − 1
)

square. Hence, Equation (53) can be put in the form:

en =
(
(I − A)−1(I + A)

)n (
(I − B)−1(I + B)

)n
e0. (70)

Letting λ1 and λ2 be an eigenvalue of matrices A and B respectively, then it results from
Equation (69) that the real parts of λ1 and λ2 are both negative. The spectral radius of each matrix is less
than unity, which has followed that

(
(I − A)−1(I + A)

)n and
(
(I − A)−1(I + A)

)n which converges
to null matrix (see Reference [46]). Therefore, we have concluded the scheme defined in Equation (53),
is unconditionally stable.

5.3. Convergence Analysis of CNADI-WSGD Scheme

First of all we can express the truncation error of CNADI-WSGD difference method. So, it is easy
to conclude that:

u(xm, yj, tn+1)− u(xm, yj, tn)

τ
=

(
∂u(x, y, t)

∂t

)n+1/2

m,j
+ O(τ2) (71)

(
cx

∂α1 u(x, y, t)
∂|x|α1

+ cy
∂α2 u(x, y, t)

∂|y|α2

)n+1/2

m,j

=
1
2

(
cx

∂α1 u(xm, yj, tn+1)

∂|x|α1
+ cy

∂α2 u(xm, yj, tn+1)

∂|y|α2

)
+

1
2

(
cx

∂α1 u(xm, yj, tn)

∂|x|α1
+ cy

∂α2 u(xm, yj, tn)

∂|y|α2

)
+ O(τ2)

cx
∂α1 u(xm, yj, tn)

∂|x|α1
+ cy

∂α2 u(xm, yj, tn)

∂|y|α2

= c̄x

(
m+1

∑
k=0

ω
(α1)
k un

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k un

m+k−1,j

)
(72)

+ c̄y

(
j+1

∑
k=0

ω
(α2)
k un

m,j−k+1 +
Ny−m+1

∑
k=0

ω
(α2)
k un

m,j+k−1

)
+ O(h2

1 + h2
2),

where 0 < α1, α2 < 1. It is the same to have a truncation error of O(τ2) and O
(
h2

1 + h2
2
)

for
1 < β1, β2 < 2.

Therefore, the truncation error from Equation (43) is given by:

Tn+1
m,j = O(τ3 + τh2

1 + τh2
2).
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Theorem 4. Assume un
m,j be the analytic solution, and let Un

m,j be the approximation solution of the finite
difference method (65), then for all 1 ≤ n ≤ Nt, we have the estimate:

||un
m,j −Un

m,j||∞ ≤ C(τ2 + h2
1 + h2

2), (73)

where ||un
m,j −Un

m,j||∞ = max1≤m≤Nx ,1≤j≤Ny |un
m,j −Un

m,j| = |en
m̂, ĵ
|, C is a positive constant independent of

h1, h2 and τ with ||.|| stands for the discrete L2-norm.

Proof. Assume that en
m,j be the error at grid points (xm, yj, tn) can be defined as en

m,j = un
m,j − un

m,j and

denote en =
(

en
1,1, en

2,1, ..., en
Nx−1,1, en

1,2, ..., eNx−1,2, ..., e1,Ny−1, ..., eNx−1,Ny−1

)>
.

By looking to Equation (43), the error satisfies:

en+1
m,j +

c̄x

2

(
m+1

∑
k=0

ω
(α1)
k en+1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k en+1

m+k−1,j

)
+

c̄y

2

(
j+1

∑
k=0

ω
(α2)
k en+1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k en+1

m,j+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k en+1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(β1)
k en+1

m+k−1,j

)
+

d̄y

2

(
j+1

∑
k=0

ω
(β2)
k en+1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k en+1

m,j+k−1

)

= en
m,j −

c̄x

2

(
m+1

∑
k=0

ω
(α1)
k en

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k en

m+k−1,j

)
−

c̄y

2

(
j+1

∑
k=0

ω
(α2)
k en

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k en

m,j+k−1

)
(74)

− d̄x

2

(
m+1

∑
k=0

ω
(β1)
k en

m−k+1,j +
Nx−m+1

∑
k=0

ω
(β1)
k en

m+k−1,j

)
−

d̄y

2

(
j+1

∑
k=0

ω
(β2)
k en

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k en

m,j+k−1

)
+ τO(τ2 + h2

1 + h2
2).

