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Abstract: The co-evolution between information and epidemic in multilayer networks has attracted
wide attention. However, previous studies usually assume that two networks with the same
individuals are coupled into a multiplex network, ignoring the context that the individuals of
each layer in the multilayer network are often different, especially in group structures with rich
collective phenomena. In this paper, based on the scenario of group-based multilayer networks,
we investigate the coupled UAU-SIS (Unaware-Aware-Unaware-Susceptible-Infected-Susceptible)
model via microscopic Markov chain approach (MMCA). Importantly, the evolution of such
transmission process with respective to various impact factors, especially for the group features,
is captured by simulations. We further obtain the theoretical threshold for the onset of epidemic
outbreaks and analyze its characteristics through numerical simulations. It is concluded that the
growth of the group size of information (physical) layer effectively suppresses (enhances) epidemic
spreading. Moreover, taking the context of epidemic immunization into account, we find that the
propagation capacity and robustness of this type of network are greater than the conventional
multiplex network.
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1. Introduction

Recently, spreading dynamics has attracted a lot of attention in the field of complex networks [1–4],
and plenty of studies have been devoted to investigate epidemic spreading [5,6], information
diffusion [7,8], rumor dissemination [9,10], and credit contagion [11]. Two classical mathematical
frameworks, i.e., SIS model [1] and SIR model [12], are widely used to study spreading processes.
The previous works in the literature are mainly based on single-layer networks. However, in reality,
single-layer networks do not exist alone, but usually interplay together and couple into multilayer
networks [13–15]. For example, one can place physical contacts with family, friends, and colleagues in
one layer, and place virtual contacts (e.g., online social networks) in another. The spreading dynamics
in multilayer networks and that in single-layer networks can be fundamentally different [16–19].

As a consequence, researchers increasingly concentrate on multilayer networks to study the
epidemic spreading. Granell et al. [18] first propose a UAU-SIS model, where the microscopic
Markov chain approach (MMCA) [20] is used for describing the coupled transmission process
between information diffusion in virtual layer (UAU) and epidemic spreading in physical layer
(SIS). They thus investigate the effect of mass media on the propagation process [19]. Along this
line, other studies extend the co-evolution model by considering more influencing factors [21,22].
Moreover, more effects are further investigated, such as nonlinear coupled multiplex networks [23],
resource control [24], global awareness [25], awareness cascade [26], time varying transmission
rates [27,28], epidemic suppression [29,30] and coupled spreading process based on SIR model [31,32].
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Please note that the studies above are primarily based on multiplex networks [33–35], in which each
node in one layer has its unique counterpart in another layer.

However, the multiplex network may not tell the whole story of multilayer networks. In reality,
there exist many multilayer networks that different layers are coupled by different entities [36].
In addition, there are some diseases (e.g., hand-foot-and-mouth epidemic) that spread only among
children, and adults (e.g., children’s parents) can exchange the information about epidemics.
The adults who have known the epidemic information can take measures to protect their children,
thereby inhibiting the spread of the disease. At the same time, infected children will let the adults
know the information about the epidemic, thereby promoting the diffusion of epidemic information.
So the interactive adults and children are coupled together to form a bilayer network: adult layer for
information diffusion is regarded as the information layer and children’s layer for epidemic spreading
is regarded as physical layer. Naturally, internal family members have rich collective phenomena and
are closely linked, while the connections between families are usually sparse. As a result, the nodes of
the bilayer network can be divided into many groups, and we call the network as the group-based
bilayer network. Nevertheless, such type of multilayer network has seldom been studied.

In this paper, we focus on the dynamics of epidemic spreading by considering the proposed
group-based bilayer networks (see the details in Section 2.1). Distinct from previous works,
we assume that the nodes of a group in information layer first reach consensus and then act on
the corresponding nodes in physical layer through the inter-layer feedback mechanism. Inspired by
the works in [18,19], we further reveal the epidemic propagation dynamics over such type of networks
and explicitly derive the meta-critical point of epidemic spreading outbreaks based on MMCA.
Moreover, we study the variations of epidemic spreading under both random and deliberate network
attacking strategies, thereby giving the relationship between the propagation capability and the
corresponding network topology.

