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Abstract: Given a digital image (or digital object) (X, k), we address some unsolved problems
related to the study of fixed point sets of k-continuous self-maps of (X, k) from the viewpoints of
digital curve and digital surface theory. Consider two simple closed k-curves with li elements in Zn,
i ∈ {1, 2}, l1  l2 ≥ 4. After initially formulating an alignment of fixed point sets of a digital wedge
of these curves, we prove that perfectness of it depends on the numbers li, i ∈ {1, 2}, instead of
the k-adjacency. Furthermore, given digital k-surfaces, we also study an alignment of fixed point
sets of digital k-surfaces and digital wedges of them. Finally, given a digital image which is not
perfect, we explore a certain condition that makes it perfect. In this paper, each digital image (X, k)
is assumed to be k-connected and X] ≥ 2 unless stated otherwise.
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1. Introduction

Throughout this paper, we denote by Z (resp. N) the set of integers (resp. natural numbers),
and let Zn be the n times Cartesian product of Z, n ∈ N. Besides, let N1 (resp. N0) be the set of
odd (resp. even) natural numbers. Motivated by the study of fixed point sets in [1], we are currently
interested in the set of fixed point sets of a digital image (X, k) [2–4] because it can be applied in the
fields of applied sciences and robotics [5].

Given a digital image (or digital object) (X, k), the authors of [2] explored some features of fixed
point sets of k-continuous self-maps of it. The works in [3,4] further studied this topic to obtain many
results. However, there are still many unsolved problems related to this work. To be precise, given
a digital image (X, k), let Conk(X) be the set { f | f is a k-continuous map of (X, k)}. Besides, let us
recall that [2,4]

F(Conk(X)) := {Fix( f )] | f ∈ Conk(X)}

where Fix( f ) := {x ∈ X | f (x) = x}, “ :=” is used for introducing a new terminology or a notation.
We denote by F(Conk(X))) an alignment of fixed point sets of (X, k) (for more details see Definition 2).

Given a simple closed k-curve with l elements in Zn, denoted by Cn,l
k , it turns out that

F(Conk(C
n,l
k )) is perfect if and only if Cn,l

k is k-contractible, i.e., l = 4 [3,4]. Besides, only for the case
l(≥ 4) ∈ N0 or l(≥ 7) ∈ N1, the study of F(Conk(C

n,l
k ∨ Cn,l

k )) was recently done [4]. However, in the

cases l1 ∈ N1 and l2 ∈ N0, and l1, l2(≥ 5) ∈ N1, the study of F(Conk(C
n,l1
k ∨ Cn,l2

k )) remains open,
as follows.

(Q1) Given two simple closed k-curves Cn,l1
k and Cn,l2

k , where l1 ∈ N1 \ {1, 3} and l2 ∈ N0 \ {2},
how can we formulate F(Conk(C

n,l1
k ∨ Cn,l2

k ))?
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(Q2) Unlike the hypothesis of (Q1), given l1, l2(≥ 5) ∈ N1, how can we formulate
F(Conk(C

n,l1
k ∨ Cn,l2

k ))?

With the hypothesis of “l1 ∈ N1, l2 ∈ N0, or l1, l2(≥ 5) ∈ N1”, the following queries are raised.

(Q3) How many 2-components are there in F(Conk(C
n,l1
k ∨ Cn,l2

k )) ?
(Q4) Are there some relationships among the numbers l1, l2, and the perfectness of
F(Conk(C

n,l1
k ∨ Cn,l2

k )) ?
(Q5) Given a simple k-path (P, k) with d as the length of it, what conditions make
F(Conk(C

n,l1
k ∨ Cn,l2

k ∨ P)) perfect ?

(Q6) How can we characterize F(Conk(C
n,l1
k ∨ Cn,l2

k ∨

t-times︷ ︸︸ ︷
Cn,4

k ∨ · · · ∨ Cn,4
k )) ?

After addressing these queries, we will adapt these kinds of approaches into the study of fixed
point sets of some digital k-surfaces in Z3 [6–12]. Let (Si, k) be a digital k-surface in Z3, i ∈ {1, 2},
and (S1 ∨ S2, k) be a digital wedge of (Si, k), i ∈ {1, 2}. In particular, we denote a minimal simple
closed 18-surface consisting of ten (resp. six) elements in Z3 by MSS18 (resp. MSS′18) [10,11] (see also
Section 6). Then, the following issues are naturally raised.

(Q7) Given a digital k-surface Sk, how can we formulate F(Conk(Sk)) and F(Conk(Sk ∨MSS′18)) ?
(Q8) For a digital k-surface Sk, how many 2-components are there in F(Conk(Sk)) ?
(Q9) Under what conditions are F(Conk(Sk)), F(Con18(MSS18)), and F(Con18(MSS18 ∨
MSS18)) perfect ?

Using many new tools, we shall address all of these issues.
The remaining part of the paper is organized as follows. Section 2 recalls some notions and

backgrounds needed for this study. Besides, it refers to some properties of digital continuity. Section 3
initially formulates F(Conk(C

n,l
k ∨ Cn,4

k )) with a certain hypothesis, where l(≥ 5) ∈ N1, and explores
a certain condition which makes it perfect. Section 4 investigates the number of the 2-components
of F(Conk(C

n,l1
k ∨ Cn,l2

k )), where l1(≥ 5) ∈ N1, l2(≥ 6) ∈ N0, k 6= 2n. Besides, after joining a simple

k-path (P, k) onto Cn,l1
k ∨ Cn,l2

k to produce a digital wedge (Cn,l1
k ∨ Cn,l2

k ∨ P, k), we investigate a certain

condition that makes F(Conk(C
n,l1
k ∨ Cn,l2

k ∨ P)) perfect. Finally, we investigate certain conditions

that make F(Conk(C
n,l1
k ∨ Cn,l2

k ∨

t-times︷ ︸︸ ︷
Cn,4

k ∨ · · · ∨ Cn,4
k )) perfect. Section 5 investigate some properties of

F(Conk(C
n,l1
k ∨ Cn,l2

k )), where l1, l2(≥ 7) ∈ N1, k 6= 2n. In addition, we also deal with F(Conk(C
n,l
k ∨

Cn,5
k )) with a certain hypothesis (see the property (4)). Section 6 develops several types of fixed point

theorems for digital k-surfaces. Namely, for some digital k-surfaces (Si, k), i ∈ {1, 2} and (S1 ∨ S2, k),
we formulate F(Conk(Si)) and F(Conk(S1 ∨ S2)) and investigate some properties of them. Eventually,
we shall address the issues (Q7)-(Q9). Section 7 concludes the paper. In addition, we will denote the
cardinality of a set X with X].

2. Digital Wedges and Some Properties of the Digital Continuity

As an initial version of a digital image, a pair (X, k) was called a digital image, where X ⊂ Zn

and the k-adjacency of Zn was assumed in n ∈ {1, 2, 3} [13–15]. After then, the work in [16] first
generalized this approach into the high-dimensional digital image X ⊂ Zn with one of the k-adjacency
relations of Zn, n ∈ N. To study X ⊂ Zn in a digital topological setting, n ∈ N, the following digital
k-adjacency (or digital k-connectivity) was taken in [16] (see also in [17]), as follows.
For a natural number t, 1 ≤ t ≤ n, the two distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn,
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are k(t, n)-adjacent if at most t of their coordinates differ by ±1 and the others coincide. According to
this statement, the k(t, n)-adjacency relations of Zn, n ∈ N, are formulated [16] (see also in [17])
as follows,

k := k(t, n) =
t

∑
i=1

2iCn
i , where Cn

i :=
n!

(n− i)! i!
. (1)

For instance [16,17],

(n, t, k) ∈


(3, 1, 6), (3, 2, 18), (3, 3, 26);

(4, 1, 8), (4, 2, 32), (4, 3, 64), (4, 4, 80); and

(5, 1, 10), (5, 2, 50), (5, 3, 130), (5, 4, 210), (5, 5, 242).

Hereafter, (X, k) is assumed in Zn, n ∈ N, with one of the k-adjacency of (1). Besides,
these k-adjacency relations are strongly used in calculating digital k-fundamental groups of digital
products [16,18]. Indeed, a digital image (X, k) is one of digital spaces [19] (see also in [11]). For
x, y ∈ Z with x � y, the set [x, y]Z = {n ∈ Z | x ≤ n ≤ y} with 2-adjacency is called a digital
interval [13,20].
The following terminology and notions [11,13–16,20,21] will be also used later. Given (X, k) with
X] ≥ 2, by a k-path with l + 1 elements in X we mean the sequence (xi)i∈[0,l]Z ⊂ X such that xi and xj
are k-adjacent if | i− j | = 1 [13]. We say that (X, k) is k-connected if for any distinct points x, y ∈ X
there is a k-path (xi)i∈[0,l]Z in X such that x0 = x and xl = y [13,20] (for more details see in [11]). Given
(X, k), by the k-component of x ∈ X, we mean the maximal k-connected subset of (X, k) containing
the point x [13].

