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Abstract: DP-coloring was introduced by Dvořák and Postle [J. Comb. Theory Ser. B 2018, 129, 38–54].
In this paper, we prove that every planar graph in which the 5−-cycles are at distance of at least 3
from each other is DP-3-colorable, which improves the result of Montassier et al. [Inform. Process.
Lett. 2008, 107, 3–4] and Yin and Yu [Discret. Math. 2019, 342, 2333–2341].
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1. Introduction

All graphs in this paper are finite, undirected, and simple. A planar graph is a graph that can
be embedded into the plane. A plane graph is a particular embedding of a planar graph into the
plane. We set a plane graph G = (V, E, F), where V, E, and F are sets of vertices, edges, and faces
of G, respectively. Two faces are intersecting if they have a common vertex, and are adjacent if they
have a common edge. A vertex is incident to a face if it is on the face. A vertex is adjacent to a face
if it is not incident to the face but adjacent to a vertex on the face. For a face f ∈ F, if the vertices
on f in a cyclic order are v1, v2, · · · , vk, then we write f = [v1, v2, · · · , vk]. The degree d(x) of x ∈ V
is the number of edges incident with x. The degree d(x) of x ∈ F is the number of vertices incident
with x. Let a k-vertex (k+-vertex, k−-vertex) be a vertex of degree k (at least k, at most k), and a k-face
(k+-face, k−-face) be a face of degree k (at least k, at most k). The same notation will be applied to cycles.
A (l1, l2, · · · , lk)-face is a k-face f = [v1v2 · · · vk] with d(vi) = li, respectively. A (l1, l2)-edge is an edge
e = v1v2 with d(vi) = li. Let C be a cycle of a plane graph G, |C| is the length of the cycle C. A triangle
is a 3-cycle. An edge or a vertex of G is triangular if it is on a triangle. A chord in a cycle C is triangular
if it splits the cycle C into a triangle and a cycle of length d(C) − 1. We use Int(C) and Ext(C) to
denote the sets of vertices located inside and outside of C, respectively, and put Int(C) = G− Ext(C),
Ext(C) = G− Int(C). The cycle C is called a separating cycle if Int(C) 6= ∅ and Ext(C) 6= ∅. A set of
independent edges of G is called a matching. Identifying vertices means merging the vertices into a
single vertex.

The distance between two vertices u and v in G, denoted by dG(u, v), is the length (number of
edges) of the shortest path between u and v in G. The distance between two cycles C and C′ of G,
denoted by d(C, C′), is defined as follows:

d(C, C′) = min{dG(u, v) : u ∈ V(C), v ∈ V(C′)}.

A proper k-coloring of G is a function f : V(G) → [k] := {1, 2, · · · , k} such that for every edge
uv ∈ E(G), f (u) 6= f (v). The smallest k such that G has a k-coloring is called the chromatic number of
G and is denoted by χ(G). A list assignment of a graph G is a mapping L that assigns to each vertex
v ∈ V(G) a list L(v) of colors. An L-coloring of G is a function λ : V → ⋃

v∈V L(v) and λ(v) ∈ L(v) for
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every v ∈ V such that λ(u) 6= λ(v) for every edge uv ∈ E. A graph G is k-choosable if G is L-colorable
for every assignment L with |L(v)| ≥ k. The smallest k such that G is k-choosable is called the choice
number of G and is denoted by χl(G).

It is well known that the problem of deciding whether a planar graph is 3-colorable is NP-complete.
This provides motivation to look for sufficient conditions for planar graphs to be 3-colorable.
Grötzsch [1] showed that every planar graph without triangles is 3-colorable. In 1976, Steinberg [2]
conjectured that every planar graph without 4-cycle and 5-cycle is 3-colorable. Havel [3] proposed
to make d∆ large enough, where d∆ is the smallest distance between triangles. Dvor̂ák, Kral,
and Thomas [4] showed that d∆ ≥ 10100 suffices. Borodin and Glebov [5] showed that planar graphs
without 5-cycles and d∆ ≥ 2 are 3-colorable.

