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Abstract: Research on the rectangle packing problems has mainly focused on rectangular raw material
sheets without defects, while natural slate has irregular and defective characteristics, and the existing
packing method adopts manual packing, which wastes material and is inefficient. In this work,
we propose an effective packing optimization method for nature slate; to the best of our knowledge,
this is the first attempt to solve the guillotine packing problem of rectangular items in a single irregular
and defective slate. This method is modeled by the permutation model, uses the horizontal level (HL)
heuristic proposed in this paper to obtain feasible solutions, and then applies the genetic algorithm to
optimize the quality of solutions further. The HL heuristic is constructed on the basis of computational
geometry and level packing. This heuristic aims to divide the irregular plate into multiple subplates
horizontally, calculates the movable positions of the rectangle in the subplates, determines whether or
not the rectangle can be packed in the movable positions through computational geometry, and fills
the scraps appropriately. Theoretical analysis confirms that the rectangles obtained through the HL
heuristic are inside the plate and do not overlap with the defects. In addition, the packed rectangles
do not overlap each other and satisfy the guillotine constraint. Accordingly, the packing problem can
be solved. Experiments on irregular slates with defects show that the slate utilization through our
method is between 89% and 95%. This result is better than manual packing and can satisfy actual
production requirements.

Keywords: defective irregular slate; rectangle packing problems; guillotine cuts; horizontal level
packing; computational geometry; genetic algorithm

1. Introduction

In various industries, such as stone, glass, paper, and wood, cutting large pieces of raw materials
into rectangular items with different quantities and sizes exhibits practical application contexts. In the
stone industry, a large stone plate is directly cut from natural rock blocks, typically with irregular
contour and black spot cracks, thereby causing difficulties in stone processing. Natural stone currently
uses traditional manual packing, which is time-consuming and exhibits a low utilization rate. The data
provided by stone enterprises indicate that the slate utilization of manual packing for irregular and
defective stone slates is below 85%. In general, numerous defects and edges of a slate indicate low
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efficiency. Therefore, the intelligent packing of irregular and defective slates has become an urgent
requirement of the stone industry.

The two-dimensional packing problem is also known as the two-dimensional cutting problem in
the stone and other industries. Rectangle packing problem [1], a subproblem of the two-dimensional
packing problem, refers to the positioning of several axis-aligned rectangles inside a given plane region
to satisfy the necessary constraints (such as the guillotine cutting pattern, in which items must be
obtained through a sequence of edge-to-edge cuts) while maximizing its utilization. The rectangle
packing problem is a classic NP-hard [2] problem, and the optimal solution cannot be obtained in
polynomial time at present. A common solution to this type of problem is using an optimization
method for determining a favorable or feasible solution in an acceptable time.

The irregular shape and surface defects of a slate must be considered in the rectangle packing
problem in the stone industry. The rectangle can be rotated by 90◦ (horizontal or vertical), and the
cutting pattern is guillotine. At present, the research results on the rectangle packing problem focus on
rectangular raw material sheets. Many mathematical models and algorithms have been proposed to
solve the rectangle packing problem of rectangular sheets under various constraints. However, to the
best of our knowledge, no relevant literature on studying the guillotine packing problem of rectangular
items in irregular and defective slates is available. Therefore, our work has practical application
significance and provides an effective and feasible solution to the packing problem of irregular slates
with defects.

The contributions of our work are presented as follows:

• We first propose the horizontal level (HL) heuristic based on level packing and computational
geometry for a single irregular and defective plate to obtain feasible packing solutions. The level
packing strategy [3] has been proposed to solve the guillotine packing problem of rectangular plates.
The core idea is that the rectangles are packed in rows, which form levels within rectangular plates.
The HL heuristic applies the level packing strategy to the packing problem of irregular plates
with defects, divides irregular plates into multiple subplates with horizontal lines, and separately
packs the subplates through computational geometry to obtain a packing solution that satisfies
the constraints;

• Theoretical analysis yields the theorem and confirms that the rectangles obtained through the HL
heuristic are inside the plate and do not overlap with the defects; the packed rectangles do not
overlap each other and satisfy the guillotine constraint;

• We propose a packing algorithm that combines HL heuristic and genetic algorithm [4] based on the
permutation model, and use it as the packing optimization method for natural slate. The packing
algorithm optimize the packing solution through continuous iterative search;

• We use the order data provided by stone enterprises to conduct experiments, and evaluate and
analyze the performance of the packing algorithm, and confirm that the implementation of our
Algorithm effectively satisfies the Theorems in this work.