We have e0 = 0, we have from Equations (43) and (74) if n = 0,

R1
m,j =

c̄x

2

(
m+1

∑
k=0

ω
(α1)
k e1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k=0 e1

m+k−1,j

)
+

c̄y

2

(
j+1

∑
k=0

ω
(α2)
k e1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k e1

m,j+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k e1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(β1)
k e1

m+k−1,j

)
+

d̄y

2

(
j+1

∑
k=0

ω
(β2)
k e1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k e1

m,j+k−1

) (75)

if n > 0,

Rn+1
m,j =

c̄x

2

(
m+1

∑
k=0

ω
(α1)
k en+1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(α1)
k=0 en+1

m+k−1,j

)
+

c̄y

2

(
j+1

∑
k=0

ω
(α2)
k en+1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k en+1

m,j+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k en+1

m−k+1,j +
Nx−m+1

∑
k=0

ω
(β1)
k en+1

m+k−1,j

)
+

d̄y

2

(
j+1

∑
k=0

ω
(β2)
k en+1

m,j−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k en+1

m,j+k−1

)
,

(76)

where Rn+1
m,j ≤ τc(τ2 + h2

1 + h2
2), m = 1, 2, ..., Nx − 1, j = 1, 2, ..., Ny − 1, n = 1, 2, ..., Nt − 1, c is positive

constant independent of time step and space size. We have used the mathematical induction to
prove our Theorem 4. Let n = 1 and assume |em̂, ĵ| = max1≤m≤Nx−1,1≤j≤Ny−1 |e1

m,j|, we have the
following expression.
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||e1||∞ = |e1
m̂, ĵ| ≤

c̄x

2

(
m+1

∑
k=0

ω
(α1)
k |e1

m̂−k+1, ĵ|+
Nx−m+1

∑
k=0

ω
(α1)
k |e1

m̂+k−1, ĵ|
)

+
c̄y

2

(
j+1

∑
k=0

ω
(α2)
k |e1

m̂, ĵ−k+1|+
Ny−j+1

∑
k=0

ω
(α2)
k |e1

m̂, ĵ+k−1|
)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k |e1

m̂−k+1, ĵ|+
Nx−m+1

∑
k=0

ω
(α1)
k |e1

m̂+k−1, ĵ|
)

+
d̄y

2

(
j+1

∑
k=0

ω
(β2)
k |e1

m̂, ĵ−k+1|+
Ny−j+1

∑
k=0

ω
(β2)
k |e1

m̂, ĵ+k−1|
)

≤
∣∣∣∣ c̄x

2

(
m+1

∑
k=0

ω
(α1)
k e1

m̂−k+1, ĵ +
Nx−m+1

∑
k=0

ω
(α1)
k e1

m̂+k−1, ĵ

)
(77)

+
c̄y

2

(
j+1

∑
k=0

ω
(α2)
k e1

m̂, ĵ−k+1 +
Ny−j+1

∑
k=0

ω
(α2)
k e1

m̂, ĵ+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k e1

m̂−k+1, ĵ +
Nx−m+1

∑
k=0

ω
(α1)
k e1

m̂+k−1, ĵ

)

+
d̄y

2

(
j+1

∑
k=0

ω
(β2)
k e1

m̂, ĵ−k+1 +
Ny−j+1

∑
k=0

ω
(β2)
k e1

m̂, ĵ+k−1

) ∣∣∣∣
=

∣∣∣R1
m,j

∣∣∣ ≤ τC(τ2 + h2
1 + h2

2)

Assume that if n ≤ r, ||er||∞ ≤ τC(τ2 + h2
1 + h2

2) hold and let n = r + 1, let |er+1
m̂, ĵ
| =

max1≤m≤Nx−1,1≤j≤Ny−1 |er+1
m,j |. Thus,

||er+1||∞ = |er+1
m̂, ĵ
| ≤ c̄x

2

(
m+1

∑
k=0

ω
(α1)
k |er+1

m̂−k+1, ĵ
|+

Nx−m+1

∑
k=0

ω
(α1)
k |er+1

m̂+k−1, ĵ
|
)

+
c̄y

2

(
j+1

∑
k=0

ω
(α2)
k |er+1

m̂, ĵ−k+1
|+

Ny−j+1

∑
k=0

ω
(α2)
k |er+1

m̂, ĵ+k−1
|
)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k |er+1

m̂−k+1, ĵ
|+

Nx−m+1

∑
k=0

ω
(α1)
k |er+1

m̂+k−1, ĵ
|
)