Vizing [6], and, independently Erdős, Rubin, and Taylor [7], introduced list coloring as a
generalization of proper coloring. Thomassen [8,9] showed that every planar graph is 5-choosable
and every planar graph without {3, 4}-cycles is 3-choosable. Voigt [10] constructed a non-3-choosable
planar graph without cycles of length 4 and 5. Montassier, Raspaud, Wang, and Wang [11] gave the
following condition for a planar graph to be 3-choosable.

Theorem 1. Every planar graph with the distance of 5−-cycles at least 4 from each other is 3-choosable.

For ordinary coloring, the identification of vertices is involved in the reduction configurations.
In list coloring, since different vertices may have different lists, it is not possible for one to use the
identification of vertices. To overcome this difficulty, Dvořák and Postle [12] introduced DP-coloring
(under the name correspondence coloring) as a generalization of list-coloring.

Definition 1. Let G be a simple graph, and L be a list assignment of V(G). For each vertex v ∈ V(G),
let Lv = {v} × L(v). For each edge uv in G, let Muv be a partial matching between the sets Lu and Lv and let
M = {Muv : uv ∈ E(G)}, called the matching assignment. The matching assignment is called a k-matching
assignment if L(v) = [k] for each v ∈ V(G).

Definition 2. A cover of G is a graph GL,M (simply write G) satisfying the following two conditions:

(1) the vertex set of G is the disjoint union of Lv for all v ∈ V(G);
(2) the edge set of G is the matching assignmentM.

Note that the induced subgraph G[Lv] is an independent set for each vertex v ∈ V(G).

Definition 3. Let G be a simple graph, and G be a cover of G. AnM-coloring of G is an independent set
I in G such that |I ⋂

Lv| = 1 for each vertex v ∈ V(G). The graph G is DP-k-colorable if, for each k-list
assignment L and each matching assignmentM over L, it has anM-coloring. The minimum k such that G is
DP-k-colorable is the DP-chromatic number of G, denoted by χDP(G).

Let GL,M be a cover of G. For a vertex v ∈ V(G), if c1 ∈ L(v) and c2 /∈ L(v), then consider the
cover G ′L′ ,M′ of G such that L′(v) = (L(v)

⋃{c2})\{c1} and L′(u) = L(u) for each u ∈ V(G)\{v}.
For each e ∈ E(GL,M),M′ is obtained formM by replacing the vertex (v, c1) by (v, c2). Thus, G ′L′ ,M′
is obtained from GL,M by replacing the vertex (v, c1) by (v, c2). Then, G can beM′-colorable when
G isM-colorable by changing the color of v to c2 when φ(v) = c1, and vice versa. We say thatM′ is
obtained fromM by renaming at the vertex v.

An edge uv ∈ E(G) is straight in a k-matching assignmentM if every (u, c1)(v, c2) ∈ E(Mu,v)

satisfies c1 = c2. One can construct a cover of any graph G based on a list assignment for G,
thus showing that list coloring is a special case of DP-coloring and, in particular, χDP(G) ≥ χl(G) for
all graphs G. DP-coloring is quite different from list coloring—for example, Bernshteyn [13] showed
that the DP-chromatic number of every graph G with average degree d is Ω(d/ log d), while Alon [14]
proved that χl(G) = Ω(log d) and the bound is sharp.
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DP-coloring is a generalization of list-coloring. Dvořák and Postle [12] proved that every planar
graph G without cycles of length from 4 to 8 is 3-choosable. They also noted that χDP(G) ≤ 3 if G is a
planar graph without {3, 4}-cycles. Liu and Li [15] proved that every planar graph G without adjacent
cycles of length at most 8 is 3-choosable.

Much attention was drawn to this new coloring; see, for example, [16–19]. Liu et al. [20,21]
gave some sufficient conditions for a planar graph to be DP-3-colorable, and DP-4-colorable planar
graphs can be found in [22–24]. Yin and Yu [25] gave the following condition for a planar graph to be
DP-3-colorable:

Theorem 2. Every planar graph without {4, 5}-cycles and the distance of triangles at least 3 is DP-3-colorable.

In this paper, we improve the results in Theorems 1 and 2.
A 9-cycle C is bad if it is in a subgraph of G isomorphic to the graphs in Figure 1, and is the outer

cycle of the subgraph. A 9-cycle is good if it is not bad.

Figure 1. Bad 9-cycles. (a) One vertex in Int(C); (b) Three vertices in Int(C).