By a simple k-path from x to y in (X, k), we mean a finite set (xi)i∈[0,m]Z
⊂ Zn such that xi and xj

are k-adjacent if and only if | i− j | = 1, where x0 = x and xm = y [13]. Then, the length of this set
(xi)i∈[0,m]Z

is denoted by lk(x, y) := m.
By a simple closed k-curve (or simple k-cycle) with l elements in Zn, n ≥ 2, denoted by

SCn,l
k [13,16], l ≥ 4, we mean a set (xi)i∈[0,l−1]Z ⊂ Zn such that xi and xj are k-adjacent if and

only if | i − j | = ±1(mod l). Then, the number l of SCn,l
k depends on both the dimension n of Zn

and the k-adjacency (for details, see the property (2) below). Hereafter, we use the notation Cn,l
k to

abbreviate SCn,l
k .

As to the number l of Cn,l
k , n ∈ N \ {1}, l ≥ 4, according to the k-adjacency of Zn in (1), some

properties of the number l of Cn,l
k , are obtained, as follows [4].

(1) in the case k = 2n(n 6= 2), we have l ∈ N0 \ {2};

(2) in the case k = 4, we obtain l ∈ N0 \ {2, 6}, i.e., neither C2,5
4 nor C2,6

4 exists;

(3) in the case k = 8, we have l ∈ N \ {1, 2, 3, 5}. Naively, no C2,5
8 exists;

(4) in the case k = 18, we obtain l ∈ N \ {1, 2, 3, 5}; and

(5) in the case k := k(t, n), 3 ≤ t ≤ n, we have l ∈ N \ {1, 2, 3}.

Namely, neither C2,5
6 nor C3,5

18 exists. However, C3,5
26 exists.

(2)

This is an improved version of (2) in [4] because there is a misprint at the fourth line of (2) in [4].
For the cases of (3)–(4) of (2), C2,7

8 and C3,9
18 are considered (see Figure 1). Hereafter, in terms of the

number l of Cn,l
k , we will follow the property (2).

As the notion of neighborhood plays an important role in digital topology and digital geometry,
a digital k-neighborhood of a point p of a digital image (X, k) was established, as follows. Given (X, k)
and a point p ∈ X, the following notion of ‘digital k-neighborhood of p with radius 1’ is defined,
as follows [16].

Nk(p, 1) := {x ∈ X | x is k-adjacent to p} ∪ {p}. (3)
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Figure 1. (a) One specific example of a member of the set of closed curves, C2,7
8 [4]. Here, n = 2,

the underlying 2-dimensional lattice is shown as a dashed grid. The closed curve consisting of 7
points appears black dots labeled x1 through x6. (b) One specific example of a member of the set of
closed curves, C3,9

18 . Now n = 3, so the lattice is 3-dimensional (dashed grid). The closed curve of 9
points runs from 0 through 8.

By using the notion of (3), the digital (k0, k1)-continuity of a map f : (X, k0)→ (Y, k1) in [15] was
represented, as follows [10,16].

Proposition 1 ([10,16]). A function f : (X, k0)→ (Y, k1) is (digitally) (k0, k1)-continuous if and only if for
every x ∈ X, f (Nk0(x, 1)) ⊂ Nk1( f (x), 1).

In Proposition 1, in the case k := k0 = k1, the map f is called a “k-continuous” map to abbreviate
the (k, k)-continuity of the given map f . In some literature, as there is some confusion of the digital
k-continuity of a map between digital images, we need to attention the following.

Theorem 1. Given a set X ⊂ Zn, let us consider the two digital connectivities of X such as k(t1, n) and
k(t2, n) with t1 � t2 (see the property of (1)). Naively, assume the two digital images (X, k(t1, n)) and
(X, k(t2, n)). Further consider a k(t1, n)-continuous self-map of (X, k(t1, n)) and a k(t2, n)-continuous
self-map of (X, k(t2, n)). Then, neither of them implies the other.

Proof. Using Proposition 1, we prove the assertion. First, we prove that the k2-continuity of a self-map
of (X, k2 := k(t2, n)) need not imply the k1-continuity of a self-map of (X, k1 := k(t1, n)), t1 � t2

with the following counterexample. Let us consider the self-map of (X1 := {a, b, c}, 26) such as
f1 : (X1, 26) → (X1, 26) (see Figure 2a) such that f1(a) = a, f1({b, c}) = {c}. While the map f1 is
obviously a 26-continuous map, it is neither 18- nor 6-continuous at the point a ∈ X1 because{

f1(N18(a, 1)) = {a, c} * N18( f (a), 1)) = {a, b} and

f1(N6(a, 1)) = {a, c} * N6( f (a), 1)) = {a, b},

where N18(a, 1) = {a, b} = N6(a, 1).
Similarly, taking a certain example similar to the map f1 above, we can clearly prove that for a

certain digital image (Y, 18) an 18-continuous map need not imply a 6-continuous map at a certain
point y ∈ Y.

Conversely, we prove that the k1-continuity of a self-map of (X, k1 := k(t1, n)) need not imply the
k2-continuity of a self-map of (X, k2 := k(t2, n)) with the following counterexample. Let us consider
the self-map of (X2 := {a, b, c, d}, 6) such as f2 : (X2, 6)→ (X2, 6) (see Figure 2b) such that

f2(a) = b, f2(b) = c, f2({c, d}) = {d}.

While the map f2 is a 6-continuous map, it is neither 18- nor 26-continuous at the point a ∈
X2 because

f2(N18(a, 1)) = f2({a, b, c}) = {b, c, d} * N18( f2(a), 1)) = {a, b, c},
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and similarly we obtain

f2(N26(a, 1)) = {b, c, d} * N26( f2(a), 1)) = {a, b, c},

where N18(a, 1) = {a, b, c} = N26(a, 1).
As another example, let us consider the self-map of (X3 := {a, b, c, d}, 18) such as f3 : (X3, 18)→

(X3, 18) (see Figure 2c) such that

f3(a) = b, f3(b) = c, f3({c, d}) = {d}.

While the map f3 is an 18-continuous map, it is not 26-continuous at the point a ∈ X3 because

f3(N26(a, 1)) = f3({a, b, c}) = {b, c, d} * N26( f3(a), 1)) = {a, b, c},

where N26(a, 1) = {a, b, c}.

In view of Theorem 1, we observe that not every k1-continuous self-map of (X, k1) implies a
k2-continuous self-map of (X, k2) if k1 6= k2. Namely, we observe that a k1-continuous self-map of
(X, k1) is different from a k2-continuous self-map of (X, k2) if k1 6= k2.

d

a

cb d

a

cb

(b)

(1) (2)

d

a

cb

(c)

(2)

d

a

cb

(1)

a

c

b

(a)

(1) (2)

a

c

b

f1

f2

f3

Figure 2. Comparison between the k(t1, n)- and k(t2, n)-continuities, t1 � t2, which supports the proof
of Theorem 1. (a) 26-continuity of f1 need not imply 18-continuity of it. (b) 6-continuity of f2 need not
imply k-continuity of it, k ∈ {18, 26}. (c) 18-continuity of f3 need not imply 26-continuity of it.

Using the digital continuity of maps between two digital images, let us recall the category DTC
consisting of the following two pieces of data [16], called the “digital topological category”, as follows.

• The set of (X, k), where X ⊂ Zn, as objects of DTC denoted by Ob(DTC);
• For every ordered pair of objects (Xi, ki), i ∈ {0, 1}, the set of all (k0, k1)-continuous maps

between them as morphisms of DTC, denoted by Mor(DTC).
In DTC, for the case k := k0 = k1, we will use the notation DTC(k) [18].

To compare digital images (X, k) [22] up to similarity, we often use the notion of
(k0, k1)-isomorphism (or k-isomorphism) as in [22]), as follows.
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Definition 1 ([22]). ((k0, k1)-homeomorphism in [23]) Consider two digital images (Z, k0) and (W, k1) in Zn0

and Zn1 , respectively. Then, a map h : Z → W is called a (k0, k1)-isomorphism if h is a (k0, k1)-continuous
bijection and further, h−1 : W → Z is (k1, k0)-continuous. Then, we use the notation Z ≈(k0,k1)

W. In the
case k := k0 = k1, the map h is called a k-isomorphism.

Let us now recall the notions of a digital wedge which can be used in studying fixed point sets
from the viewpoint of digital geometry. Given two digital images (A, k) and (B, k), a digital wedge of
them, denoted by (A ∨ B, k), is initially defined [16,18] as the union of the digital images (A′, k) and
(B′, k) (for more details see Figure 3a), where

(1) A′ ∩ B′ is a singleton, say {p};
(2) A′ \ {p} and B′ \ {p} are not k-adjacent, where two sets (C, k) and (D, k) are said to be k-adjacent

if C ∩ D = ∅ and there are at least two points a ∈ C and b ∈ D such that a is k-adjacent to b [20];
and

(3) (A′, k) is k-isomorphic to (A, k) and (B′, k) is k-isomorphic to (B, k) (see Definition 1).