The paper is organized as follows. In Section 2, the UAU-SIS model for the coupled group-based
multilayer networks is described in detail. In Section 3, we employ MMCA to analyze the dynamical
propagation process based on the previous model, and conduct numerical simulations to investigate
the effects of different parameters. Then the theoretical discussion of the propagation threshold is given
in Section 4. In particular, we study the robustness of network propagation in Section 5. Finally, we take
the conclusion in Section 6.

2. Model

2.1. Structural Representation of Group-Based Multilayer Networks

A coupled UAU-SIS dynamics is modeled based on the group-based multilayer network,
as illustrated in Figure 1. We first introduce the method of constructing the group-based multilayer
networks. The sequence {xi}n

i=1 stands for the set of group sizes in the information layer, where n
is the number of groups. The intra-group members are fully connected and we use X = {xij}M

i,j=1
(xij = 1 if two nodes i and j of the information layer are in the same group, xij = 0 otherwise) to
represent the corresponding adjacent matrix. The inter-group members are randomly connected
based on Erdös-Rényi network [37], denoted as G(M, p), where M = ∑n

i=1 xi denotes the
number of nodes of information layer, and p is the random connection probability. Then we
use A = {aij}M

i,j=1[= X ∪ G(M, p)] to represent the whole adjacent matrix of information layer.
Similarly, the sequence {yj}n

j=1 describes the set of group size in the physical layer, where intra-group
individuals are fully connected and the inter-group individuals are also randomly linked according
to Erdös-Rényi network G(N, p) with N = ∑n

i=1 yi the number of nodes of physical layer and p the
random connection probability. Please note that both layers have the same number of groups, each of
which has its corresponding counterpart in another layer. Analogously, the matrices Y = {yij}N

i,j=1
(yij = 1 if two nodes i and j of the physical layer are in the same group, yij = 0 otherwise) and
B = {bij}N

i,j=1[= Y ∪ G(N, p)] represent the intra-group and the whole adjacent matrices of physical
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layer, respectively. Finally, C = {cij} (i = 1, . . . , N, j = 1, . . . , M) is used to describe the inter-layer
relationship. If the node i of the physical layer is in the same group as the node j of the information
layer, cij = 1; otherwise, cij = 0. We assume that if there is a link between the physical layer groups,
there is at least one link between the corresponding groups of the information layer. The obtained
group-based multilayer network has strong homogeneity, i.e., intra-group homogeneity (i.e., the nodes
within the group are fully connected) and inter-group homogeneity (i.e., inter-groups are linked based
on the Erdös-Rényi random network which is a typical homogeneous network). For convenience of
reading, we summarize the key parameters in Table 1.

al

Figure 1. Schematic diagram of a coupled group-based bilayer network. The upper (lower) layer stands
for the information diffusion (epidemic spreading), where each node in the information (physical)
layer only has two possible states: aware (A)and unaware (U) [susceptible (S) and infected (I)].
τ (η) represents the feedback intensity from information (physical) layer to physical (information) layer.
The nodes in the same color belong to the same group in each layer.

Table 1. The description of the related key parameters.

Parameter Description

τ Feedback intensity from information layer to physical layer
η Feedback intensity from physical layer to information layer
xi Group size of information layer where node i belongs
yi Group size of physical layer where node i belongs
X Group-matrix of information layer
Y Group-matrix of physical layer
βU

1 Infection probability for intra-group unsuppressed nodes
βU

2 Infection probability for inter-group unsuppressed nodes
βA

1 Infection probability for intra-group suppressed nodes
βA

2 Infection probability for inter-group suppressed nodes
λ1 Information diffusion probability of intra-group
λ2 Information diffusion probability of inter-group
γ Attenuation factor
ρ The density of infected individuals
µ Probability of recovery
δ Probability of forgetting
ι Proportion of intra-group and inter-group transmission
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2.2. Coupled Spreading Processes

The coupled propagation dynamics involves two processes: SIS in the physical layer and UAU
in the information layer. In the physical layer, the nodes are susceptible (S) or infected (I); and in
the information layer, the nodes are aware (A) or unaware (U). Assuming that the nodes of the
information layer and the nodes of the physical layer are in the same group, we describe the epidemic
spreading process. If the information layer nodes are unaware, then the susceptible nodes will be
infected by the normal probabilities βU