The remainder of this paper is organized as follows: Section 2 reviews some related works.
Section 3 describes the problem and proposes our method. In Section 4, we analyze the algorithm
of this work and obtain the statement and verify it. Section 5 evaluates the algorithm through an
experiment. Section 6 presents the conclusions drawn from this work.

2. Related Work

2.1. Rectangle Packing Problem

The rectangle packing problem is a typical combinatorial optimization problem. The three main
algorithms commonly used to solve the rectangle packing problem are exact algorithm, heuristic,
and metaheuristic.
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2.1.1. Exact Algorithm

Usually, the mathematical programming model is established based on practical problems, and then
the optimal solution is obtained by solving the model. For common mathematical programming
models, such as integer linear programming model and mixed integer programming model, the branch
and bound algorithm is generally used to solve it. Sarin et al. [5] proposed a hybrid programming model
to solve the problem of packing non-identical rectangles in rectangular regions. Beasley [6] abstracted
the rectangle packing problem into a 0–1 integer programming problem and solved it. Martello et al. [7]
proposed an enumeration method to search the optimal solution of the Two-Dimensional Strip Packing
Problem (2SPP). The branching scheme adopted is an improvement on the branch and bound algorithm
proposed by Scheithauer [8] and Martello et al. [9]. The computation time and space required by the
exact algorithm will exponentially increase with the size of the packing problem.

2.1.2. Heuristic Algorithm

Heuristic is used to seek an intuitive, empirical rule for finding a favorable and feasible solution.
The HRBB algorithm proposed by Cui et al. [10] is a heuristic recursive algorithm that combines
recursive structure and branch and bound techniques to solve the guillotine packing problem for
rectangular strips. Some classic heuristics based on level packing can be used to solve the guillotine
packing problem. Examples of such heuristics include the next-fit decreasing height (NFDH) algorithm
proposed by Coffman [11]; that is, the item is packed left and justified on the current level (initial bottom)
of the rectangular sheet if it fits. Otherwise, a new level is created (as a horizontal line drawn on the top
of the tallest item packed on the current level) and then packed. Lodi et al. [12,13] also adopted the level
packing strategy and proposed floor–ceiling and knapsack packing algorithms to solve the guillotine
packing problem of rectangular boards. Previous studies have shown that the level packing strategy is
only used on rectangular plates. Thus, no knowledge of computational geometry is involved. We use
the level packing strategy combined with computational geometry to solve the packing problem of
irregular and defective plates. Heuristic plays an important role in the actual production packing
because it can easily integrate various constraints and specific targets. However, the shortcomings of
such heuristics are also evident, and obtaining an excellent packing scheme is typically difficult.

2.1.3. Metaheuristic Algorithm

The commonly used metaheuristics for packing problems are genetic algorithm,
simulated annealing [14], tabu search [15], etc. Lodi et al. [16] developed an effective tabu search
algorithm for rectangle packing and for variants of the problem involving the possibility of rotating
the item by 90◦ or the additional constraint. Jakobs [17] used the bottom left heuristic as the decoding
process of the genetic algorithm and solved the problem of packing rectangular pieces in a rectangular
area with fixed length and width. For an orthogonal packing problem, Soke et al. [18] combined
the genetic algorithm and the simulated annealing algorithm to search for the optimal rectangle
packing sequence. Bortfeldt [19] proposed the SPGAL algorithm based on genetic algorithm to solve
the rectangle packing problem of two-dimensional rectangular strips. A favorable solution by exact
algorithms or heuristics for the NP-hard optimization problem is difficult to obtain quickly. By contrast,
metaheuristics exhibit favorable performance in this respect.

2.2. Rectangle Packing of Irregular Plates

The abovementioned algorithms are all presented for packing on rectangular regions. Few studies
and achievements on rectangle packing in irregular or defective regions are available. Research on
rectangle packing of irregular plates: Birgin et al. [20] used nonlinear optimization on orthogonal
packing of identical rectangles within the arbitrary convex regions. Cassioli et al. [21] proposed a
heuristic method based on an iterative local search for the problem of packing the maximum number
of identical rectangles within a convex region. An FSS algorithm was proposed by Beasley et al. [22] to
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solve the packing problem of rectangle in circular container. Scheithauer et al. [23] solved the problem
of guillotine cutting rectangle from rectangular and defective boards with dynamic programming.
Jin et al. [24] proposed a heuristic for solving the packing on defective rectangular plates. FSS algorithm
was proposed by Beasley et al.