In view of this feature, we may consider (A ∨ B, k) to be (A′ ∨ B′, k). When studying digital
wedges in a digital topological setting, we are strongly required to follow this approach. Indeed,
this digital wedge is quite different from the classical one point union (or wedge) in typical
topology [24] and standard graph theory [25] by the k-adjacency referred to in (2) above. Based on the
property (2), given Cn,l1

k ∨ Cn,l2
k such that l1 ∈ N1 and l2 ∈ N0, we observe the following properties.

(1) k 6= 2n; and

(2) l1(≥ 7) ∈ N1, l2 ∈ N0 \ {2} if k = 8, n = 2;

(3) l1(≥ 7) ∈ N1, l2 ∈ N0 \ {2} if k = 18, n = 3; and

(4) l1(≥ 5) ∈ N1, l2 ∈ N0 \ {2} if k := k(t, n), 3 ≤ t ≤ n.

 (4)

In the case n ≥ 4, depending on the numbers t and n of k := k(t, n), we can take l1 ≥ 5 or l1 ≥ 7.
Hereafter, as to li, i ∈ {1, 2}, of Cn,l1

k ∨ Cn,l2
k , we will follow the property of (4). In relation to (4),

we may similarly consider the cases l1 ∈ N0 and l2 ∈ N1 because (Cn,l1
k ∨ Cn,l2

k , k) is k-isomorphic to

(Cn,l2
k ∨ Cn,l1

k , k).

3. Formulation of F(Conk(Cn,l
k ∨ Cn,4

k )), l ∈ N1 \ {1, 3, 5}, k 6= 2n and Its Digital
Topological Properties

This section explores some conditions that make an alignment of fixed point sets of a digital
image 2-connected (or perfect) in a DTC setting. As some reasons why we take the notation of
F(Conk(X)) were referred to in [4], the usage of the notation F(Conk(X)) indeed has some advantages
of highlighting the set of k-continuous self-maps of (X, k), as follows,

F(Conk(X)) := {Fix( f )] | f ∈ Conk(X)}, (5)

where Fix( f ) := {x ∈ X | f (x) = x}. Then, using the set in (5), we define the following:

Definition 2 ([3]). Given (X, k), F(Conk(X)) := (F(Conk(X)), 2) is said to be an alignment of fixed point
sets of (X, k).

In Definition 2, we called F(Conk(X)) an alignment of fixed point sets (X, k) to abbreviate the
term “alignment of cardinalities of fixed point sets of all k-continuous self-map of (X, k)”. Besides,
we remind that the pair (F(Conk(X)), 2) is assumed to be a digital image with 2-adjacency as a subset
of (Z, 2).



Mathematics 2020, 8, 1896 7 of 25

Definition 3 ([3]). Given (X, k), if F(Conk(X)) = [0, X]]Z, then (F(Conk(X)), 2) (or F(Conk(X)) for
brevity) is said to be perfect.

As usual, we say that a digital topological property is a property of a digital image (X, k) which is
invariant under digital k-isomorphisms.

Theorem 2 ([2,3]). In DTC(k), F(Conk(X)) is a digital topological property.

Regarding Theorem 2, for Cn,l
k while the papers [2,3] only consider the case l ∈ N0 \ {2}, a recent

paper [4] studied F(Conk(C
n,l
k )) without any limitations of l, i.e., l ∈ N0 \ {2} or l ∈ N1 \ {1, 3, 5}

(for more details see the property (2)). Besides, the digital topological property referred to in Theorem 2
also holds even for the case of Cn,l

k , l ∈ N1 \ {1, 3}.
For Cn,l

k ∈ Ob((DTC(k)), having in mind the property of (2), we obviously obtain the following.

Lemma 1. (1) Given l(∈ N0) of Cn,l
k , F(Conk(C

n,l
k )) = [0, l

2 + 1]Z ∪ {l} [2].
(2) For l(∈ N1) of Cn,l

k and k 6= 2n, F(Conk(C
n,l
k )) = [0, l+1

2 ]Z ∪ {l} [4].
(3) F(Conk(C

n,5
k )) = [0, 3]Z ∪ {5}, where k := k(t, n), 3 ≤ t ≤ n.

In view of Lemma 1, for Cn,l
k without any limitation of l of Cn,l

k related to the choice of odd or
even number, it is clear that [4,26]{

5 ≤ F(Conk(C
n,l
k ))] ≤ l + 1 if l ∈ N0 and

5 ≤ F(Conk(C
n,l
k ))] ≤ l + 1 if l ∈ N1,

because in the case l ∈ N0, we take l ≥ 4, and in the case l ∈ N1, we can consider l ≥ 5 depending on
the numbers t and n of k := k(t, n) (see the property (2) and Lemma 1(3)).

Remark 1. In Lemma 1, while F(Conk(C
n,l
k )) is independent from the k-adjacency, it only depends on the

number l of Cn,l
k .

For Cn,l
k , l ∈ N0 \ {2}, the paper [3] already proved the following.

F(Conk(C
n,l
k ∨ Cn,4

k )) = [0, 4 +
l
2
]Z ∪ [l, l + 3]Z

= [0,
l + 8

2
]Z ∪ [l, l + 3]Z.

 (6)

Let us now investigate some properties of F(Conk(C
n,l
k ∨ Cn,4

k )) for the case of an odd number l of
Cn,l

k , which remains open. After recalling the property of (4), by Lemma 1(2), we obtain the following.

Theorem 3. For l(≥ 7) ∈ N1 and k 6= 2n, F(Conk(C
n,l
k ∨ Cn,4

k )) = [0, l+7
2 ]Z ∪ [l, l + 3]Z

Proof. With the given hypothesis, to characterize F(Conk(C
n,l
k ∨Cn,4

k )), although there are many kinds
of k-continuous self-maps of Cn,l

k ∨ Cn,4
k , it suffices to consider certain maps f ∈ Conk(C

n,l
k ∨ Cn,4

k )

fulfilling the properties.

(a) f |Cn,4
k
(x) = x; or

(b) f |Cn,l
k
(x) = x; or

(c) f (Cn,l
k ) ( Cn,l

k and f (Cn,4
k ) ( Cn,4

k ; or

(d) f does not support any fixed point of Cn,l
k ∨ Cn,4

k .
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First, from (a) and Lemma 1(2), we obtain

[4, 4 +
l − 1

2
]Z ∪ {l + 3} = [4,

l + 7
2

]Z ∪ {l + 3} ⊂ F(Conk(C
n,l
k ∨ Cn,4

k )). (7)

More precisely, from the condition (a), we obtain Fix( f )] = 4 and further, owing to the self-map
of f associated with the other part Cn,l

k of Cn,l
k ∨ Cn,4

k , we obtain [0, l−1
2 ]Z ∪ {l + 3}. Thus, considering

both these two steps, we finally obtain the set in (7).

Second, from (b), using the method similar to the process of (7), we have

[l, l + 3]Z ⊂ F(Conk(C
n,l
k ∨ Cn,4

k )). (8)

Third, from (c) and (d), using the method similar to the process of (7), we have

[0,
l + 1

2
− 1 + 3]Z = [0,

l + 5
2

]Z ⊂ F(Conk(C
n,l
k ∨ Cn,4

k )). (9)

After comparing the following three numbers, l of (8), l+7
2 of (7), and l+5

2 of (9),
with the hypothesis, as l ≥ 7, from (7) and (9), we always obtain

[0,
l + 7

2
]Z ⊂ F(Conk(C

n,l
k ∨ Cn,4

k )). (10)

Thus, by (7), (8), (9), and (10), we obtain F(Conk(C
n,l
k ∨ Cn,4

k )) = [0, l+7
2 ]Z ∪ [l, l + 3]Z.

Corollary 1. For l ∈ N1 \ {1, 3, 5} and k 6= 2n, F(Conk(C
n,l
k ∨ Cn,4

k )) is perfect if and only if l ∈ {7, 9}.

Proof. Based on Theorem 3, count on the difference between l+7
2 and l, i.e.,

l − l + 7
2

=
l − 7

2
. (11)

In view of (11), if l−7
2 ≤ 1, for l ≥ 7, we obtain the following: F(Conk(C

n,l
k ∨ Cn,4

k )) is perfect if
and only if l ∈ {7, 9}.

Example 1. As shown in Figure 3a, we obtain the following.

(a) F(Con8(C
2,7
8 ∨ C2,4

8 )) = [0, 10]Z.
Similarly, we obtain the following (see Figure 3a,b).

(b) F(Con8(C
2,9
8 ∨ C2,4

8 )) = [0, 12]Z (see Figure 3a).

(c) F(Con18(C
3,7
18 ∨ C3,4

18 )) = [0, 10]Z (see Figure 3b).

3

0

5

4

2 7

9

8

(b)

61

x8

x0

x2 x1

x6 x7

(4, 0)

(a)

(6, 0)

(0, 0)

x3

x
5

x
4

Figure 3. (a) Configuration of F(Con8(C
2,9
8 ∨ C2,4

8 )) = [0, 12]Z. (b) For F(Con18(C
3,7
18 ∨ C3,4

18 )) = [0, 10]Z.