+
d̄y

2

(
j+1

∑
k=0

ω
(β2)
k |er+1

m̂, ĵ−k+1
|+

Ny−j+1

∑
k=0

ω
(β2)
k |er+1

m̂, ĵ+k−1
|
)

≤
∣∣∣∣ c̄x

2

(
m+1

∑
k=0

ω
(α1)
k er+1

m̂−k+1, ĵ
+

Nx−m+1

∑
k=0

ω
(α1)
k er+1

m̂+k−1, ĵ

)
(78)

+
c̄y

2

(
j+1

∑
k=0

ω
(α2)
k er+1

m̂, ĵ−k+1
+

Ny−j+1

∑
k=0

ω
(α2)
k er+1

m̂, ĵ+k−1

)

+
d̄x

2

(
m+1

∑
k=0

ω
(β1)
k er+1

m̂−k+1, ĵ
+

Nx−m+1

∑
k=0

ω
(α1)
k er+1

m̂+k−1, ĵ

)

+
d̄y

2

(
j+1

∑
k=0

ω
(β2)
k er+1

m̂, ĵ−k+1
+

Ny−j+1

∑
k=0

ω
(β2)
k er+1

m̂, ĵ+k−1

) ∣∣∣∣
=

∣∣∣Rr+1
m,j

∣∣∣ ≤ τC(τ2 + h2
1 + h2

2)
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Therefore, there exists a positive constant c∗ such that∣∣∣er+1
m,j

∣∣∣
∞
≤ c∗(τ2 + h2

1 + h2
2),

which completes the proof.

6. Numerical Simulations

1. Consider the one dimensional RSFCDEs over a bounded domain with initial and Dirichlet
boundary conditions: 

∂u(x, y, t)
∂t

= cx
∂αu(x, t

∂|x|α + dx
∂βu(x, t

∂|x|β
+ p(x, t),

u(x, 0) = 0, 0 < x ≤ 1,

u(0, t) = u(1, t) = 0, 0 < t ≤ T,

with the source term:

p(x, t) = tβ−1eαt(β + αt)x2(1− x)2

+
cxtβeαt

2cos(απ/2

[
2

Γ(3− α)

(
x2−α + (1− x)2−α

)
− 12

Γ(4− α

(
x3−α + (1− x)3−α

)
+

24
Γ(5− α)

(
x4−α + (1− x)4−α

) ]
+

dxtβeαt

2cos(βπ/2

[
2

Γ(3− β)

(
x2−β + (1− x)2−β

)
− 12

Γ(4− β

(
x3−β + (1− x)3−β

)
+

24
Γ(5− β)

(
x4−β + (1− x)4−β

) ]
.

The exact solution is
u(x, t) = tβeαtx2(1− x)2.

All the numerical simulations are done based on the finite space domain Ω×Ωt where Ω =

[0, 1]× [0, 1] and Ωt = [0, 1]. The order of convergence both in space and time are calculated using
the formula:

Order1 =
||E(h, τ)||∞

/
||E(h/2, τ/2)||∞

log(2)
,

Order2 =
||E(hx, hy, τ)||∞

/
||E(hx/2, hy/2, τ/2)||∞
log(2)

,

(79)

where order1 is the rate of convergence for one-dimensional two-sided space fractional
convection–diffusion equation and order2 is rate convergence of two dimensional two-sided space
fractional equation. ||E(h, τ)||∞ is the maximum error for one dimensional space fractional problem
and ||E(hx, hy, τ)||∞ for two dimensional space fractional problem, denoted as Max− Error. As we
have seen in Table 1, the second order convergence and the maximum error are confirmed at each
grid size for convection-dominance (i.e., cx > dx) for one dimensional two-sided space fractional
convection–diffusion equation with different space fractional order. As we have refined the grid
size, the suitable maximum error is obtained. The convergence order and maximum error for a
diffusion–dominance (i.e., cx < dx) one dimensional two-sided space fractional convection–diffusion
problem are shown in Table 2. Figure 1 shows the good agreement of exact and numerical solution
of one-dimensional convection–diffusion equation with the coefficients cx = 0.5, dx = 1.5 and with
fractional orders α = 0.75, β = 1.85 at Nx = Nt = 100 grid points.
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Table 1. Convergence order and maximum error are produced with convection–dominance for example
1 at T = 1, cx = 2, dx = 0.25.