Genetic algorithm is a random global search and optimization method and has been effectively
applied to solve various combinatorial optimization problems. A population consists of a set of
chromosomes. Each chromosome is a possible solution, and the fitness function measures the quality of
each possible solution. Genetic algorithm searches new and better solutions to a problem by improving
the current population. In the population update process, the genetic algorithm continuously extracts
good genes to obtain a better solution.

2.3. Computational Geometry

Rectangle packing considered both irregular and defective region always encounters the algorithm
of Computational Geometry. The following computational geometry problems are encountered in
this work, such as how to determine the rectangle is inside the polygon and the rectangle overlaps
the polygon. These problems can be decomposed into the following sub-problems to computer,
included whether the point is inside the polygon, whether the line segment is inside the polygon,
and whether the two polygons overlap. Two common algorithms, namely, winding number [25] and
ray casting, are used to determine whether a point within a polygon is called a point in polygon (PIP)
problem in computational geometry. Methods to determine whether two polygons overlap are as
follows: (a) Calculate intersection area. (b) Calculate no-fit polygon (NFP) [26]. (c) Use the separating
axis theorem (SAT) [27].

3. Formulation and Algorithm

3.1. Problem Description

The following notations are the specific symbols used in this work.

Ω: An irregular plate
Γ: Set of polygons

B:
The polygon of irregular plate boundaries, represented by a set of polygon clockwise vertex
coordinates

Bj: Divide B horizontally into several subplates; Bj is a subplate numbered j
D: The set of polygons of irregular plate defects; Dt is the defect numbered t, where 0 ≤ t ≤ ω

Dt:
The polygon of irregular plate defect, represented by a set of polygon counterclockwise
vertex coordinates

R:
The set of rectangles. R = {1, . . . , N}, where the element in the set is the serial number of the
rectangle, and the negative number represents the rotation of the rectangle by 90◦

Ri: Ri represents a rectangle numbered |i|

Ri(x,y):
Ri(x,y) indicates that the rectangle Ri is in coordinate (x,y), where x and y correspond to the abscissa
and ordinate of the upper left vertex of the rectangle (horizontal axis rightward, vertical
axis downward)

hi: The vertical height of Ri
wi: The horizontal length of Ri

Given an irregular plate Ω, the boundary polygon is B, and the defect polygon set is D. The set of
rectangles is R, and the axis-aligned rectangle Ri can be rotated by 90◦ for packing. The total area of the
plate is SB, and the total area of the defects is SD. The set of the packed rectangle is K, where K ⊆ R.

The constraints are presented as follows:

(I) The packed rectangles cannot overlap with each other;
(II) The packed rectangles must be inside the irregular plate and cannot overlap with the defects;
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(III) The packed rectangles must satisfy the guillotine cut constraint.

The rectangle packing problem of the objective function is

max

∑
λ∈K

hλ ×wλ/(SB − SD)

, (1)

3.2. Model

Some heuristics construct a feasible pattern for NP-hard packing problems based on a given
sequence of the rectangles. Scheithauer [28] mentioned a permutation model that can be used to
optimize these problems. In this model, a sequence of rectangles must be determined to ensure that
the results obtained using the selected heuristic are optimal. We use this model for optimization.

Given an irregular and defective plate Ω, a rectangle set R = {1, . . . , N}. The permutation model
for our problem is demonstrated as follows: Find a permutation π* of R such that the HL heuristic
computes a pattern of maximum plate utilization. HL heuristic is based on the rectangle order to obtain
a feasible solution for the packing. Let π be a permutation of rectangle sets and HL heuristic output
for plate utilization. The optimization target function of the permutation model can be expressed
as follows

maxHL(π, B, D), (2)

We use the genetic algorithm to optimize the objective function. GA function is the optimizer.
Accordingly, we can obtain the approximate optimal packing solution π*.

3.3. Algorithm

Definition 1. Two polygons W and M are provided. If such polygons intersect, then W ∩M , ∅; if W
is included in M, then W ⊆ M; if W is separated from M, then W ∩M = ∅; if W and M do not overlap,
then W ∩M < Γ.