Theorem 3. Let G be a planar graph in which the 5−-cycles are at distance of at least 3 from each other. Let C0

be a 8−-cycle or a good 9-cycle in G. Then, each DP-3-coloring of C0 can be extended to G.

Corollary 1. Every planar graph in which the 5−-cycles are at a distance of at least 3 from each other is
DP-3-colorable (thus also 3-choosable).

Proof. Let G be a planar graph. Either G is 4−-cycles free or it is not 4−-cycles free. In the first case,
as proved in Reference [12], G is DP-3-colorable. Thus, we only have to consider the case when G
contains a 4−-cycle. As proved in Reference [12], the 4−-cycle can be precolored. Then, by Theorem 3,
G is DP-3-colorable extended from the coloring of the 4−-cycle when the 5−-cycles are at distance of at
least 3 from each other.

2. Proof of Theorem 3

We will prove Theorem 3 by reductio ad absurdum. Let’s start by a temporary assumption that
the theorem is wrong. Then, there has to be a non-empty set of counterexamples to this theorem.
Assume that G is a minimal (least number of vertices) counterexample to Theorem 3. Let C0 be a
8−-cycle or a good 9-cycle in G.

Lemma 1. For each v ∈ V(G− C0), d(v) ≥ 3.

Proof. Let v be a 2−-vertex in V(G− C0). By the minimality of G, each DP-3-coloring of C0 can be
extended to G− v. Then, the coloring of G− v can be extended to G by selecting a color φ(v) for v
such that, for each neighbor u of v, ((u, φ(u)(v, φ(v)) 6∈ E(Muv), a contradiction.

Lemma 2. There exist no separating 8−-cycles or separating good 9-cycles.
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Proof. First of all, we show that C0 is not a separating cycle. Otherwise, if C0 is a separating cycle,
we may extend the coloring of C0 to both Int(C0) and Ext(C0), respectively, and then combine them to
get a coloring of G, a contradiction.

Let C 6= C0 be a separating 8−-cycle or separating good 9-cycle in G. By the minimality of G,
the coloring of C0 can be extended to Ext(C). Now that C is colored, thus the coloring of C can be
extended to Int(C) by the minimality of G again. Combining the inside and outside of C, we have a
coloring of G extended from the coloring of C0, a contradiction.

Lemma 3. C0 is the boundary of the out face of the embedding of G.

Proof. C0 is not a separating cycle by Lemma 2. Thus, either Int(C0) or Ext(C0) is empty. Without loss
of generality, we assume that Int(C0) is empty, and we can redraw the graph to make Ext(C0)

empty instead.

Lemma 4. If a 9−-cycle C in G has an internal chord e, then |C| ∈ {7, 8, 9} and either e is triangular,
or |C| = 8 and e splits C into a 4-cycle and a 6-cycle, or |C| = 9 and e splits C into a 4-cycle and a 7-cycle,
or |C| = 9 and e splits C into a 5-cycle and a 6-cycle.

Proof. Due to fact that the cycles of lengths 3, 4, and 5 in G are at a distance of at least 3 from each
other, C cannot have a chord if |C| ≤ 6 and can have only a triangular one when |C| = 7. If |C| = 8
and e is not triangular, then e splits C into a 4-cycle and a 6-cycle. If |C| = 9 and e is not triangular,
then e splits C into a 4-cycle and a 7-cycle, or e splits C into a 5-cycle and a 6-cycle.

By Lemmas 3 and 4, if a bad 9-cycle C (one type in Figure 1) is a subgraph in G, then C must
be induced.

Lemma 5. C0 has no chord.

Proof. If C0 contains a chord e, then e is one of the types described in Lemma 4. By Lemma 2, G has
no separating 8−-cycles. Thus, G contains no other vertices and the coloring on C0 is also a coloring of
G, a contradiction.

The following lemma from [21] provides a powerful tool to prove the reducibility.

Lemma 6. Let k ≥ 3 and H be a subgraph of G. If the vertices of H can be ordered as v1, v2, · · · , vl such that
the following hold

(1) v1vl ∈ E(G), and v1 has no neighbor outside of H,
(2) d(vl) ≤ k and vl has at least one neighbor in G− H,
(3) for each 2 ≤ i ≤ l − 1, vi has at most k − 1 neighbors in G[v1, · · · , vi−1]

⋃
(G − H), then a

DP-k-coloring of G− H can be extended to a DP-k-coloring of G.