With the property of (4), to make Theorem 3 and Corollary 1 useful, we remark the following.
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Remark 2. F(Conk(C
n,5
k ∨ Cn,4

k )) = [0, 8]Z which is perfect. For instance, F(Con26(C
3,5
26 ∨ C3,4

26 )) = [0, 8]Z.

The authors of [3] proved that F(Conk(C
n,4
k ∨ Cn,4

k )) = [0, 7]Z. As no Cn,5
k exists, if k ∈ {4, 8} and

n = 2, k ∈ {6, 18} and n = 3. With the property (4), given Cn,2a
k ∨ Cn,4

k and Cn,2a+1
k ∨ Cn,4

k , we obtain
the following.

Remark 3. For any k 6= 2n and a ∈ N \ {1, 2}, we obtain F(Conk(C
n,2a
k ∨ Cn,4

k ))] = F(Conk(C
n,2a+1
k ∨

Cn,4
k ))].

Proof. With the hypothesis, we will prove the assertion with two cases, as follows:
(Case 1) Using the property of (6), we obtain

F(Conk(C
n,2a
k ∨ Cn,4

k )) = [0, a + 4]Z ∪ [2a, 2a + 3]Z. (12)

(Case 2) By Theorem 3, we obtain

F(Conk(C
n,2a+1
k ∨ Cn,4

k )) = [0, a + 4]Z ∪ [2a + 1, 2a + 4]Z. (13)

Owing to the sets of (12) and (13), the proof is completed.

Given a digital image (X, k) with X] = n, we need to check if there is the number n − 1 ∈
F(Conk(X)). Indeed, the authors of [2] studied this property with the following lemma (see Lemma 4.8
of [2]). The following lemma also holds for the case of F(Conk(C

n,2a+1
k ∨ Cn,4

k )) as stated in Example 1
which is an improvement of Lemma 4.8 of [2].

Lemma 2 ([2]). Let (X, k) be k-connected with n = X]. Then, n− 1 ∈ F(Conk(X)) if and only if there are
distinct points x1, x2 ∈ X with Nk(x1, 1) \ {x1} ⊂ Nk(x2, 1).

By Lemma 1, it is clear that F(Conk(C
n,l
k )) is perfect if and only if l = 4 [3,4]. In relation to Lemma

1, we obtain the following result which can play an important role in exploring the perfectness of
F(Conk(X)). When investigating the perfectness of a given digital image, we can use the following.

Theorem 4 ([4]). Let (X, k) be k-connected and n := X]. Assume there are three or four distinct points
x1, x2, x3, x4 ∈ X such that Nk(x1, 1) \ {x1} ⊂ Nk(x2, 1), and further

(1) the two distinct points x2, x3 ∈ X \ {x1} have the property,

Nk(x3, 1) \ {x3} ⊂ Nk(x2, 1) or Nk(x2, 1) \ {x2} ⊂ Nk(x3, 1); or

(2) the two distinct points x3, x4 ∈ X \ {x1} have the property

Nk(x3, 1) \ {x3} ⊂ Nk(x4, 1).

 (14)

Then, n− 1, n− 2 ∈ F(Conk(X)).

Given Cn,l
k ∨ Cn,4

k , i.e., l ∈ N \ {1, 2, 3}, motivated by Lemma 1, Remarks 2 and 3, and Theorem 3,
we obtain the following.

Theorem 5. Given Cn,l
k ∨ Cn,4

k , we obtain the following.

(1) In the case l ∈ N0, F(Conk(C
n,l
k ∨ Cn,4

k )) is perfect if and only if l ∈ {4, 6, 8, 10} [3].

(2) In the case l ∈ N1, k = 8, n = 2, F(Conk(C
n,l
k ∨ Cn,4

k )) is perfect if and only if l ∈ {7, 9}.
(3) In the case l ∈ N1, k = 18, n = 3, F(Conk(C

n,l
k ∨ Cn,4

k )) is perfect if and only if l ∈ {7, 9}.
(4) In the case l ∈ N1, k = 26, n = 3, F(Conk(C

n,l
k ∨ Cn,4

k )) is perfect if and only if l ∈ {5, 7, 9}.
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Before proving the assertion, we need to recall the properties in (2) and (4).

Proof. (1) In the case l(≥ 4) ∈ N0, by Lemma 1(1), we complete the proof (see also [3]).
(2)–(4) Based on the properties (2) and (4), by Lemma 1, Remarks 2 and 3, and Theorem 3,

the proofs are completed.

4. Alignments of Fixed Point Sets of Cn,l1
k ∨ Cn,l2

k , l1 ∈ N1, l2 ∈ N0, k 6= 2n

Given two Cn,l1
k and Cn,l2

k , it is clear that Cn,l1
k ∨Cn,l2

k is k-isomorphic to Cn,l2
k ∨Cn,l1

k . As mentioned

in the previous part, when studying F(Conk(C
n,l1
k ∨ Cn,l2

k )), we always have in mind the properties of

(2) and (4). By Theorem 2, it is obvious that F(Conk(C
n,l1
k ∨Cn,l2

k )) = F(Conk(C
n,l2
k ∨Cn,l1

k )). In the case

l1 = l2 with l1, l2 ∈ N0, or l1, l2 ∈ N1, the study of F(Conk(C
n,l1
k ∨ Cn,l2

k )) was already done in [3,4].
Besides, in the case l2 = 4 and k 6= 2n, the study of F(Conk(C

n,l
k ∨ Cn,4

k )) was also already done in
Theorem 3 and Remark 1. Thus, with the properties of (2) and (4), in the case l1(≥ 5) ∈ N1(see
Theorem 6 and Remark 5) and l2(≥ 6) ∈ N0, the study of F(Conk(C

n,l1
k ∨ Cn,l2

k )) remains open.
Therefore, this section addresses this issue. As a generalized version of F(Conk(C

n,l
k ∨ Cn,4

k )) in
Theorem 3, we obtain the following.

Theorem 6. Assume Cn,li
k , i ∈ {1, 2}, such that l1  l2 ≥ 6 and l1 ∈ N1, l2 ∈ N0. F(Conk(C

n,l1
k ∨Cn,l2

k )) =

[0, l2 +
l1−1

2 ]Z ∪ [l1, l1 +
l2
2 ]Z ∪ {l1 + l2 − 1}.

Proof. For convenience, let A := Cn,l1
k := (ai)i∈[0,l1−1]Z , B := Cn,l2

k := (bi)i∈[0,l2−1]Z . With the given
hypothesis, to characterize F(Conk(A ∨ B)), though we can consider many types of k-continuous
self-map f of A ∨ B, motivated by the approach of Theorem 3, it is sufficient to consider the maps
f ∈ Conk(A ∨ B) with the following four cases.

(1) f (x) = x, x ∈ B, or

(2) f (x) = x, x ∈ A, or

(3) f (A) ( A and f (B) ( B, or

(4) f does not have any point x ∈ A ∨ B

such that f (x) = x.

(15)

First, according to (15)(1), by Lemma 1(2), we have

[l2, l2 +
l1 − 1

2
]Z ∪ {l1 + l2 − 1} ⊂ F(Conk(A ∨ B)). (16)

Second, according to (15)(2), by Lemma 1(1), we obtain

[l1, l1 +
l2
2
]Z ∪ {l1 + l2 − 1} ⊂ F(Conk(A ∨ B)). (17)

Third, according to (15)(3) and (4), by Lemma 1, we have

[0,
l1 + l2 − 1

2
+ 1]Z = [0,

l1 + l2 + 1
2

]Z ⊂ F(Conk(A ∨ B)). (18)
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Therefore, we need to count on the above five numbers in (16), (17), and (18), say
(1) l2 +

l1 − 1
2

and l1 + l2 − 1 from (16);

(2) l1 and l1 +
l2
2

from (17); and

(3)
l1 + l2 + 1

2
from (18).

(19)

Then, owing to the hypothesis l1  l2 ≥ 6 and the quantities of (19), we obviously obtain
(1) l2 �

l1 + l2 + 1
2

≤ l1; and

(2) l2 �
l1 + l2 + 1

2
� l2 +

l1 − 1
2

� l1 +
l2
2
� l1 + l2 − 1,

(20)

which implies that from (16), (17), and (20)

[0, l2 +
l1 − 1

2
]Z ⊂ F(Conk(A ∨ B)). (21)

Then, we further need to count on the two gaps between the two numbers in each of (a) and (b)
of (22) below 

(a) l2 +
l1 − 1

2
and l1;

(b) l1 +
l2
2

and l1 + l2 − 1.
(22)

In view of (20), (21), and (22), we obtainF(Conk(C
n,l1
k ∨ Cn,l2

k ))

= [0, l2 +
l1 − 1

2
]Z ∪ [l1, l1 +

l2
2
]Z ∪ {l1 + l2 − 1}.

(23)

To support Theorem 6, with the property (4), we give the next example, k 6= 2n.

Example 2.

(1) F(Conk(C
n,13
k ∨ Cn,6

k )) = [0, 16]Z ∪ {18}.
(2) F(Conk(C

n,15
k ∨ Cn,6

k )) = [0, 13]Z ∪ [15, 18]Z ∪ {20}.
(3) F(Conk(C

n,21
k ∨ Cn,6

k )) = [0, 16]Z ∪ [21, 24]Z ∪ {26}.