α = 0.1 α = 0.45 α = 0.85

h = τ Max − Error Order1 Max − Error Order1 Max − Error Order1

1/10 8.3× 10−3 – 1.21× 10−2 – 1.70× 10−2 –
β = 1.25 1/20 2.2× 10−3 1.9156 3.2× 10−3 1.9189 4.4× 10−3 1.9500

1/40 5.5354× 10−4 1.9907 8.0831× 10−4 1.9851 1.1× 10−3 2.0000
1/80 1.3870× 10−4 2.0030 2.0291× 10−4 1.9941 2.7919× 10−4 1.9782
1/160 3.4320× 10−5 2.0086 5.0701× 10−5 2.0008 6.9932× 10−5 1.9972

1/10 8.8× 10−3 – 1.24× 10−2 – 1.81×10−2 –
β = 1.85 1/20 2.4× 10−3 1.8745 3.3× 10−3 1.9098 4.8× 10−3 1.9149

1/40 6.0999× 10−4 1.9762 8.5839× 10−4 1.9428 1.2× 10−3 2.0000
1/80 1.5478× 10−4 1.9786 2.1846× 10−4 1.9743 3.1912× 10−4 1.9109
1/160 3.8968× 10−5 1.9899 5.5120× 10−5 1.9867 8.0991× 10−5 1.9783

Table 2. Convergence order and maximum error produced with diffusion-dominance for example 1 at
T = 1, cx = 0.25, dx = 2.

α = 0.1 α = 0.45 α = 0.85

h = τ Max − Error Order1 Max − Error Order1 Max − Error Order1

1/10 8.3× 10−3 – 1.23× 10−2 – 1.75× 10−2 –
β = 1.25 1/20 2.1× 10−3 1.9827 3.2× 10−3 1.9425 4.5× 10−3 1.9594

1/40 5.3416× 10−4 1.9750 7.9693× 10−4 2.0055 1.1× 10−3 2.0324
1/80 1.3389× 10−4 1.9962 1.9979× 10−4 1.9960 2.8337× 10−4 1.9567
1/160 3.3498× 10−5 1.9989 4.9986× 10−5 1.9989 7.0902× 10−5 1.9988

1/10 9.5× 10−3 – 1.42× 10−2 – 2.01× 10−2 –
β = 1.85 1/20 2.5× 10−3 1.9260 3.7× 10−3 1.9403 5.3× 10−3 1.9231

1/40 6.3804× 10−4 1.9702 9.5140× 10−4 1.9594 1.3× 10−3 2.0275
1/80 1.6126× 10−4 1.9843 2.4052× 10−4 1.9839 3.4116× 10−4 1.9300
1/160 4.0532× 10−5 1.9923 6.0459× 10−5 1.9921 8.5774× 10−5 1.9918

Figure 1. Comparison of exact and numerical solution for one-dimensional convection–diffusion
equations (CDEs) at α = 0.75, β = 1.85 for numerical example 1.
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2. Consider two-dimensional diffusion problem.(cx = cy = 0)
∂u(x, y, t)

∂t
= dx

∂β1 u(x, y, t)
∂|x|β2

+ dy
∂β2 u(x, y, t

∂|y|β2
+ p(x, y, t)

u(x, y, 0) = x2(1− x)2y2(1− y)2, 0 < x ≤ 1, 0 < y ≤ 1,

u(x, y, t)|∂Ω = 0, 0 < t ≤ T, 1 < β1, β2 < 2,

with the source term:

p(x, y, t) = β1(t + 1)β1−1x2(1− x)2β2(t + 1)β2−1y2(1− y)2

+
dx

2cos(β1π/2
(t + 1)β1

[
2

Γ(3− β1)

(
x2−β1 + (1− x)2−β1

)
− 12

Γ(4− β1

(
x3−β1 + (1− x)3−β1

)
+

24
Γ(5− β1)

(
x4−β1 + (1− x)4−β1

) ]
y2(1− y)2 (80)

+
dy

2cos(β2π/2
(t + 1)β2

[
2

Γ(3− β2)

(
y2−β2 + (1− y)2−β2

)
− 12

Γ(4− β2

(
y3−β2 + (1− y)3−β2

)
+

24
Γ(5− β2)

(
y4−β2 + (1− y)4−β2

) ]
x2(1− x)2.