A face in G is internal if it contains no vertex of C0 and a vertex in G is internal if it is not incident
to C0. A 6-face f in G is bad if it is adjacent to a 5−-face and a 6-face f in G is good if it is not bad.

Lemma 7. Let f be an internal 6-face in G. If f is a (3, 3, 3, 3, 3, 3)-face, then f cannot be adjacent to an
internal face f1 with 5 or less vertices such that all vertices on f1 are vertices with degree 3.

Proof. Let f = [v1v2w1w2w3w4] be a (3, 3, 3, 3, 3, 3)-face and f1 = [v1v2 · · · vi](i ∈ {3, 4, 5}), so that
v1v2 is the common edge of f and f1, and all vertices on f1 are 3-vertices. Order the vertices on f and f1

as v1, w4, w3, w2, w1, v2, v3, · · · , vi (i ∈ {3, 4, 5}). Let H be the set of vertices in the list. Since all vertices
in H are from the internal faces f and f1, no vertex in C0 is going to be removed by such subtraction.
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Because G is a minimal counterexample, by Lemma 6, every DP-3-coloring of G− H can be extended
to G, a contradiction.

Let f be a (3, 3, 3, 3, 3, 3)-face adjacent to a 3-face f ′. We call the vertex v on f ′ but not on f the
roof of f , and f the base of v.

Lemma 8. Let f be an internal 6-face in G and f1 be an internal face with 5 or less vertices which is adjacent to
f . If f1 has one 4-vertex, while the other vertices incident with f1 are vertices with degree 3, then each of the
following holds:

(a) f cannot be adjacent to another face with five or less vertices;
(b) If f is a (4, 3, 3, 3, 3, 3)-face such that f and f1 have a common (3, 4)-edge, then the other (3, 4)-edge of f1

cannot be incident with another internal (4, 3, 3, 3, 3, 3)-face;
(c) If f is a 6-face that all vertices on f are vertices with degree 3, then f1 cannot be adjacent to an internal

(4, 3, 3, 3, 3, 3)-face f2 that f1 and f2 have a common (3, 4)-edge. This means that a 4-vertex incident with
an internal (4, 3, 3, 3, 3, 3)-face is not a roof.

Proof.

(a) follows from the condition on the distance of 5−-faces.
(b) Let f1 = [v1v2 · · · vi](i ∈ {3, 4, 5}), d(v2) = 4 and f = [v1v2w1w2w3w4], so that v1v2 is the

common (3, 4)-edge of f1 and f , and all other vertices incident with f and f1 are 3-vertices.
Let f2 = [v3u1u2u3u4v2] be the other (3, 3, 3, 3, 3, 4)-face adjacent to f1. Order the vertices on f , f1

and f2 as v2, u4, u3, u2, u1, v3, · · · , vi, v1, w4, w3, w2, w1 (i ∈ {3, 4, 5}). Let H be the set of vertices
in the list. By Lemma 6, every DP-3-coloring of G− H can be extended to G, a contradiction.

(c) Let f1 = [v1v2 · · · vi](i ∈ {3, 4, 5}) and f = [v1v2w1w2w3w4], so that v1v2 is the common
(3,3)-edge of f1 and f . Let f2 = [vju1u2u3u4vj+1] (j ∈ {2, · · · , i− 1}) be the (3, 3, 3, 3, 3, 4)-face
adjacent to f1, d(vj+1) = 4 and all other vertices on f , f1 and f2 are 3-vertices. If j = 2, then
u1 = w1 and order the vertices on f , f1 and f2 as v1, vi, · · · , v3, v2, u4, u3, u2, u1(w1), w2, w3, w4

(i ∈ {3, 4, 5}). Let H be the set of vertices in the list. By Lemma 6, every DP-3-coloring of
G− H can be extended to G, a contradiction. If j > 2, then order the vertices on f , f1 and f2 as
v1, vi, · · · , vj+1, u4, u3, u2, u1, vj, · · · , v2, w1, w2, w3, w4 (i ∈ {3, 4, 5}). Let H be the set of vertices
in the list. By Lemma 6, every DP-3-coloring of G− H can be extended to G, a contradiction.