Definition 2. Given a rectangle Ri and a subplate Bj, the set of movable positions of the rectangle Ri at the
subplate Bj is represented as Xi = {xi1, . . . , xiu, . . . , xiρ}. Xi can be stored in a queue, where the head xi1 is the
initial movable position and the rest is the candidate movable position. Due to irregular boundaries and defects,
when the position of Ri is not available for packing, Ri can be moved to the next point to pack. Generally, let Rk
pack after Ri. For the movable positions Xk of Rk on Bj, there is xk1 ≥ xiρ.

In Figure 1, the subplate has three shapes, namely, B1, Bj, and BC, and exhibits horizontal edges.
Here, we take B1 (the top edge of the polygon is a horizontal line) as an example to calculate the
movable positions. The ordinate of the horizontal line of the B1 is y1. We align the top edge of Ri with
the horizontal line of B1 and calculate the intersection of B1 and y = y1 + hi as the movable positions
(Figure 2). Moreover, we must update Xi by removing elements from the queue that is smaller than the
current packing point and adding current packing point to Xi as the initial movable position. If defects
are present in the subplate, then the rightmost points of these defect polygons are added to Xi as the
candidate moveable point, see Figure 3. When calculating the first packing rectangle of a subplate,
the initial movable position of the rectangle must be adjusted in accordance with the subplate shape.
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Algorithm 1 is the HL heuristic, which divides the irregular plate into multiple subplates with
horizontal lines and packs in accordance with the given rectangle order.

Algorithm 1 HL heuristic

Input: boundary polygon B, defect polygon set D, rectangle sequence π
(1) Swap the height and width of the rectangle if the number is negative. Let R’ be the next rectangle to be
packed and K be the set of packed rectangles.
(2) Find the second lowest vertex of the plate B, and subtract the height h’ of R’ from the ordinate to obtain a
horizontal line, thereby dividing B into the upper subplate BR and the lower subplate BP; BP is the current
packing region (see Figure 4).
(3) Repeat (3.1) and (3.2) until BP finishes its packing.
(3.1) Calculate the movable positions X of R’ at BP.
(3.2) R’ moves along the horizontal line of BP. If ∃x ∈ X, such that R’ is within BP and does not overlap with D,
then add R’ to K, remove R’ from π, and update R’. Otherwise, BP packing is complete. If the height of the next
rectangle Ri is greater than h’, then search for Rt whose height is below h’. Exchange the position of Ri and Rt

in π, and update R’ = Rt.
(4) Update B = BR. Repeat (2), (3), and (4) for BR until BR does not constitute a polygon.
(5) Find the maximum inscribed rectangles for the waste space around plate boundaries and defects. Then, use
the NFDH algorithm to pack the remaining rectangles, and add the packed rectangles to K.
(6) Calculate plate utilization.
HL(π, B, D) =

∑
λ∈K hλ ×wλ/(SB − SD)
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Algorithm 2 is the packing algorithm in this work. Genetic algorithm is utilized as the
optimizer, and the rectangle sequence is used as the gene coding. The HL heuristic is adopted
as the decoding process.

Algorithm 2 Genetic algorithm + HL heuristic.

Input: boundary polygon B, defect polygon set D, rectangle set R = {1, . . . ,N}
Initialization: population number M, round iteration number T, crossover probability Pc, mutation
probability Pm

(1) Initializing population P (the set of feasible solutions): randomly generate M integer permutations from 1 to
N. Each integer randomly generates positive and negative signs. (negative signs mean the rectangle is rotated
90 degrees)
(2) For ∀π ∈ P, perform Algorithm 1 to calculate the fitness of π as f (π) = HL(π,B,D). Let π* be the optimal
solution of population P.
(3) Repeat (3.1) and (3.2) until the update of new population P̃ is complete (see Figure 5).
(3.1) Two individuals are selected from P using the method of Roulette Wheel Selection. A new solution is
constructed by a two-point crossover with the cross probability of Pc.
(3.2) An individual is randomly selected from P, and the two-point mutation is performed with the mutation
probability of Pm.
(4) For ∀π ∈ P̃, perform Algorithm 1 to calculate the fitness f (π) of π.
(5) If a feasible solution µ ∈ P̃ with f (π*) < f (µ) is obtained, then replace π* = µ. And set P = P̃.
(6) If the population iteration number reaches T, then stop. The optimal packing is π*. Otherwise,
continue to (3)

In step 3 of Algorithm 2, individuals must be a permutation with unduplicated numbers from R.
Conventional bitwise crossover does not guarantee that permutations are unduplicated. Therefore,
we use a scan operator to fill each number in the new sequence after crossover operator. We use an
example to describe the specific steps of crossover and mutation operator as Figure 5.