Comparing Examples 2(1) and (3), we observe that while F(Conk(C
n,13
k ∨ Cn,6

k )) has two
2-components and F(Conk(C

n,21
k ∨ Cn,6

k )) has three 2-components.
Thus, we observe the following.

Remark 4. With (20), (21), and (23), with the hypothesis of Theorem 6, take the difference between l1 + l2− 1
and l1 +

l2
2 , i.e.,

(l1 + l2 − 1)− (l1 +
l2
2
) =

l2
2
− 1. (24)

Then, we always have l2
2 − 1 ≥ 2 because l2 ≥ 6.



Mathematics 2020, 8, 1896 12 of 25

However, let us consider the difference between l2 +
l1−1

2 and l1, i.e., the quantity

l1 − (l2 +
l1 − 1

2
) =

l1 + 1
2
− l2. (25)

Then, the number l1+1
2 − l2 of (25) can invoke 2-disconnectedness of F(Conk(C

n,l1
k ∨ Cn,l2

k )) depending
on the situation because not every l1+1

2 − l2 is always greater than or equal to 2 (two).

Motivated by Remark 4, we obtain the following.

Theorem 7. In Theorem 6, we obtain the following.

(1) F(Conk(C
n,l1
k ∨ Cn,l2

k )) has three 2-components if and only if l1 ≥ 2l2 + 3.

(2) F(Conk(C
n,l1
k ∨ Cn,l2

k )) has two 2-components if and only if l1 ≤ 2l2 + 1.

Proof. Using the formula referred to in (23), let us point out the difference as mentioned in (24)

(l1 + l2 − 1)− (l1 +
l2
2
) =

l2
2
− 1.

Indeed, this quantity l2
2 − 1 plays an important role in finding some elements that make the set

F(Conk(C
n,l1
k ∨ Cn,l2

k )) 2-disconnected around the element l1 + l2 − 1. Indeed, owing to the hypothesis
of l2 ≥ 6, there is certainly a nonempty set C around the number l1 + l2 − 1 (see also Lemma 2), where

C( 6= ∅) ⊂ [0, l1 + l2 − 1]Z \ F(Conk(C
n,l1
k ∨ Cn,l2

k )).

Next, we are also required to further check the difference between the two numbers in (22)(a) as
referred to in (25), i.e.,

l1 − (l2 +
l1 − 1

2
) =

l1 + 1
2
− l2.

As mentioned in Remark 4, in the case

l1 − (l2 +
l1 − 1

2
) =

l1 + 1
2
− l2 ≤ 1,

this quantity l1+1
2 − l2 does not invoke the 2-disconnectedness of F(Conk(C

l1
k ∨ Cl2

k )) around the
element l1.

However, in the case
l1 + 1

2
− l2 ≥ 2, i.e., l1 ≥ 2l2 + 3, (26)

there is a certain non-empty subset of [0, l1 + l2 − 1]Z \ F(Conk(C
l1
k ∨ Cl2

k )), which leads to

2-disconnectedness of F(Conk(C
n,l1
k ∨ Cn,l2

k )) around the element l1. More precisely, in the case
l1 ≥ 2l2 + 3 in (26), there is certainly a set D, where

D( 6= ∅) ⊂ [0, l1 + l2 − 1]Z \ F(Conk(C
n,l1
k ∨ Cn,l2

k )),

such that
C ∩ D = ∅. (27)

Unlike the set C( 6= ∅), the existence of the set D( 6= ∅) depends on the situation according to the
number l1+1

2 − l2 in (25)(see Remark 4 and (26)). Furthermore, in the case D 6= ∅, the set D makes
F(Conk(C

n,l1
k ∨ Cn,l2

k )) 2-disconnected around the number l2 +
l1−1

2 ∈ F(Conk(C
n,l1
k ∨ Cn,l2

k )) (see (23)).
Indeed, the quantities of both l2

2 − 1 of (24) and l1+1
2 − l2 of (25) also determine the sizes
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of 2-disconnected parts of F(Conk(C
n,l1
k ∨ Cn,l2

k )) around the numbers l2 + l1−1
2 and l1 + l2

2 ∈
F(Conk(C

n,l1
k ∨ Cn,l2

k )) (see (23)).

To support our results, motivated by Example 2, we give the next example.

Example 3. (1) F(Conk(C
n,13
k ∨ Cn,6

k )) = [0, 16]Z ∪ {18} has two 2-components.
(2) F(Conk(C

n,15
k ∨ Cn,6

k )) = [0, 13]Z ∪ [15, 18]Z ∪ {20} has three 2-components.

Corollary 2. (1) For l(≥ 7) ∈ N1, k 6= 2n, we obtain

F(Conk(C
n,l
k ∨ C4

k )) = [0, 4 +
l − 1

2
]Z ∪ [l, l + 3]Z.

Thus, in the case l ≤ 9, F(Conk(C
n,l
k ∨ Cn,4

k )) has one 2-component, i.e., [0, l + 3]Z.
(2) If l(≥ 11) ∈ N1, then we obtain F(Conk(C

n,l
k ∨ Cn,4

k )) = [0, l + 3]Z \ {l − 1, · · · , l − i}, where i = l−9
2 .

Remark 5. For l ∈ N0 \ {2}, F(Con26(C
3,5
26 ∨ C3,l

26 )) = [0, 5 + l
2 ]Z ∪ [l, l + 2]Z ∪ {l + 4}.

Remark 6. In view of Theorems 6 and 7, digital topological properties of F(Conk(C
n,l1
k ∨ Cn,l2

k )) of Theorem 6
only depends on the numbers l1 and l2 instead of the k-adjacency.

Regarding (Q5)–(Q6), using the two quantities of (24) and (25), we obtain the following.

Theorem 8. With the hypothesis of Theorem 6, F(Conk(C
n,l1
k ∨ Cn,l2

k ∨ P)) is perfect if M ≤ d + 1, where
M := max{ l1+1

2 − l2, l2
2 − 1} and d is the length of a simple k-path (P, k).

Proof. Based on the numbers l1+1
2 − l2, l2

2 − 1 from (24) and (25), respectively, take the number

M := max{ l1 + 1
2
− l2,

l2
2
− 1}. (28)

If M ≤ d + 1, then the part (P, k) with the length d added on Cn,l1
k ∨ Cn,l2

k makes the set in (23)

2-connected (see the processes from (15) to (22)). Thus, F(Conk(C
n,l1
k ∨ Cn,l2

k ∨ P)) is perfect.

Based on Example 3, by Theorem 8, we obtain the following.

Example 4.

(1) F(Conk(C
n,13
k ∨ Cn,6

k ∨ P1) = [0, 19]Z which is perfect, where P1 is a simple k-path with length 1 (one).

(2) F(Conk(C
n,15
k ∨ Cn,6

k ∨ P1)) = [0, 21]Z which is perfect, where P1 is a simple k-path with length 1 (one).

Theorem 9. For Cn,l1
k ∨ Cn,l2

k in Theorem 6, F(Conk(C
n,l1
k ∨ Cn,l2

k ∨

t-times︷ ︸︸ ︷
Cn,4

k ∨ · · · ∨ Cn,4
k )) is perfect if M ≤

3t + 1, where M := max{ l1+1
2 − l2, l2

2 − 1} of (28).

Proof. If M ≤ 3t + 1, as F(Conk(

t-times︷ ︸︸ ︷
Cn,4

k ∨ · · · ∨ Cn,4
k )) = [0, 3t + 1]Z, the part

t-times︷ ︸︸ ︷
Cn,4

k ∨ · · · ∨ Cn,4
k added

on Cn,l1
k ∨ Cn,l2

k makes the set in (23) 2-connected by using the processes from (15) to (22), where

M := max{ l1+1
2 − l2, l2

2 − 1}. Thus, F(Conk(C
n,l1
k ∨ Cn,l2

k ∨

t-times︷ ︸︸ ︷
Cn,4

k ∨ · · · ∨ Cn,4
k )) is perfect.
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Example 5.

(1) F(Conk(C
n,13
k ∨ Cn,6

k ∨ Cn,4
k )) = [0, 21]Z, which is perfect.

(2) F(Conk(C
n,15
k ∨ Cn,6

k ∨ Cn,4
k )) = [0, 23]Z.

5. Digital Topological Properties of Alignments of Fixed Point Sets of
Cn,l1

k ∨ Cn,l2
k , l1, l2(≥ 7) ∈ N1, k 6= 2n

As mentioned in (2), it turns out that no C2,5
k exists, k ∈ {4, 8}. However, C3,5

26 exists. Unlike the

case Cn,l1
k ∨ Cn,l2

k stated in Section 4, this section investigates some properties of alignments of fixed

points of Cn,l1
k ∨ Cn,l2

k in the case l1, l2(≥ 7) ∈ N1, k 6= 2n, which remains open. In particular,
we also deal with F(Conk(C

n,l
k ∨ Cn,5

k )) for a certain k-adjacency. Comparing to the obtained results

in Section 4, this section focuses on finding some new results on F(Conk(C
n,l1
k ∨ Cn,l2

k )) with the
hypothesis, as follows.