1 (when it contacts an intra-group infected node) and βU
2 (when it

contacts an inter-group infected node). If the information layer nodes are aware, the susceptible nodes
have a chance of being infected by a lower probability, i.e., βA

1 = γβU
1 for intra-group contacts and

βA
2 = γβU

2 for inter-group contacts, where γ is the attenuation factor ranging from 0 to 1. We note
that unlike the multiplex network, since two layer agents of this type of multilayer network are
different, the awareness of the information layer nodes does not mean that the physical layer nodes are

alerted. We define a ratio ι =
βU

1
βU

2
=

βA
1

βA
2

that is used to distinguish the propagation of intra-group and

inter-group, where ι > 1 denotes that the transmission in intra-group is faster than that in inter-group.
Assume that each I-state node has a probability of spontaneous recovery µ, which is unrelated to
whether it is alerted.

The information diffusion in the information layer motivates people to take measures to suppress
the epidemic spreading through inter-layer connections. The agents of a group in information layer
first reach consensus and then provide feedback to the corresponding agents within the same group
in the physical layer through the feedback intensity f X→Y which is described in Equation (2). As for
the process of information diffusion, the U-state nodes in the information layer can be perceived by
intra-group nodes (with diffusion probability λ1), inter-group nodes (with diffusion probability λ2)
and infected nodes which belong to the same group (with feedback intensity η) in the physical layer.
Meanwhile, an A-state node could then turn into unaware with the forgetting probability δ. We note
that the two inter-layer feedback mechanisms are different, i.e., for the feedback from information layer
to physical layer, the nodes of information layer first reach consensus and then perform a feedback by
the whole group intensity f X→Y; for the feedback from physical layer to information layer, the I-state
individual acts on the corresponding group of information layer via the feedback intensity η directly.

3. Microscopic Markov Chain Approach

3.1. Theoretical Analysis

In this section, we conduct a theoretical analysis of the above model by resorting to MMCA.
Initially, a node i in the physical layer together with its counterpart nodes in the information layer
has four possible coupled states in a probabilistic sense: AI (aware and infected), AS (aware and
susceptible), UI (unaware and infected), and US (unaware and susceptible). For node i of the physical
layer, we assume that all nodes in the same group of the information layer are j (j = 1, · · · , xi),
and then define the group consensus of these nodes by the average awareness probability,
i.e., pA

i (t) =
1
xi

∑xi
j=1 pA

ij (t). Moreover, these probabilities satisfy the normalization condition

pAI
i (t) + pAS

i (t) + pUI
i (t) + pUS

i (t) = 1. (1)

Here we focus on the propagation dynamics of epidemic spreading which is influenced by the
process of information diffusion. For the sake of brevity, we just give discrete transition probability
tress for the nodes of physical layer in Figure 2, where AAS (AUS) denotes that the S-state nodes
have (not) been alerted by A-state nodes, thereby getting infected with the small (normal) probability,
i.e., βA

1 (βU
1 ) for intra-group propagation and βA

2 (βU
2 ) for inter-group propagation. We note that in the

transition probability trees in Figure 2a,b, the state changes of the I-state node are unrelated to whether
it is alerted or not, so we do not need to distinguish the states AA I and AU I and merely use AI.
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Considering the impact of group structure, we update the feedback intensity from the information
layer to the physical layer by

f X→Y
i = 1− (1− τ)xi , (2)

which inhibits the infection of the S-state node i with lower infection probability.
Apparently, f X→Y

i degenerates into τ when the group size xi = 1.

1

η

η

(a)

1 η

η

(b)

1

η

η

X    
Y

X    Y

(c)

1

η

η

X    
Y

X    Y

(d)

Figure 2. Transition probability trees for the states (a) AI, (b) UI, (c) AS, (d) US. Each tree includes four
stages: information diffusion (UAU process), feedback from the information layer to the physical layer,
epidemic spreading (SIS process), and feedback from the physical layer to the information layer.