Step 1: Two individuals {5, −1, 3, −4, 7, 6, −2}, {3, 4, 2, −5, 1, −7, 6}, Where N = 7, exchange the
middle 3 number {3, −4, 7} and {2, −5, 1} to each son sequence;

Step 2: Then, scan each parent sequence to put the reminder number into the son sequence.
As Parent 1, scan the middle number {3, −4, 7} and other reminder number {5, −1, 6, −2} in turn.
This process must ensure the numbers filled in are not identical to the son middle numbers {2, −5, 1},
so the reminder number sequence {3, −4, 7, 6} are filled in Son 1. New individuals are generated;

Step 3: Each new individual carries out the mutation operator, as in Figure 5b.
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Figure 5. Algorithm 2 step (3): (a) tow-point crossover operator. (b) mutation operator.

If population P has 200 individuals, it can be divided into 100 groups. Each group with
two individuals can carry out one crossover operator, and each individual can carry out one
mutation operator. Therefore, the total times that the actions (3.1) and (3.2) are performed are
100 and 200, respectively.

4. Algorithm Analysis

The genetic algorithm, an optimizer of the permutation model, has favorable global search ability.
Such an algorithm maps the rectangle sequence to the encoding of the solution. Thus, the derivative
and function continuity have no limitation.

The HL heuristic has two basic ideas. First, a horizontal line must be determined, and the irregular
plate must be divided into two parts. For the lower part, pack the selected rectangle along the horizontal
line. The rectangle must be moved to the next movable position when encountering defects or irregular
edges. These steps are repeated for the remaining parts of a plate. Second, waste is inevitable after
the initial pack, given the existence of irregular boundaries and defects. We must use this part of the
plate as much as possible. The main method is to obtain the maximum inscribed rectangle of the waste
material after defect removal and use the NFDH algorithm proposed by Coffman [11] for a simple fill.

Let P̃ be the population after the iterative T′ round of genetic algorithm. Let π be a permutation of
R and π ∈ P̃. For the irregular plate Ω (Figure 6), the boundary polygon B and the set of defect polygons
D are represented by blue and red, respectively. The boundary polygon is divided into C subplates,
that is, B = {B1, . . . , Bj, . . . , BC}. Let U = {U1, . . . , Uj, . . . , UC}, Uj be the set of rectangles to be packed
corresponding to the subplate Bj, and Uj = π, where U1 = π, that is, B1 is the initial layout subplate.
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Function F (Ri, Bj, x, y) is used to determine whether Ri is inside Bj at coordinate (x, y). Function Q
(Ri, Dt, x, y) is used to determine whether Ri overlaps with defect polygon Dt at coordinate (x, y),
where 0 ≤ t ≤ω. The specific definition is provided as follows

F(Ri, B j, x, y) =
{

1, Ri(x, y) ⊆ B j
0, otherwise

}
, (3)

Q(Ri, Dt, x, y) =
{

1, Ri(x, y)∩Dt < Γ
0, otherwise

}
, (4)

Ri moves along the horizontal line yj of Bj. Function G (Ri, Bj, D, Xi) is used to determine whether Ri
can be packed in Bj. The first packing area of Bj is denoted as Sj (Uj, Bj, D). Then,

G(Ri, B j, D, Xi) = 1,
∑

x∈Xi

ω∏
t=0

F(Ri, B j, x, y j) ×Q(Ri, Dt, x, y j)

0, otherwise

 (5)

S j(U j, B j, D) =
∑
i∈U j

hi ×wi ×G(Ri, B j, D, Xi), (6)

Let I be the set of rectangles successfully packed for the first time, and π − I be the set of remaining
rectangles. Let Z be rectangular wastes without defects, and the NFDH algorithm is used to obtain the
packing area of the waste material. We can obtain the total packing area as follows

S(π, B, D) =
C∑

j=1

S j(U j, B j, D) + NFDH(π− I, Z), (7)

We pack rectangles π on irregular plates Ω through HL heuristic and obtain the plate utilization
as follows

Rate = HL(π, B, D) =
S(π, B, D)

SB − SD
, (8)

We can derive the following two Theorems through the abovementioned analysis.