Theorem 10. Assume Cn,li
k , i ∈ {1, 2}, such that l1 ≥ l2(≥ 7) and l1, l2 ∈ N1. F(Conk(C

n,l1
k ∨ Cn,l2

k )) =

[0, l2 +
l1−1

2 ]Z ∪ [l1, l1 +
l2−1

2 ]Z ∪ {l1 + l2 − 1}.

Before proving this assertion, we can observe some difference between Theorems 6 and 10.
Besides, Lemma 1(2) is strongly used in proving this assertion.

Proof. For convenience, let A := Cn,l1
k := (ai)i∈[0,l1−1]Z and B := Cn,l2

k := (bi)i∈[0,l2−1]Z . With the given
hypothesis, to characterize F(Conk(A ∨ B)), though we can consider many types of k-continuous
self-maps f of A ∨ B, motivated by the approach of Theorem 6, it is sufficient to consider the maps
f ∈ Conk(A ∨ B) with the following four cases.

(1) f (x) = x, x ∈ B, or

(2) f (x) = x, x ∈ A, or

(3) f (A) ( A and f (B) ( B, or

(4) f does not have any point x ∈ A ∨ B

such that f (x) = x.

(29)

First, according to (29)(1), by Lemma 1(2), we obtain

[l2, l2 +
l1 − 1

2
]Z ∪ {l1 + l2 − 1} ⊂ F(Conk(A ∨ B)). (30)

Second, in view of (29)(2), by Lemma 1(2), we have

[l1, l1 +
l2 − 1

2
]Z ∪ {l1 + l2 − 1} ⊂ F(Conk(A ∨ B)). (31)

Third, according to (31)(3) and (4), by Lemma 1(2), we obtain

[0,
l1 − 1 + l2 − 1

2
+ 1]Z = [0,

l1 + l2
2

]Z ⊂ F(Conk(A ∨ B)). (32)

Therefore, we need to count on the five numbers in (30), (31), and (32), say
(1) l2 +

l1 − 1
2

and l1 + l2 − 1 from (30),

(2) l1 and l1 +
l2 − 1

2
from (31), and

(3)
l1 + l2

2
from (32).

(33)
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Then, owing to the hypothesis l1 ≥ l2 ≥ 7 and the quantities of (33), we obviously obtain
(1) l2 ≤

l1 + l2
2
≤ l1; and

(2) l2 ≤
l1 + l2

2
� l2 +

l1 − 1
2
≤ l1 +

l2 − 1
2

� l1 + l2 − 1,
(34)

which implies that from (30), (31), and (34)

[0, l2 +
l1 − 1

2
]Z ⊂ F(Conk(A ∨ B)). (35)

Then, we need to further count on the two gaps between the two numbers in each of (a) and (b)
of (36) below 

(a) l2 +
l1 − 1

2
and l1;

(b) l1 +
l2 − 1

2
and l1 + l2 − 1.

(36)

In view of (34), (35), and (36), we obtain thatF(Conk(C
n,l1
k ∨ Cn,l2

k ))

= [0, l2 +
l1 − 1

2
]Z ∪ [l1, l1 +

l2 − 1
2

]Z ∪ {l1 + l2 − 1}.
(37)

Example 6.

(1) F(Conk(C
n,13
k ∨ Cn,7

k )) = [0, 16]Z ∪ {19}.
(2) F(Conk(C

n,15
k ∨ Cn,7

k )) = [0, 18]Z ∪ {21}.
(3) F(Conk(C

n,21
k ∨ Cn,7

k )) = [0, 17]Z ∪ [21, 24]Z ∪ {27}.

Remark 7. With (34), (35), (37), and the hypothesis of Theorem 10, take the difference between l1 + l2 − 1
and l1 +

l2−1
2 , i.e.,

(l1 + l2 − 1)− (l1 +
l2 − 1

2
) =

l2 − 1
2

. (38)

Then, we always have l2−1
2 ≥ 2 because l2(≥ 7) ∈ N1.

However, let us consider the difference between l2 +
l1−1

2 and l1, i.e., the quantity

l1 − (l2 +
l1 − 1

2
) =

l1 + 1
2
− l2. (39)

Then, the number l1+1
2 − l2 of (39) can invoke 2-disconnectedness of F(Conk(C

n,l1
k ∨ Cn,l2

k )) depending
on the situation because not every l1+1

2 − l2 is always greater than or equal to 2 (two).

Unlike the case of Example 6(1), in Example 6(3) we observe that F(Conk(C
n,21
k ∨ Cn,7

k )) has three
2-components. This feature is due to the difference between l2 +

l1−1
2 and l1. Motivated by Remark 7,

we obtain the following.

Theorem 11. In Theorem 10, we obtain the following.

(1) F(Conk(C
n,l1
k ∨ Cn,l2

k )) has three 2-components if and only if l1 ≥ 2l2 + 3.

(2) F(Conk(C
n,l1
k ∨ Cn,l2

k )) has two 2-components if and only if l1 ≤ 2l2 + 1.
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Proof. From (37), as stated in (38), let us point out the difference as referred to in (38)

(l1 + l2 − 1)− (l1 +
l2 − 1

2
) =

l2 − 1
2

.

Indeed, this quantity l2−1
2 plays an important role in finding some elements that make the set

F(Conk(C
n,l1
k ∨ Cn,l2

k )) 2-disconnected around the element l1 + l2 − 1. Indeed, owing to the hypothesis
of l2 ≥ 7, there is certainly a nonempty set C around the number l1 + l2 − 1, where

C( 6= ∅) ⊂ [0, l1 + l2 − 1]Z \ F(Conk(C
n,l1
k ∨ Cn,l2

k )).

Next, we are also required to further count on the difference between the two numbers in (39)(a),
i.e., l1+1

2 − l2 in (39). As mentioned in Remark 7, in the case

l1 − (l2 +
l1 − 1

2
) =

l1 + 1
2
− l2 ≤ 1, i.e., l1 ≤ 2l2 + 1

this quantity l1+1
2 − l2 does not invoke 2-disconnectedness of F(Conk(C

l1
k ∨Cl2

k )) around the element l1.
However, in the case

l1 + 1
2
− l2 ≥ 2, i.e., l1 ≥ 2l2 + 3, (40)

there is a certain non-empty subset of [0, l1 + l2 − 1]Z \ F(Conk(C
l1
k ∨ Cl2

k )), which leads to

2-disconnectedness of F(Conk(C
n,l1
k ∨ Cn,l2

k )) around the element l1. More precisely, in the case
l1 ≥ 2l2 + 3 in (40), there is certainly a set D, where

D( 6= ∅) ⊂ [0, l1 + l2 − 1]Z \ F(Conk(C
n,l1
k ∨ Cn,l2

k )),

such that
C ∩ D = ∅. (41)

Unlike the existence of the set C, the existence of the set D depends on the situation according to
the difference l1+1

2 − l2 (see Remark 7 and (40)). Furthermore, in the case D 6= ∅, the set D makes
F(Conk(C

n,l1
k ∨ Cn,l2

k )) 2-disconnected around the number l2 +
l1−1

2 ∈ F(Conk(C
n,l1
k ∨ Cn,l2

k )). Indeed,
the quantities of both l2−1

2 of (38) and l1+1
2 − l2 of (39) also determine the sizes of 2-disconnected

parts of F(Conk(C
n,l1
k ∨ Cn,l2

k )) around the numbers l2 +
l1−1

2 and l1 +
l2−1

2 ∈ F(Conk(C
n,l1
k ∨ Cn,l2

k ))

(see (37)).

In view of Theorem 11, we observe that F(Conk(C
n,l1
k ∨ Cn,l2

k )) of Theorem 10 has at most three
2-components. To support our result, we give the next example.

Example 7. For the case of l with the property (4), we obtain the following.

(1) F(Conk(C
n,13
k ∨ Cn,7

k ) has two 2-components.

(2) F(Conk(C
n,15
k ∨ Cn,7

k ) has two 2-components.

(3) F(Conk(C
n,21
k ∨ Cn,7

k )) has three 2-components.

Remark 8. In view of Theorems 10 and 11, digital topological properties of F(Conk(C
n,l1
k ∨ Cn,l2

k )) in Theorem
10 only depends on the numbers l1 and l2 instead of the k-adjacency.

Using the method used in Theorem 10, let us explore F(Conk(C
n,l1
k ∨ Cn,l2

k )) for the case of li = 5.
After recalling the properties (2) and (4), we obtain the following.



Mathematics 2020, 8, 1896 17 of 25

Remark 9.

(1) F(Conk(C
n,5
k ∨ Cn,5

k )) = [0, 7]Z ∪ {9}.
(2) Given Cn,5

k ∨ Cn,l
k , l(≥ 5) ∈ N1, we obtain F(Conk(C

n,5
k ∨ Cn,l

k )) = [0, l+9
2 ]Z ∪ [l, l + 2]Z ∪ {l + 4},

which is not perfect.