We use rij(t) to denote the probability that the unaware node j does not enter into the aware state
(node j of information layer and node i of physical layer are in the same group),

rij(t) = cij ∏
k∈Xj

[1− ajk pA
k (t)λ1]× ∏

k/∈Xj

[1− ajk pA
k (t)λ2]. (3)

Equation (3) can also be written as rij(t) = cij ∏k[1− xjk pA
k (t)λ1]×∏k[1− (ajk − xjk)pA

k (t)λ2],
where pA

k (t) = pAI
k (t) + pAS

k (t). Based on the homogeneity of the network, for a given node i of the
physical layer, we use ri(t) = 1

xi
∑xi

j=1 rij(t) to denote the probability that its information layer nodes
are not perceived.

Let qA
i (t) and qU

i (t) be the probability of node i not being infected by any neighbors if node i has
and has not suppressed by the information layer, respectively. They are defined as:

qA
i (t) = ∏

j∈Yi

[1− bji pI
j (t)βA

1 ]×∏
j/∈Yi

[1− bji pI
j (t)βA

2 ], (4)

qU
i (t) = ∏

j∈Yi

[1− bji pI
j (t)βU

1 ]×∏
j/∈Yi

[1− bji pI
j (t)βU

2 ]. (5)

Analogously, both equations can also be read as qA
i (t) = ∏j[1 − yji pI

j (t)βA
1 ] ×∏j[1 − (bji −

yji)pI
j (t)βA

2 ], and qU
i (t) = ∏j[1− yji pI

j (t)βU
1 ]×∏j[1− (bji − yji)pI

j (t)βU
2 ], respectively.
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According to the state transition trees in Figure 2, we obtain the dynamical equations of the whole
model as follows:

pUS
i (t + 1) = pAI

i (t)δµ + pAS
i (t)δqU

i (t) + pUI
i (t)ri(t)µ + pUS

i (t)ri(t)qU
i (t), (6)

pUI
i (t + 1) = pAI

i (t)δ(1− µ)(1− η) + pAS
i (t)δ[1− qU

i (t)](1− η)

+ pUI
i (t)ri(t)(1− µ)(1− η) + pUS

i (t)ri(t)[1− qU
i (t)](1− η),

(7)

pAS
i (t + 1) = pAI

i (t)(1− δ)µ + pAS
i (t)(1− δ){(1− f X→Y

i )qU
i (t) + f X→Y

i qA
i (t)}

+ pUI
i (t)[1− ri(t)]µ + pUS

i [1− ri(t)]{(1− f X→Y
i )qU

i (t) + f X→Y
i qA

i (t)},
(8)

pAI
i (t + 1) = pAI

i (t)[δ(1− µ)η + (1− δ)(1− µ)]

+ pAS
i (t){δ[1− qU

i (t)]η + (1− δ)[(1− qU
i (t))(1− f X→Y

i ) + (1− qA
i (t)) f X→Y

i ]}
+ pUI

i {ri(t)(1− µ)η + [1− ri(t)](1− µ)}
+ pUS

i (t){[1− ri(t)][(1− f X→Y
i )(1− qU

i (t)) + f X→Y
i (1− qA

i (t))] + ri(t)[1− qU
i (t)]η}.

(9)

Then combining Equations (1)–(9), we can simulate the evolution process of the epidemic
spreading coupled by information diffusion for any initial state, and then can iteratively solve the
expected infection density ρ = 1

N ∑N
i=1 pI

i =
1
N ∑N

i=1(pUI
i + pAI

i ) in steady state, where pI
i denotes the

infected possibility of node i of physical layer.