Lemma 9. Let f = [v1v2v3v4v5v6] be an internal 6-face that is adjacent to an internal face with five or
less vertices f1 = [v1v2w1 · · ·wi] (i ∈ {1, 2, 3}). If all of the vertices on f1 are vertices with degree 3,
then d(v3) ≥ 4 or d(v6) ≥ 4.

Proof. We assume that d(v3) = d(v6) = 3, and we use u to denote the neighbor of w1 that is
not on f1. First, we may rename the lists of vertices in {w1, v2, v1, v3, v4} so that each edge in
{uw1, w1v2, v1v2, v2v3, v3v4} is straight.

Consider the graph G′ obtained from G− {w1, · · · , wi, v1, v2, v3, v6} (i ∈ {1, 2, 3}) by identifying
v4 and u. We claim that no new cycles of length from 3 to 5 multiple edges or loop are created.
Otherwise, there is a path of length 1, 2, 3, 4 or 5 from u to v4 in G, which together with w1, v2, v3, v4

forms a cycle C, 5 ≤ d(C) ≤ 9. Because f1 is a 5−-face, C cannot be a 5-cycle.

• If v1 and v6 are in Int(C), see Figure 2a, then C is not a bad 9-cycle. Otherwise, since v1 and v6

are in Int(C), C must be the type (b) in Figure 1. Thus, v1 and v6 must be in a 3-cycle which is
adjacent to f , a contradiction to Lemma 8(a). Thus, C is a separating {6, 7, 8}-cycle or separating
good 9-cycle, a contradiction to Lemma 2.
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• If v1 and v6 are not in Int(C), see Figure 2b. Due to d(v3) = 3 and f being a 6-cycle, by Lemma 2
and 4, v3 is incident with an edge e in Int(C). Either the other vertex incident to e is in the cycle C,
or it is not. If it is in the cycle C, then edge e is its chord, 7 ≤ d(C) ≤ 9 and e must be incident with
a 5−-cycle C′ by Lemma 4. The distance between f1 and C′ is at most 1, a contradiction. If the
other vertex incident to e is not in cycle C, then C is a separating cycle. If C is a bad 9-cycle, recall
that e is incident v3 and in Int(C), the v3 must be incident with or adjacent to a 3-cycle. Thus,
the distance between f1 and the 3-cycle is at most 2, a contradiction. Thus, C must be a separating
{6, 7, 8}-cycle or separating good 9-cycle, a contradiction to Lemma 2.

Figure 2. An internal 6-face f is adjacent to an internal 5− face f1 that all vertices on f1 are 3-vertices.
v1 and v6 are in Int(C) (a) and not in Int(C) (b).

Now, we claim that there is no new chord in C0 of G′. Otherwise, u is on C0 and v4 is adjacent
to a vertex v′4 which is on C0. Then, there is a path between u and v′4 on C0 with length at most four,
which forms a {5, 6, 7, 8, 9}-cycle with w1, v2, v3, v4 in G. Similar to the proof process above, this does
not occur.

Because f1 is a 5−-cycle, the distance from v4 to other 5−-cycles is at least one and the distance
from u to other 5−-cycles is at least two. Thus, the 5−-cycles are at a distance of at least 3 from each
other in G′. Since C0 is not a bad 9-cycle in G and every bad 9-cycles in G is induced, C0 is not a bad
9-cycle in G′. Because C0 still is the boundary of the out face of the embedding of G′ and no new chord
in C0 is formed in G′ and G is a minimal counterexample, the DP-3-coloring of C0 can be extended to
G′. Now, we color v4 and u with the color of the identified vertex and keep the colors of all vertices in
G′. Now, we color v3 first, and then color w1 with the color of v3. We can do this because the edges
in {uw1, w1v2, v1v2, v2v3, v3v4} are straight and the color of v3 is different from the color of v4 and u.
If d( f1) = 3, then we color v6, v1, v2 in the order. If d( f1) = 4 or 5, then we color w2, (w3), v6, v1, v2 in
the order. Then, G has been colored, a contradiction.