Theorem 1. The rectangles obtained through the HL heuristic are inside the plate and do not overlap with
the defects.

Prove. Let K be the set of rectangles obtained through the HL heuristic. Equation (7) denotes that K is
composed of K − I and I. K − I satisfies Constraint (II) in Section 3 because it is obtained through the
NFDH algorithm. Let λ ∈ I. Equations (5) and (6) express that Rλ ⊆ Bj, and Bj ⊆ B; thus, Rλ ⊆ B, that is,
Rλ is inside B. Given that ∀ Dt ∈ D, and Rλ ∩ Dt < Γ, Rλ does not overlap with the defects. Then, ∀ λ ∈
I, and (Rλ ⊆ B) ∧ (Rλ ∩ Dt < Γ); thus, I satisfies Constraint (II) in Section 3. Therefore, rectangles in K
are inside the plate and do not overlap with the defects. �

Theorem 2. The rectangles obtained through the HL heuristic do not overlap each other and satisfy guillotine
constraint.

Prove. Let K be the set of rectangles obtained by HL heuristic. K is composed of K − I and I. K − I
satisfies Constraints (I) and (III) in Section 3 because it is obtained through the NFDH algorithm.
The rectangles in I are packed along the horizontal line of subplate; thus, the pack conforms to a
guillotine pattern. Accordingly, Constraint (III) in Section 3 is satisfied. Let Ri (xi, y) and Rt (xt, y) be
two rectangles of the same level in I, and Rt (xt, y) is packed after Ri (xi, y). The movable position
indicates that xt ≥ xi. Therefore, the rectangles in I do not overlap each other. Thus, Constraint (I)
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in Section 3 is satisfied. Consequently, the rectangles in K do not overlap each other and satisfy the
guillotine constraint. �

In this section, we demonstrate that the HL heuristic can be used to obtain a layout scheme that
satisfies the constraints through theoretical analysis. Given that the Algorithm 2 uses the HL heuristic
as the decoding process, its packing result must satisfy Theorems 1 and 2. Thus, the packing result is
accurate. In the next section, we will further verify the effectiveness of the Algorithm 2 and evaluate its
performance through experiments.

5. Experiments

In this section, we will use the Algorithm 2 to conduct experiments through the actual data
provided by stone enterprises, and analyze the algorithm according to the experimental results.

5.1. Dataset and Experimental Environment

The experimental data in this work are mainly provided by stone enterprises. They are composed
of rectangular stone orders and original stone pictures. Rectangular stone orders contain a total of
272 rectangles in 49 specifications. Table 1 summarizes the partial rectangle information. Each rectangle
will be renumbered, with numbers ranging from 1 to 272. Another program that we implemented can
obtain the vertex coordinates of the slate through the slate image. Six slates, which are approximately
3 × 3 m in size, are utilized in this work. Part of the slate image is illustrated in Figure 7. The data can
be downloaded from https://github.com/chkz/Plate-data.

The experiments were run on a platform with 3.6 GHz Intel Core i7 processor, 8 GB of RAM,
and Windows operating system. The development language is C++.

Table 1. Partial rectangle information.

Type Width (mm) Height (mm) Quantity

4 1050 477 4
5 950 477 4
6 950 244 2
7 850 244 6
8 197 897 2
9 193 897 8
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5.2. Parameters Experiments Analysis

There are several important parameters in our algorithm: population number M, round iteration
number T, crossover probability Pc, mutation probability Pm. We use experiments to determine the
optimal parameters.

To find the optimal values by the traversal method, we set round iteration number T = [10 20 30
40 50 100 150 200 250 300], population number M = [50 100 150 200 250 300], crossover probability
Pc = [0.2 0.4 0.6 0.8], mutation probability Pm = [0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08].