3.2. Numerical Simulations

In this section, we investigate the influence of several critical parameters on the spreading
prevalence of such propagation system. We construct the group-based multilayer networks based
on the method described in Section 2.1. Here, a sequence {xi}n

i=1 that obeys a uniform distribution
U(1, 2 · x̄− 1) is used to determine the group sizes of the information layer, where x̄ is the mean value
of the group sizes. Similarly, we can get the sequence {yi}n

i=1 of the group sizes of the physical layer
under U(1, 2 · ȳ− 1), where ȳ is the mean value. We note that the group-based multilayer network
degenerates into the multiplex network when the group sizes x̄ and ȳ are set to 1. As a comparison
with MMCA, Monte Carlo (MC) simulations are also presented. We initially set pI

i = pA
i = 0.1 for each

node. Figure 3a,b show the spreading prevalence ρ as functions of β(= βU
2 ) for different attenuation

factor γ and recovery probability µ, respectively.
It is obvious that the density of I-state nodes ρ is positively correlated with the propagation

probability β (i.e., ρ increases with the growth of β). Epidemic cannot spread when the propagation
probability β is smaller than specific values that are defined as the threshold of spreading processes.
We notice that the threshold declines as the attenuation factor γ increases, thereby implying that
the epidemic is easier to break out with a lower level of suppression. Accordingly, the infection
density ρ increases with the growth of γ. Figure 3b clearly shows that the increase of µ reduces ρ,
which indicates that the recovery probability µ plays a vital role in spreading dynamics. As shown in
Figure 3, the accordance trend is basically consistent between MC and MMCA.

In addition, we focus on the epidemic spreading prevalence with respective to the mean group
size of information (physical) layer x̄ (ȳ) so as to observe the relationship between ρ and x̄, ȳ with
statistical significance.

Figure 4a shows that the increasing average group size of the information layer x̄ leads to the
decrease of ρ. It is reasonable that the larger group size of the information layer brings about stronger
suppression from information layer to physical layer. Concerning the group size of the physical layer
ȳ, in Figure 4b, the infection density ρ exhibits a significant increasing trend with the increase of ȳ.
The group size growth of physical layer is inclined to promote epidemic spreading within the group,
which consequently enhances the spreading prevalence.
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In Figure 5, we show the I-state density ρ over the associated combinations of β− τ and β− λ.
In the context of a small infection probability β, the I-state density ρ is approximately independent
of the parameter τ because the spread cannot breakout, as shown in Figure 5a. It is natural that ρ

decreases when the feedback parameter from information layer to physical layer τ increases in the
case of big β. From Figure 5b, we find that the enhancement of information diffusion (caused by the
increase of information diffusion probability λ) inhibits epidemic spreading. The full phase diagrams
show a good agreement for ρ derived by MMCA and MC, hence we can use MMCA to approximate
the group-based multilayer dynamics.

(a) (b)

Figure 3. The infection density ρ as a function of the infectivity parameter β for different values of γ

(a) and different values of µ (b). The result of (a) is obtained for µ = 0.9 and that of (b) is for γ = 0.1.
And the other parameter values are set to λ1 = η = 0.9, λ2 = τ = δ = 0.5, ι = 1.1, x̄ = ȳ = 3.

(a) (b)

Figure 4. The infection density ρ as a function of the mean group size of information layer x̄ (a)
and physical layer ȳ (b), respectively. The rest of other parameter values are fixed as: γ = 0.1,
β = τ = δ = λ2 = 0.5, ι = 1.1, λ1 = η = µ = 0.9. When studying the effect of x̄ (ȳ) on the spreading
prevalence, we set ȳ = 3 (x̄ = 3).
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(a) (b)

Figure 5. Phase diagrams of the group-based coupled propagation processes on the plane of β− τ

(a) and β− λ (b), where the results in the top panels are obtained by MMCA and those in the bottom
panels are obtained by MC. For (a), other parameters are set to γ = 0.1, µ = λ1 = η = 0.9, ι = 1.1,
β = δ = λ2 = 0.5, x̄ = ȳ = 3. For (b), the parameter values are τ = 0.5, λ = λ1 = λ2, and others are
the same as those of (a).