Table 3 shows that the maximum error and order of convergence for two-dimensional two-sided
space fractional diffusion equation with different space fractional orders by taking cx = 0 = cy.
For this numerical simulation, we have used same step-size for space and time (i.e., hx = hy = τ).
The maximum time domain that used to obtain all the numerical results is T = 1 and the diffusion
coefficients are dx = 2 = dy. The surface plot of u(x, y, t) with the diffusion coefficients dx = 2.5,
dy = 1.5, β1 = 1.25, β2 = 1.85 at the mesh points h1 = h2 = τ = 0.01 is given in Figure 2.

Table 3. Convergence rate and maximum error produced for example 2 at T = 1, dx = 2 = dy, hx = hy = τ.

β1 = 1.25 β1 = 1.5 β1 = 1.95

hx, hy, τ Max − Error Order2 Max − Error Order2 Max − Error Order2

1/10 2.57× 10−2 – 2.75× 10−2 – 1.56× 10−2 –
β2 = 1.85 1/20 5.5× 10−3 2.2243 6.3× 10−3 2.0283 3.2× 10−3 2.2854

1/40 7.4176× 10−4 2.4894 1.2× 10−3 2.3923 7.9692× 10−4 2.0056
1/80 1.6630× 10−4 2.1565 2.4526× 10−4 2.2907 1.9977× 10−4 1.9961

Figure 2. Surface of u(x, y, t) for two-dimensional diffusion equation with max− error = 1.7563× 10−4,
β1 = 1.25, β2 = 1.85 for numerical example 2.
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3. Let us consider the two-dimensional Riesz space fractional convection–diffusion problem with
bounded domain:

∂u(x, y, t)
∂t

= cx
∂α1 u(x, y, t

∂|x|α1
+ cy

∂α2 u(x, y, t
∂|y|α2

+ dx
∂β1 u(x, y, t

∂|x|β1
+ dy

∂β2 u(x, y, t
∂|y|β2

+ p(x, y, t)

u(x, y, 0) = 0, 0 < x ≤ 1, 0 < y ≤ 1,

u(x, y, t)|∂Ω = 0, 0 ≤ t ≤ T,

with the source term:

p(x, y, t) = tβ1−1eα1t(β1 + α1t)x2(1− x)2y2(1− y)2

+
cxtβ1 eα1t

2cos(α1π/2)

[
2

Γ(2− α1)

(
x2−α1 + (1− x)2−α1

)
− 12

Γ(4− α1

(
x3−α1 + (1− x)3−α1

)
+

24
Γ(5− α1)

(
x4−α1 + (1− x)4−α1

) ]
y2(1− y)2

+
cytβ2 eα2t

2cos(α2π/2)

[
2

Γ(2− α2)

(
y2−α2 + (1− y)2−α2

)
− 12

Γ(4− α2

(
y3−α2 + (1− y)3−α2

)
+

24
Γ(5− α2)

(
y4−α2 + (1− y)4−α2

) ]
x2(1− x)2

+
dxtβ1 eα1t

2cos(β1π/2)

[
2

Γ(2− β1)

(
x2−β1 + (1− x)2−β1

)
− 12

Γ(4− β1

(
x3−β1 + (1− x)3−β1

)
+

24
Γ(5− β1)

(
x4−β1 + (1− x)4−β1

) ]
y2(1− y)2

+
dytβ2 eα2t

2cos(β2π/2)

[
2

Γ(2− β2)

(
y2−β2 + (1− y)2−β2

)
− 12

Γ(4− β2

(
y3−β1 + (1− y)3−β2

)
+

24
Γ(5− β2)

(
y4−β2 + (1− y)4−β2

) ]
x2(1− x)2

The exact solution is,
u(x, y, t) = tβeαtx2(1− x)2y2(1− y)2.