Regarding (Q5)–(Q6), using a method similar to the proof of Theorem 8, we obtain the following.

Theorem 12. For Cn,l1
k ∨ Cn,l2

k in Theorem 10, F(Conk(C
n,l1
k ∨ Cn,l2

k ∨ P)) is perfect if M ≤ d + 1, where
M := max{ l1+1

2 − l2, l2−1
2 } and d is the length of a simple k-path (P, k).

Proof. Based on the numbers l1+1
2 − l2, l2−1

2 from (38) and (39) respectively, take the number

M := max{ l1 + 1
2
− l2,

l2 − 1
2
}. (42)

If M ≤ d + 1, then F(Conk(C
n,l1
k ∨ Cn,l2

k ∨ P)) is perfect.

In view of Example 6, we obtain the following:

Example 8.

(1) F(Conk(C
n,15
k ∨ Cn,7

k ∨ P2)) = [0, 23]Z, where P2 is a simple k-path with length 2.

(2) F(Conk(C
n,21
k ∨ Cn,7

k ∨ P3)) = [0, 30]Z, where P3 is a simple k-path with length 3.

Using a method similar to the proof of Theorem 9, we obtain the following.

Theorem 13. For Cn,l1
k ∨ Cn,l2

k in Theorem 10, F(Conk(C
n,l1
k ∨ Cn,l2

k ∨

t-times︷ ︸︸ ︷
Cn,4

k ∨ · · · ∨ Cn,4
k )) is perfect if M ≤

3t + 1, where M := max{ l1+1
2 − l2, l2−1

2 } of (42).

Proof. As F(Conk(

t-times︷ ︸︸ ︷
Cn,4

k ∨ · · · ∨ Cn,4
k )) has 3t + 1, if M ≤ 3t + 1, then F(Conk(C

n,l1
k ∨ Cn,l2

k ∨
t-times︷ ︸︸ ︷

Cn,4
k ∨ · · · ∨ Cn,4

k )) is perfect, where M := max{ l1+1
2 − l2, l2−1

2 }.

Example 9. F(Conk(C
n,15
k ∨ Cn,7

k ∨ Cn,4
k )) = [0, 24]Z.

(2) F(Conk(C
n,21
k ∨ Cn,7

k ∨ Cn,4
k )) = [0, 30]Z.

6. Digital Topological Properties of Alignments of Digital k-Surfaces

Several types of minimal simple closed k-surfaces inZ3, k ∈ {6, 18, 26}, e.g., MSS6, MSS18, MSS′18,
and MSS′26 [10,11], play important roles in the fields of digital surface theory, fixed point theory, digital
homotopy one [10,11], and so on. Thus, this section is devoted to exploring some properties of
alignments of fixed point sets of some digital k-surfaces and digital wedges of them. In particular,
we calculate F(Con6(MSS6)), F(Con18(MSS18 ∨MSS′18)), and F(Con18(MSS18 ∨MSS18 ∨MSS′18))

This approach is motivated by the typical and standard digital k-surfaces introduced in the
papers [7–9,12,27]. With this approach, first of all, we will intensively explore the alignments of fixed
point sets of these digital surfaces. Up to now, the study of fixed point sets of k-digital surfaces was
partially preceded in several papers including the papers [11].
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Definition 4 ([10,11]). (1) MSS6(⊂ Z3) is 6-isomorphic to (X, 6), where X := [−1, 1]3Z \ {03}, i.e.,
MSS6 ≈6 [−1, 1]3Z \ {03}, where 03 := (0, 0, 0) (see Figure 4a).

(2) MSS′18 ≈18 (Y, 18), where Y := {p ∈ Z3 | d(p, 03) = 1} (see Figure 5b(1)), d is the Euclidean distance
in R3.

(3) MSS18 ≈18 (Z, 18) (see Figure 5a(1)), where Z := (MSC8 × {1}) ∪ (Int(MSC8)× {0, 2}) [10,11],
MSC := {(0, 0, ), (1,±1), (2,±1), (3, 0)}, and Int(MSC) := {(1, 0), (2, 0)}.

(4) MSS′26 := MSS′18.

Remark 10 ([10,11]). (1) MSS6 is not 6-contractible.
(2) MSS′18 and MSS18 are considered in the digital pictures (Z3, 18, 6, MSS′18) and (Z3, 18, 6, MSS18),

respectively. Besides, each of them is 18-contractible.
(3) MSS′26 := MSS′18 is 26-contractible [10,11] and is a minimal simple closed 26-surface (see Figure 5b(1)).

Indeed, each MSS′18 and MSS18 are 18-contractible [10,11]. In addition, we see that MSS6 is
simply 6-connected [10].

When studying Sk ∈ Z3, k ∈ {6, 18, 26}, we should assume Sk, k ∈ {6, 18, 26} in the binary digital
picture such as (Z3, k, k̄, Sk), where (Sk, k) and (Z3 \ Sk, k̄) are assumed. For instance,

{(Z3, 26, 6, S26), (Z3, 18, 6, S18), (Z3, 6, 26, S6)}. (43)

Finally, we assume the following (Z3, 26, 6, MSS′26), (Z3, 6, 26, MSS6), (Z3, 18, 6, MSS′18), and
(Z3, 18, 6, MSS18) [11].

Let us now investigate the number of 2-components of F(Con6(MSS6)).

Theorem 14. F(Con6(MSS6)) is not perfect, i.e., F(Con6(MSS6)) = [0, 17]Z ∪ {26}, which has two
2-components.

Proof. Let MSS6 := [1, 26]Z in Figure 4 (for convenience, MSS6 is described by using the number
t ∈ [1, 26]Z). Further consider a 6-continuous self-map f such that Fix( f )] = 17 (see the map described
in Figure 4((a)→ (b)). In view of Proposition 1, we observe that there is no g ∈ Con6(MSS6) such
that 18 ≤ Fix(g)] ≤ 25. However, there are many 6-continuous self-maps hi of MSS6 such that
0 ≤ i ≤ 17, where Fix(hi)

] := i. To be precise, as shown in Figure 4 (see (a) →(b)), consider the
following 6-continuous self-map h17 of MSS6 such that Fix(h17)

] = 17. To be specific,
h17(4) = 2, h17(5) = 1, h17(6) = 8, h17(13) = 11, h17(14) = 10,

h17(15) = 17, h17(21) = 19, h17(22) = 18, h17(23) = 25, and

h17(x) = x, where x ∈ MSS6 \ {4, 5, 6, 13, 14, 15, 21, 22, 23}.
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Similarly, we also have 6-continuous self-maps hi of MSS6 such that 1 ≤ i ≤ 16 such that
Fix(hi)

] := i , as follows (see h16 in Figure 4((a)→(c), h15 in Figure 4((a)→(d), h14 in Figure 4((a)→(e),
and so on): To be specific,

h16(24) = 17 and h16|MSS6\{24}(x) = h17(x), where x ∈ MSS6 \ {24},

h15(16) = 8 and h15|MSS6\{16}(x) = h16(x), where x ∈ MSS6 \ {16},

h14(7) = 8 and h14|MSS6\{7}(x) = h15(x), where x ∈ MSS6 \ {7},

h13(20) = 11 and h13|MSS6\{20}(x) = h14(x), where x ∈ MSS6 \ {20},

h12(12) = 2 and h12|MSS6\{12}(x) = h13(x), where x ∈ MSS6 \ {12},

h11(3) = 2 and h11|MSS6\{3}(x) = h12(x), where x ∈ MSS6 \ {3},

h10(26) = 18 and h10|MSS6\{26}(x) = h11(x), where x ∈ MSS6 \ {26},

h9(9) = 1 and h9|MSS6\{9}(x) = h10(x), where x ∈ MSS6 \ {9},

h8(25) = 10 and h8|MSS6\{25}(x) = h9(x), where x ∈ MSS6 \ {25},

· · ·
h1(MSS6) = {1}.

Therefore, we obtain F(Con6(MSS6)) = [0, 17]Z ∪ {26}.
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Figure 4. Configuration of 6-continuous self-maps hi of MSS6 such that Fix(hi)
] = i, i ∈ [0, 17]Z. (a)

MSS6. (b) The image by the self-map h17 of MSS6. (c) The image by the self-map h16 of MSS6. (d) The
image by the self-map h15 of MSS6. (e) The image by the self-map h14 of MSS6. This functions support
the maps in the proof of Theorem 14.
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Let us now recall the 18-contractibility of MSS′18 and MSS18 (see also Theorem 6 and Figure 2
of [11]), as follows.

Lemma 3 ([11]). Each MSS′18 and MSS18 are 18-contractible.

Let us now examine if each of F(Con18(Y)) and F(Con26(MSS′26)) is perfect, where
Y ∈ {MSS18, MSS′18}.

Theorem 15.

(1) F(Con18(MSS18)) is not perfect, i.e., F(Con18(MSS18)) = [0, 8]Z ∪ {10}, which has two 2-components.
(2) F(Con18(MSS′18)) is perfect.
(3) F(Con26(MSS′26)) is perfect.