4. The Outbreak Threshold of Epidemic Spreading

4.1. Theoretical Discussion

Next, we investigate the meta-critical point of the epidemic spreading. Combing Equations (7) and (9),
the density of I-state nodes can be rewritten as

pI
i = pI

i (1− µ) + pI
i (1− µ) + pAS

i {δ(1− qU
i ) + (1− δ)[(1− qU

i )(1− f X→Y
i ) + (1− qA

i ) f X→Y
i ]}

+ pUS
i {ri(1− qU

i ) + (1− ri)[(1− qU
i )(1− f X→Y

i ) + (1− qA
i ) f X→Y

i ]}.
(10)

Assuming that around the onset of the epidemic, the probability of I-state nodes is close to zero
i.e., pI

i = εi � 1, Equations (4) and (5) are approximated by

qU
i ≈ 1− βU

1 ∑
j

yjiεj − βU
2 ∑

j
(bji − yji)εj = 1− βU

2

N

∑
j=1

[bji + (ι− 1)yji]εj = 1− σi, (11)

qA
i ≈ 1− γβU

1 ∑
j

yjiεj − γβU
2 ∑

j
(bji − yji)εj = 1− γβU

2

N

∑
j=1

[bji + (ι− 1)yji]εj = 1− γσi, (12)

where σi = βU
2 ∑N

j=1[bji + (ι− 1)yji]εj.
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Then Equation (10) is given by

εi =εi(1− µ) + pAS
i {δσi + (1− δ)[σi(1− f X→Y

i ) + γσi f X→Y
i ]}

+ pUS
i {riσi + (1− ri)[σi(1− f X→Y

i ) + γσi f X→Y
i ]}

=εi(1− µ) + γσi{pAS
i f X→Y

i (1− δ) + pUS
i (1− ri) f X→Y

i }
+ σi{pAS

i [δ + (1− τ)xi (1− δ)] + pUS
i [ri + (1− ri)(1− τ)xi ]}

=εi(1− µ) + γσi f X→Y
i {pAS

i (1− δ) + pUS
i (1− ri)}

+ σi{pAS
i δ + pUS

i ri + (1− f X→Y
i )[pAS

i (1− δ) + pUS
i (1− ri)]}.

(13)

In the similar way, we can get

pA
i = pAS

i + pAI
i ≈ pA

i (1− δ) + pU
i (1− ri),

pU
i = pUS

i + pAS
i ≈ pA

i δ + pU
i ri.

(14)

Substituting Equation (14) in Equation (13) leads to

µεi = σi{γ f X→Y
i pA

i + pU
i + (1− f X→Y

i )pA
i }

= βU
2

N

∑
j=1

[bji + (ι− 1)yji]εj[1− (1− γ) f X→Y
i pA

i ]

= βU
2

N

∑
j=1

[bji + (ι− 1)yji][1− (1− γ) f X→Y
i pA

i ]εj.

(15)

The above formula can be rewritten as

N

∑
j=1
{[1− (1− γ) f X→Y

i pA
i ][bji + (ι− 1)yji]−

µ

βU
2

δji}εj = 0, (16)

where δji is the element of the identity matrix.
We aim to determine the outbreak threshold of epidemic spreading process, so the lowest critical

value β is given by

βU
c =

µ

Λmax(H)
, (17)

where the elements of matrix H are hij = {1− (1− γ) f X→Y
i pA

i }[bji + (ι− 1)yji],
pA

i = pA
i (1− δ) + pU

i (1− ri), and Λmax(H) is the largest eigenvalue of H.

4.2. Numerical Simulations

To validate the threshold of epidemic outbreaks, we then explore the impacts of several key
parameters (including the attenuation factor γ, the inter-layer feedback parameter τ and the mean
group sizes x̄, ȳ) on the propagation threshold. At first, we test how the attenuation factor γ and the
inter-layer feedback parameter τ affect the threshold βc in Figure 6.

As presented in Figure 6a, the threshold βc is negatively correlated with the attenuation factor
γ. According to the transmission mechanism, the physical layer nodes that have been alerted are
infected by the low probability. However, with the increase of attenuation factor γ, the inhibitory
level relatively becomes weak and then the epidemic is easy to spread, so the propagation threshold is
reduced. According to Equation (2), the feedback intensity f X→Y is enhanced with the increase of τ,
so as to better restrain the epidemic spreading. As shown in Figure 6b, the threshold βc is enhanced
with the increasing feedback parameter τ. Moreover, from Figure 6, we notice that the large recovery
probability µ and the small forgetting probability δ also help to inhibit epidemic spreading.
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(a) (b)

Figure 6. (a) The outbreak threshold βc as a function of the attenuation factor γ. (b) βc as a function
of the inter-layer feedback parameter τ. The result of (a) is obtained for τ = 0.5 and that of (b) is for
γ = 0.1. Other parameters are fixed as λ1 = 0.9, λ2 = 0.5, ι = 1.1, x̄ = ȳ = 3.