In Table 4, we have found a numerical results that produce second order convergence rate
and maximum error for two sided two dimensional space fractional convection–diffusion equation
with diffusion–dominance (cx = 0.25 = cy, dx = dy = 2) phenomena. For this simulation we
have taken a fixed value for β2(β2 = 1.75) and for α2(α2 = 0.5) with different values for α1, β1.
Similarly in Table 5, we have considered the convection–dominance (cx = 2 = cy, dx = dy = 0.25)
two-sided two-dimensional space fractional convection–diffusion problem with fixed β2(β2 = 1.75)
and for fixed α2(α2 = 0.5). The order of convergence and maximum errors are calculated using
the formula expressed in Equation (79). In Figure 3 the surface plot of exact and numerical
solutions for two-dimensional convection–diffusion equations are investigated by considering the
coefficients cx = cy = 2.5, dx = dy = 1.5 with orders α1 = 0.75, α2 = 0.75, β1 = 1.85, β2 = 1.85 at
Nx = Ny = Nt = 100 mesh grid points.
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Table 4. Convergence order produced with diffusion-dominance for example 3 at T = 1, cx = 0.25 =

cy, dx = 2 = dy, hx = hy = τ.

α1 = 0.5 α1 = 0.75 α1 = 0.95

hx, hy, τ Max − Error Order2 Max − Error Order2 Max − Error Order2

1/10 2.00× 10−2 – 2.09× 10−2 – 2.6× 10−3 –
β1 = 1.25 1/20 5.7×10−3 1.8110 6.1× 10−3 1.7766 6.4607× 10−4 2.0087

1/40 1.7× 10−3 1.7454 1.9× 10−3 1.6828 1.4898× 10−4 2.1166
1/80 2.8802× 10−4 1.9962 6.6947× 10−4 1.7467 2.9810× 10−5 2.3213

1/10 1.52× 10−2 – 2.06× 10−2 – 2.34× 10−2 –
β1 = 1.85 1/20 3.6× 10−3 2.0780 5.00× 10−3 2.0426 5.5× 10−3 2.0890

1/40 7.6214× 10−4 2.2399 1.1×10−3 2.1844 1.0001× 10−3 2.4595
1/80 1.0496× 10−4 2.4602 1.7907× 10−4 2.6189 1.8006× 10−4 2.4735

1/160 1.9729× 10−5 2.4114 2.7175× 10−5 2.5202 3.5515× 10−5 2.3420

Table 5. Convergence order produced with convection-dominance for example 3 at T = 1, cx = 2 =

cy, dx = 0.25 = dy, hx = hy = τ.

α1 = 0.5 α1 = 0.75 α1 = 0.95

hx, hy, τ Max − Error Order2 Max − Error Order2 Max − Error Order2

1/10 1.51× 10−2 – 1.09× 10−2 – 4.1× 10−3 –
β1 = 1.25 1/20 2.00×10−3 2.3163 1.9×10−3 2.5203 1.4× 10−3 1.6502

1/40 5.8273× 10−4 1.7791 4.8275×10−4 1.9767 2.7307× 10−4 2.3581
1/80 1.8883× 10−4 1.6257 1.5338× 10−4 1.6542 5.5304× 10−5 2.3038

1/10 1.80× 10−2 – 1.75× 10−2 – 1.39× 10−2 –
β1 = 1.85 1/20 4.3× 10−3 2.0656 4.1× 10−3 2.0937 2.4× 10−3 2.5340

1/40 8.7170× 10−4 2.3024 7.6626× 10−4 2.4197 5.5154× 10−4 2.1215
1/80 1.7428× 10−4 2.3224 1.3016× 10−4 2.5575 1.29899× 10−4 2.0861

Figure 3. The surface of u(x,y,t) for α1 = 0.75, α2 = 0.75, β1 = 1.85, β2 = 1.85 for numerical example 3.

7. Conclusions

In our study, we have developed an algorithm for two-dimensional two-sided space fractional
convection–diffusion problem using the CNADI difference method for time discretization combined
with WSGD scheme for the approximation of space fractional derivative. We have used a
shifted category of standard Grünwald-Letnikov difference method and weighted version of the
shifted Grünwald-Letnikov difference approximation with CNADI scheme to have unconditionally
stable and second order convergence both in space and time without extrapolation. Moreover,
unconditional stability and second order convergence is justified for convection-dominance two-sided
two dimension space fractional convection–diffusion equation. Our theoretical study and analysis
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has been confirmed by our numerical simulation in Section 6. We will consider the space fractional
reaction convection–diffusion equation in our near further research.
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Nomenclature

CN Crank-Nicolson scheme.
ADI Alternating direction implicit method.
CNADI Crank-Nicolson alternating direction implicit method.
WSGD Weighted shifted Grünwald-Letnikov difference operator.
RSFCDE Riesz space fractional convection–diffusion equation.
2D-RSFCDE Two-dimensional Riesz space fractional convection–diffusion equation.
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