Proof. (1) It is clear that 9 /∈ F(Con18(MSS18)) because there is no 18-continuous self-map
f of MSS18 := {ci | i ∈ [0, 9]Z} (see Figure 5a(1) and Lemma 2 and Theorem 4) such that
(Im( f ))] = 9 (see also Proposition 1). Naively, it is clear that there is no f ∈ Con18(MSS18) such
that Im( f ) = MSS18 \ {p} for a point p ∈ MSS18 contrary to Proposition 1 so that there is no
18-continuous self-map f of MSS18 such that Fix( f )] = 9. However, there are many 18-continuous
self-maps of MSS18 such that Im( f )] ≤ 8 and further, Fix( f )] ≤ 8.

To be specific, first, consider the 18-continuous self-map f8 of MSS18 in Figure 5a such that
Fix( f8)

] = 8 (see Figure 5a (1)→ (2)), i.e.,

f8(c9) = c6, f8(c8) = c7, and f8(x) = x, x ∈ MSS18 \ {c8, c9}.

Second, consider the 18-continuous self-map f7 of MSS18 in Figure 6a such that Fix( f7)
] = 7 (see

Figure 5a (1)→ (3)), i.e.,

f7(c9) = c6, f7({c3, c8}) = {c7}, and f7(x) = x, x ∈ MSS18 \ {c8, c9, c3}.

Third, consider the 18-continuous self-map f6 of MSS18 in Figure 5a such that Fix( f6)
] = 6 (see

Figure 5a (1)→ (4)), i.e., {
f6({c0, c9}) = {c6}, f6({c3, c8}) = {c7}, and

f6(x) = x, x ∈ MSS18 \ {c0, c3, c8, c9}.

Fourth, consider the 18-continuous self-map f5 of MSS18 in Figure 5a such that Fix( f5)
] = 5 (see

Figure 5a(1)→ (5)), i.e.,{
f5(c3) = c0, f5(c2) = c1, f5(c7) = c6, f5(c4) = c5, f5(c8) = c9, and

f5(x) = x, x ∈ MSS18 \ {c2, c3, c4, c7, c8}.

Fifth, based on this map f5, further consider the 18-continuous self-map f4 of MSS18 in Figure 6a
such that Fix( f4)

] = 4, i.e.,{
f4(c2) = c1, f4({c3, c6, c7}) = {c0}, f4(c4) = c5, f4(c8) = c9, and

f4(x) = x, x ∈ MSS18 \ {c2, c3, c4, c6, c7, c8}.

Similarly, motivated by the establishment of f4, we obtain an 18-continuous self-map fi of MSS18

in Figure 5a satisfying Fix( fi)
] = i, i ∈ {1, 2, 3}. Furthermore, as only a digital image with a singleton

has the fixed point property [11,15,26], it is clear that 0 ∈ F(Con18(MSS18)). Based on these cases,
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we obtain F(Con18(MSS18)) = [0, 8]Z ∪ {10}, which completes the proof.

(2) We prove the assertion using Theorem 4. First, consider the 18-continuous self-map g5 of
MSS′18 in Figure 5b such that Fix(g5)

] = 5, i.e.,

g5(e5) = e4 and g5(x) = x, x ∈ MSS′18 \ {e5}.

Second, motivate by the maps fi, i ∈ [1, 5] in (1) above, we easily establish certain 18-continuous
self-maps gi of MSS′18 in Figure 5b(see (1)→(2) and (1)→(3)) such that (Fix(gi))

] = i, i ∈ [1, 5]Z.
Finally, we obtain F(Con18(MSS′18)) = [0, 6]Z.

(3) Motivated by the proof of (2) above, using Theorem 4, we complete the proof.
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Figure 5. (a) Configuration of 18-continuous self-maps fi of MSS18 such that Fix( fi)
] = i, i ∈ [0, 8]Z.

(b) Description of 18-continuous self-maps gi of MSS′18 such that Fix(gi)
] = i, i ∈ [0, 5]Z.

By Lemma 3 and Theorem 15(1), the following is obtained.

Remark 11. Although MSS18 is 18-contractible, F(Con18(MSS18)) is not perfect

As proven in Theorem 15(1), though F(Con18(MSS18)) is not perfect, we obtain the following:

Theorem 16. F(Con18(MSS18 ∨MSS′18)) is perfect.
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Proof. Let A := MSS18 := (ci)i∈[0,9]Z and B := MSS′18 := (bi)i∈[0,5]Z and {p} := A ∩ B, i.e., p :=
c3 = e3 (see Figure 6a(1),b(1)). Regarding F(Con18(MSS18 ∨MSS′18)), it is sufficient to consider the
following 18-continuous self-maps of MSS18 ∨MSS′18 such that

(1) f satisfies f (A) ⊂ A or f (A) ⊂ B, and f |B(x) = x,

(2) f satisfies f (B) ( B or f (B) ⊂ A and f |A(x) = x,

(3) f satisfies f (A) ( A and f (B) ( B, and

(4) only a digital image with a singleton has the fixed point property.

 (44)

According to (44), we now investigate F(Con18(A ∨ B)) with the following four cases.

First, according to (44)(1), we obtain

[6, 13]Z ∪ {15} ⊂ F(Con18(A ∨ B)). (45)

Second, according to (44)(2), we have

[10, 15]Z ⊂ F(Con18(A ∨ B)). (46)

Third, according to (44)(3), we obtain

[1, 12]Z ⊂ F(Con18(A ∨ B)). (47)

Fourth, according to (44)(4), we obtain

{0} ⊂ F(Con18(A ∨ B)). (48)

Therefore, by these four quantities from (45), (46), (47), and (48) as subsets of F(Con18(A ∨ B)),
we obtain

F(Con18(C ∨ D)) = [0, 15]Z.�

Owing to Theorem 16, it turns out that while F(Con18(MSS18)) is not perfect, F(Con18(MSS18 ∨
MSS′18)) is perfect.

Theorem 17. F(Con18(MSS18 ∨MSS18)) is not perfect and has two 2-components.

Proof. Using a method similar to the approach of (44), we consider the following 18-continuous
self-maps f of MSS18 ∨MSS18 such that

(1) f satisfies f (MSS18) ⊂ MSS18 and f |MSS18(x) = x,

(2) for each MSS18, f satisfies f (MSS18) ( MSS18 and

(3) only a digital image with a singleton has the fixed point property.

 (49)

From (49)(1), we obtain the following,

[10, 17]Z ∪ {19} ⊂ F(Con18(MSS18 ∨MSS18)). (50)

From (49)(2)–(3), and further, motivated by the map f5 of Figure 5 we obtain the following,

[0, 15]Z ⊂ F(Con18(MSS18 ∨MSS18)). (51)

In view of (50) and (51), by
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Lemma 2, we obtain

F(Con18(MSS18 ∨MSS18)) = [0, 17]Z ∪ {19},

which implies that F(Con18(MSS18 ∨ MSS18)) is not perfect because 18 /∈ F(Con18(MSS18 ∨
MSS18)).

Corollary 3. F(Con18(MSS18 ∨MSS18 ∨MSS′18)) is perfect.

Proof. From Theorem 17, as

F(Con18(MSS18 ∨MSS18)) = [0, 17]Z ∪ {19},

after joining MSS′18 onto MSS18 ∨MSS18 (see Figure 6c), we produce the digital wedge (MSS18 ∨
MSS18 ∨MSS′18, 18). Finally, by Theorem 4, we have

F(Con18(MSS18 ∨MSS18 ∨MSS′18)) = [0, 24]Z,

which is perfect.
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Figure 6. (a,b) Explanation of the process of establishing MSS18 ∨MSS′18. (c) MSS18 ∨MSS18 ∨MSS′18.

7. Conclusions

As conclusions, given Cn,li
k , i ∈ {1, 2}, we formulated F(Conk(C

n,l1
k ∨ Cn,l2

k )) without any
limitation of the numbers li, i ∈ {1, 2}, which are either odd or even. In one of the key works,
we were able to explore some properties of several types of digital k-surfaces motivated by the digital
k-surfaces [8,10,11,27] and study some properties of fixed point sets of them. Eventually, it turns out
that there are non-perfectness of F(Con18(MSS18 ∨MSS18)) and F(Con6(MSS6)) and perfectness of
F(Con18(MSS18 ∨MSS18 ∨MSS′18)), which can be used in studying both fixed point theory in a DTC
setting and digital geometry.

The study of a certain connection between fixed point sets of typical topological spaces X in
the n-dimensional Euclidean space and those of the digitized space (or digital image) of X plays an
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important role in both pure topology and digital topology. Based on the study of fixed point sets in
the present paper, we can recognize the quantity of fixed points of a given digital object and classify
digital objects because the alignment is a digital topological invariant. The obtained results in the DTC
setting can be applied to the fields of chemistry, physics, computer sciences, and so on. In particular,
this approach can be extremely useful in the fields of classifying molecular structures, computer
graphics, image processing [28], approximation theory, game theory, mathematical morphology [29],
fractal image compression [30], digitization, robotics [31], rough set theory, and so forth.
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