Next, in Figure 7, we show how the mean group sizes of information layer (x̄) and physical layer
(ȳ) take effects on the threshold of epidemic outbreaks βc, respectively.

(a) (b)

Figure 7. The epidemic spreading threshold βc as functions of x̄ (a) and ȳ (b), respectively.
Other parameters are: γ = 0.1, µ = η = λ1 = 0.9, , λ2 = τ = 0.5, ι = 1.1, and ȳ = 3 (x̄ = 3)
when studying how the x̄ (ȳ) works on the βc.

From Figure 7a, we observe that the increasing group sizes of the information layer x̄ help to raise
the threshold of epidemic outbreaks βc, i.e., to inhibit the epidemic spreading. However, Figure 7b
illustrates that the growth of the group size of the physical layer ȳ reduces βc. We thus take the
conclusive results that the group growth of the information layer can better suppress the epidemic
spreading while the group growth of the physical layer can promote the epidemic spreading.
Therefore, the presented model and its findings verify the propagation principle in a general
multilayer network with focus on the practical significance. Meanwhile, the findings consistent
with common intuition demonstrate the feasibility and rationality of the proposed model. Hence,
the existence of the group structure has a significant impact on the evolution of propagation processes
on multilayer networks.

5. Network Propagation Robustness

In real life, the epidemic or information spreading process inevitably suffers from immunization
measures or information islands and quarantine [38–40]. Meanwhile, many approaches use percolation
theory to assess network robustness and prevent the spread of epidemics [41–44]. Based on
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percolation theory, we then explore the propagation phenomena by considering two scenarios:
disease immunization and occluded information dissemination. Disease immunization indicates
that the immunized nodes will not be infected by the disease or spread to others, and occluded
information dissemination means that the isolated nodes will not perceive the epidemic information
or diffuse it. So these nodes which fail to engage in either epidemic or information propagation
have no contribution to the coupled system, and then we can ignore the impact of the node on the
whole propagation dynamics. We therefore consider attacking a proportion pa (0 ≤ pa ≤ 1) of
nodes in both physical and information layers to simulate these two cases. Based on the foregoing
analysis and conclusions, the group characteristic which changes the network connectivity have great
influences on the propagation process. In this section, we aim to investigate how the information or
physical connectivity variation (i.e., immunization or separation measure) further make influences on
the coupled propagation dynamics and thus determine which connectivity structures have a more
prominent role on the group-based multilayer network dynamics.

5.1. Disease Immunization

First, we evaluate the network propagation robustness in terms of the infected density ρ

and the threshold of epidemic outbreak βc by attacking a proportion pa of physical layer nodes.
Such action can be regarded as node immunization in some sense. Here four attack strategies
are adopted, namely random attacks and three deliberate attacks based on degree centrality [45],
closeness centrality [46] and eigenvector centrality [47]. Random attacks mean random deletion
of nodes. Degree centrality attacks preferentially delete the nodes with large degrees. The nodes
with a high closeness centrality are deleted with priority in the closeness centrality strategy. For the
eigenvector centrality strategy, the nodes with high eigenvector centrality are preferentially attacked.
As a comparison, we detect the propagation robustness of both the group-based multilayer network
and the multiplex network, as shown in Figure 8.

(a) (b)

Figure 8. The I-state density ρ (a) and the epidemic threshold βc (b) as functions of the attacked node
proportion pa under four attack strategies. The solid and dashed lines represent the variation of the
group-based multilayer network and the multiplex network, respectively, where the lines in the same
color indicate the same attack strategy. Other parameters are fixed as γ = 0.1, λ1 = η = µ = 0.9,
β = τ = δ = λ2 = 0.5, ι = 1.1, and x̄ = ȳ = 3.