Lemma 10. Let P = w1, u1, u2, w2, v1, v2, w3 be a path in Int(C0) and f = [w′1, w′2, · · · , w′i ] (i ∈ {3, 4, 5})
be an internal face with five or less vertices such that all vertices of f are vertices with degree 3, so that
w1w′1, w2w′2, w3w′3 ∈ E(G). If d(w1) = d(u1) = d(u2) = 3, then d(w2) ≥ 5. (In addition, similarly,
if d(w3) = d(v1) = d(v2) = 3, then d(w2) ≥ 5.)

Proof. Assume that d(w2) ≤ 4. Since there is no separating 6-cycle and every 6-cycle has no
chords by Lemma 2 and Lemma 4, the 6-cycle w1u1u2w2w′2w′1 and w2v1v2w3w′3w′2 are both 6-faces.
If d(w1) = 3, then, by Lemma 9, d(w2) = 4. Let w′′2 be the fourth neighbor of w2. Since the cycles
of length 3, 4, and 5 in G are at a distance of at least 3 from each other, w′′2 is not one vertex in
{w1, u1, u2, w2, w′2, · · · , w′i , w′1, w3, v2, v1}. We may rename the list of vertices in {w2, w′2, w′1, w′3, w3} so
that the edges {w′′2 w2, w2w′2, w′1w′2, w′2w′3, w′3w3} are straight.

Consider the graph G′ obtained from G − {w1, u1, u2, w2, w′2, · · · , w′i , w′1} (i ∈ {3, 4, 5}) by
identifying w3 and w′′2 . Since the cycles of length 3, 4, and 5 in G are a distance of at least 3 from each
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other, the distance between w3 and w′′2 in G′ is at least 2 and the distance between v1 and w′′2 in G′ is
at least 4. We claim that no new cycles of length from 2 to 5 are created. Otherwise, there is a path
of length 2 to 5 from w3 and w′′2 in G, which together with w2, w′2, w′3 forms a {6, 7, 8, 9}-cycle C. If u1

is in Int(C), then C is not a bad 9-cycle. Otherwise, since u1 is in Int(C), u1, u2, w1 and w′1 are in
Int(C). Then, C is not isomorphic to a bad 9-cycle in Figure 1. Thus, C is a separating {6, 7, 8}-cycle or
separating good 9-cycle, a contradiction to Lemma 2. Let v1 be in Int(C) (Since the distance between
v1 and w′′2 in G′ is at least 4, v1 is not on C). Because the cycles of length 3,4, and 5 in G are at a distance
of at least 3 from each other, v1 cannot be on triangles. Then, C is not isomorphic to a bad 9-cycle
see Figure 3b. Thus, C is a separating {6, 7, 8}-cycle or separating good 9-cycle, a contradiction to
Lemma 2.

Figure 3. All the vertices on the 5−-cycle f are 3-vertices. (a) u1 in Int(C); (b) v1 in Int(C).

Now, we claim that there is no new chord in C0 of G′. Otherwise, w′′2 is on C0 and w3 is adjacent
to a vertex w′′3 which is on C0; then, there is a path between w′′2 and w′′3 on C0 with length at most four,
which forms a {5, 6, 7, 8, 9}-cycle with w3, w2, w′2, w′3 in G. Similar to the proof process above, this does
not occur.

Because f is a 5−-cycle, the distance from w3 to other 5−-cycles is at least two and the distance
from w′′2 to other 5−-cycles is at least one. Thus, the 5−-cycles are at a distance of at least 3 from each
other in G′. Since C0 is not a bad 9-cycle in G and every bad 9-cycles in G is induced, C0 is not a bad
9-cycle in G′. Because C0 still is the boundary of the out face of the embedding of G′ and no new chord
in C0 is formed in G′ and G is a minimal counterexample, the DP-3-coloring of C0 can be extended
to G′. Now, color w′′2 and w3 with the color of the identified vertex and keep the colors of all vertices
in G′. Now, we color w2 first, and then color w′3 with the color of w2. We can do this because the
edges in {w′′2 w2, w2w′2, w′2w′3, w′3w3} are straight and the color of w2 is different from the color of w′′2
and w3. If d( f1) = 3, then we color u2, u1, w1, w′1, w′2 in the order. If d( f1) = 4 or 5, then we color
u2, u1, w1, w′4, (w′5), w′1, w′2 in the order. Then, G has been colored, a contradiction.