https://github.com/chkz/Plate-data
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First, test the relationship between the round iteration number and performance of plate utilization
rate. Part of the results are as shown in Figure 8. Generally, the more iterative rounds there are,
the better the performance in all results, but under the current samples, the utilization rate tends to
be stable after almost 100 rounds, with only a small improvement, and even some jitters. Therefore,
we set the round iteration number of our algorithm to 100 in the subsequent experiments.
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The relationship between the population number M and performance is as shown in Figure 9.
We set the round iteration number to be fixed at 100. Among the three lines in the figure, two lines are
the slates’ utilization rate under the randomly selected fixed parameters Pc and Pm, and the other is the
average value of the slates’ utilization rate of all Pc and Pm under a different M. It can be seen from the
figure that the performance of the population number is better when it is 200−250, hence, we chose
M = 200 for our algorithm in the subsequent experiments.
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For the last two parameters, we traverse Pc and Pm under the condition of T = 100, M = 200. It can
be seen from the Figure 10 that when Pc = 0.6, Pm = 0.05, the slates utilization rate is the best. Therefore,
these optimal parameter value are used in all the subsequent experiments.
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5.3. Packing Results

In Figures 11–13, the black polygon is the plate, the red polygon is the defect, and the blue fill is
the packed rectangle. The top left corner of the pictures represent the plate utilization, and the axis is
in mm.
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From Figures 11–13, we can see that the packing results conform to the two previous constraints.
All rectangles are inside the panel and avoid surface defects, consistent with Theorem 1 in Section 4.
The two adjacent rectangles do not overlap each other, and all rectangles are packed in levels,
consistent with Theorem 2 in Section 4.

In summary, the experimental results verify the effectiveness of the algorithm and the
implementation is consistent with Theorems 1 and 2. Therefore, Algorithm 2 can satisfy the constraints
for different irregular plates with defects and obtain an effective layout scheme.

5.4. Comparative Analysis

To our best knowledge, no relevant literature on the guillotine packing of rectangles in irregular
and defective plates is available at present. In this work, we propose the packing algorithm for the
single nature slate. Therefore, we compare Algorithm 2 with the algorithms of other packing problems,
as well as the manual packing of a stone enterprise.

We have selected some relatively new packing algorithms that give complete experimental results
for comparison. At the same time, the mean waste rate and mean run time of different methods are
calculated and used as the main performance indicators. Table 2 gives a comparison of the different
packing methods. SPGAL [19] is based on genetic algorithm; HRBB [10] algorithm is a heuristic
recursive algorithm; Jin et al. [24] proposed a heuristic algorithm to solve the packing problem of
rectangular plates with defects. In addition, the FSS [22] algorithm and the method proposed by Birgin
et al. [20] are exact algorithms.

Table 2. Comparison of different packing methods.

Approach (Author) Plate Type with Defects Pack Type Mean Waste
Rate (%)

Mean Run
Time (s)

SPGAL Rectangular strip NO OF 2.41 1.59
HRBB Rectangular strip NO RG 1.2 15.68

Jin et al. Rectangular stock YES RG 6.5 6.2
FSS Circular container NO RF 28.86 43,838

Birgin et al. Convex region NO RF 18.21 3879
Algorithm 2 Irregular slate YES RG 7.68 404.25

Manual packing Irregular slate YES RG >15 Long time

(O: the orientation of the rectangles is fixed, R: the rectangles may be rotated by 90◦, F: no guillotine cutting is
required, G: guillotine cutting is required).

As can be seen from the above table, SPGAL and HRBB are two algorithms for solving the packing
problem of non-defective rectangular plates with different constraints (OF, RG). Both SPGAL and
HRBB have a low mean waste rate and mean run time, so good solutions can be obtained quickly.
Among them, the mean waste rate of SPGAL is 2.41%, and that of HRBB is 1.2%. For the packing
problem of rectangular plates with defects and the packing type is RG, the mean waste rate of the



Mathematics 2020, 8, 1914 14 of 16

method proposed by Jin et al. [24] is 6.5%. The mean waste rate increases slightly compared with
HRBB, and the quality of the solution decreases a little. Secondly, for circular containers and convex
areas, FSS algorithm and the packing method proposed by Birgin et al. [20] have a higher mean waste
rate of more than 18%. Since these two algorithms are exact algorithms, their mean run time is much
higher than other algorithms, both above 3000 s. In contrast, the mean waste rate of Algorithm 2 for
irregular and defective plates is 7.68%, which is slightly higher than the above-mentioned packing
methods for rectangular plates. Besides compared with the packing methods for circular containers
and convex regions, the mean run time of Algorithm 2 is greatly reduced. This shows that our method
can obtain a relatively good solution in the acceptable time for the packing problem of irregular plates
with defects.