As shown in Figure 8a, the I-state density ρ of both the group-based multilayer network and the
multiplex network declines with the increasing proportion of attacked nodes, which means that the
isolation (i.e., immunization) of the nodes inhibits the epidemic spreading. We notice that the network
propagation process is more robust to random attack than to deliberate attacks. Specifically, the density
ρ of the group-based network is much higher than that of the multiplex network and is relatively slower
to reach the ρ = 0 state. This phenomenon means that the propagation capacity and the robustness
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of group-based multilayer network are better than those of the network without group structures.
The variation of the threshold βc in Figure 8b shows that βc increases with the increase of deleted
nodes of the physical layer. The epidemic outbreak is more sensitive to these deliberate attacks than to
random attack. This finding suggests that targeted immunization may have more positive effects on the
inhibition of epidemic outbreak. Moreover, the threshold of group-based multilayer network is smaller
than that of multiplex network, thereby implying the group-based network is prone to epidemic
outbreaks as a comparison with the multiplex network. Furthermore, the epidemic propagation
threshold βc changes gradually until most nodes are attacked (i.e., immunized). As a consequence,
the simulated results illustrate that wide epidemic immunization appears to be quite necessary to
efficiently control or even eliminate the epidemic outbreak.

5.2. Occluded Information Diffusion

Analogously, we study the propagation robustness of information layer as well as the variation of
epidemic spreading by attacking their nodes. The infection density ρ and the epidemic threshold βc

versus the attacked proportion pa are shown in Figure 9.

(a) (b)

Figure 9. The I-state density ρ (a) and the threshold βc (b) with respective to the attacked node
proportion pa under four attack strategies. The solid and dashed lines represent the variation of the
group-based multilayer network and the multiplex network, respectively, where the lines in the same
color represent the same attack strategy. Other parameters are fixed as γ = 0.1, λ1 = η = µ = 0.9,
β = τ = δ = λ2 = 0.5, ι = 1.1, and x̄ = ȳ = 3.

From Figure 9, we find that the I-state density ρ increases with the attack proportion pa while
the threshold βc decreases, which means that the occluded information dissemination enhances the
epidemic spreading. In contrast to the disease immunity, the influence in this situation might be more
mild due to the fact that attacking information layer nodes indirectly promotes epidemic spreading by
inhibiting information diffusion. In Figure 9a, the green solid and dashed lines describe the attacked
fraction when the infection density of the group-based multilayer network and the multiplex network
reach their steady states, respectively. It is obvious that the networks with group structure need
to attack more nodes when reaching its steady state than the networks without group structure,
implying that the robustness of the group-based multilayer network is stronger than the multiplex
network. In Figure 9b, we notice that random attack has the least impact on the propagation threshold
βc compared with deliberate attacks. Moreover, the threshold βc from the group-based multilayer
network is much lower than that from the multiplex network, which means that the propagation
capacity of the group-based multilayer network is greater than the multiplex network.
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6. Conclusions

In this paper, based on the proposed group-based bilayer network framework, we investigate
the epidemic spreading in the physical layer which is affected by the information diffusion in the
information layer. By employing MMCA to generate the probability transition trees to reveal the
interplay between information diffusion and epidemic spreading, we find the group structure has a
significant impact on the dynamics of disease transmission in the network. Specifically, the increase in
the group size of the information layer inhibits the epidemic spreading and the increase in the group
size of the physical layer promotes the epidemic spreading, which are manifested by the I-state density
and the propagation threshold.

It is demonstrated that the capacity of epidemic spreading is negatively correlated with the
inhibition of the information layer. Finally, we also considered the introduction of epidemic
immunization and information diffusion suppression into the previous coupled propagation process,
and then investigate the robustness of network propagation based on typical attack strategies.
We conclude that such propagation is more vulnerable to deliberate attacks than to random attacks in
terms of the I-state density and the threshold of the epidemic outbreak. Specifically, the propagation
capacity and robustness of the group-based network are stronger than the multiplex network.

In summary, we explore a coupled propagation mechanism of a generally group-based multilayer
network with focusing on the effects of the group structure and the inter-layer feedback mechanism on
the spreading dynamics. Moreover, two scenarios (i.e., disease immunization and occluded information
diffusion) are introduced to investigate the propagation robustness, which would help to give effective
strategies to control epidemics.
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