In addition, the accuracy of manual packing is poor, and the packing efficiency is low. Furthermore,
the plate utilization rate is generally below 85%. Our algorithm ensures the effectiveness of packing
while significantly improving the plate utilization rate and considerably reducing the time cost of the
packing in comparison with manual packing. The plate utilization for general irregular plates can
reach more than 90%. By contrast, the plate utilization for irregular and non-defective plates can reach
95%. The packing efficiency of manual packing for plates with numerous irregular boundaries and
defects is generally low. The algorithm for these plates can still obtain a good packing scheme in a
short time. Therefore, the packing algorithm has a strong practicability.

5.5. Comparison with Jin’s Algorithm

The algorithm proposed by Jin et al. [24] is chosen for comparison of performance. The problem it
solves has some similarities with our algorithm, such as the same packing type RG, the plates being
with defects, and many rectangular specifications in the order. The difference is that both the plate
shape and the defect area are rectangular in Jin’s problem.

In order to compare comprehensively, we first compare the performance of the two algorithms on
the rectangular plates with rectangular defects (Dataset A). Then, we compare the irregular plates with
the irregular defects (Dataset B). As shown in Table 3, Dataset A contains two plates with no defects,
two plates with one defect, and two plates with two defect areas. The polygonal plates still use the
above six Plates (Plate A–F) in Figures 11–13. The length and width of the plates are evenly distributed
between 2.5 and 3.0 m. The length and width of the rectangular defect areas are evenly distributed
between 10 and 80 cm. These size ranges of the plates and defect are commonly encountered in stone
enterprises. The rectangles still adopt the order of 272 rectangles in the 49 specifications introduced
above. In order to be compatible with Jin’s algorithm in Dataset B, the polygonal plates and the
polygonal defect areas must be transformed into rectangles, that is, the largest rectangle is labeled in
the polygonal plates by the computational geometry method, and then the smallest rectangle is labeled
to cover the polygonal defect areas.

According to the results shown in Table 3, the Algorithm 2 we proposed is better than Jin’s
algorithm by about 1% in utilization rate on the rectangular plates with rectangular defects, but Jin’s
algorithm is much faster than our Algorithm 2, as shown in Table 2. The reason for this is that Jin’s
algorithm is similar to our Algorithm 1, which is a heuristic algorithm. Our Algorithm 2 actually
iteratively tried tens of thousands of Algorithm 1 to find the best performance. Therefore, even under
the rectangular plates, our Algorithm 2 performs better than Jin’s. In addition, the utilization rate of the
polygonal plates has increased by 5–7% in Dataset B. The reason for this is that when Jin’s algorithm is
applied, the polygonal plates must first be cut to the largest rectangle. The edge part cut in this process
may be utilized in Algorithm 2, so the utilization rate of Algorithm 2 is improved.
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Table 3. Comparison of Jin’s Algorithm and our Algorithm 2.

Plate Defects
Utilization Rate (%)

Jin’s Algorithm 2

Dataset A

Plate 1 0 93.3251 94.4525
Plate 2 0 93.4261 94.6744
Plate 3 1 92.7524 93.2545
Plate 4 1 92.6742 93.9825
Plate 5 2 91.8734 92.2525
Plate 6 2 90.8543 91.3456

Dataset B

Plate A 0 88.3251 93.8755
Plate B 0 90.4261 95.3506
Plate C 1 84.6238 93.5568
Plate D 1 84.4615 91.8246
Plate E 2 84.2675 92.6362
Plate F 2 81.8765 89.8992

6. Conclusions

The stone material increases the complexity of rectangle packing given its physical characteristics.
The packing problem in this work is an NP-hard problem and has numerous local extremum points.
We propose a packing algorithm that combines HL heuristic and genetic algorithm to solve this
problem. The experimental results show that the algorithm is effective and has favorable packing
performance. The algorithm can obtain excellent packing results with a relatively short time loss for
different irregular slates with defects. Therefore, our approach can reduce the impact of manual factors,
such as subjectivity and experience, improve the packing efficiency, and save the use of raw materials,
thereby enhancing the economic benefits of the company.

In the actual production of stone enterprises, many slates are frequently used given the variety
and quantity of rectangles in the order. Therefore, we will consider the simultaneous packing problem
of multiple irregular and defective slates in the future work. We will also look for a packing method
that is more consistent with actual production requirements.
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