We are now ready to present a discharging procedure that will complete the proof of the Theorem 3.
Let each vertex v ∈ V(G) have an initial charge of µ(v) = 2d(v)− 6, and each face f 6= f0 in our
fixed plane drawing of G have an initial charge of µ( f ) = d( f )− 6. Let µ( f0) = d( f0) + 6. By Euler’s
Formula, ∑x∈V

⋃
F µ(x) = 0.

Let µ∗(x) be the charge of x ∈ V
⋃

F after the discharge procedure. To lead to a contradiction, we
shall prove that µ∗(x) ≥ 0 for all x ∈ V

⋃
F \ { f0} and µ∗( f0) > 0.

For shortness, let Fk = { f : f be a k-face and V( f )
⋂

C0 6= ∅}.
The discharging rules:
(R1): If v is an internal 4+-vertex.

1© If v is an internal 4-vertex and incident with a 3-face f , then v gives 3
2 to its incident 3-face, 1

2 to its
base when v has a base and 1

2 to its incident (3, 3, 3, 3, 3, 4+)-face that is adjacent to f .
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2© If v is an internal 5+-vertex and incident with a 3-face f , then v gives 3
2 to its incident 3-face, 1

2 to
its base when v has a base and 1

2 to its incident 6-face that is adjacent to f .
3© If v is incident with a 4-face, then v gives 2 to its incident 4-face.
4© If v is incident with a 5-face, then v gives 1 to its incident 5-face.
5© If v is an internal 4-vertex. If v is adjacent to a 5−-face f such that all vertices on f are 3-vertices,

then v gives 1 to its adjacent 5−-face f and v gives 1
2 to its incident 6-faces if any that are not

adjacent to f .
6© If v is an internal 5+-vertex. If v is adjacent to a 5−-face f such that all vertices on f are 3-vertices,

then v gives 2 to its adjacent 5−-face f and 1
2 to its incident 6-faces if any that are not adjacent to f .

7© If v is an internal 4+-vertex. If v is not on a 5−-face nor adjacent to a 5−-face f such that all vertices
on f are 3-vertices, then v gives 1

2 to its incident 6-faces.

(R2): Each internal 6-face gives 1
2 to its adjacent internal (3, 3, 4)-face.

Each internal 6-face f gives 1
2 to its adjacent internal (3, 3, 3)-face f1, if any, when f contains a 4+

vertex v and v is not adjacent to f1.
Each non-internal 6-face or 7+-face other than f0 gives 1 to each of its adjacent 5−-face, if any,

and gives the rest to the outer face f0.
(R3): The outer face f0 get µ(v) from each v ∈ C0, gives 3 to each face in F3, 2 to each face in F4,

1 to each face in F5, and 1 to each face in F6 adjacent to an internal face with 5 or less vertices.

Lemma 11. Every vertex v in G has nonnegative final charge.

Proof. By (R3), the outer face f0 get µ(v) from each v ∈ C0 whether µ(v) is positive or negative,
each vertex on C0 has final charge 0. Thus, we assume that v is an internal vertex of G, then d(v) ≥ 3
by Lemma 1. If d(v) = 3, then µ∗(v) = 0.

If d(v) = 4. If v is on a 5−-face f , then it is not on or adjacent to other 5−-faces. If d( f ) = 3,
by Lemma 8 (b) and (c), v cannot be on two (3, 3, 3, 3, 3, 4)-faces which are adjacent to f at the
same time, and v cannot be a roof and on a (3, 3, 3, 3, 3, 4)-face at the same time, then v gives 3

2 to
the 3-face, and at most 1

2 to 6-faces by (R1) 1©. Thus, µ∗(v) ≥ 2d(v)− 6− 3
2 −

1
2 ≥ 0. If d( f ) = 4,

then v gives 2 to the 4-face by (R1) 3©. Thus, µ∗(v) ≥ 2d(v)− 6− 2 ≥ 0. If d( f ) = 5, then v gives
1 to the 5-face by (R1) 4©. Thus, µ∗(v) ≥ 2d(v) − 6− 1 ≥ 0. Now, assume that v is adjacent to a
5−-face f that all vertices on f are 3-vertices, then it is not on or adjacent to other 5−-faces. Thus,
by (R1) 5©, v gives 1 to the 5−-face, and 1

2 to each other incident 6-faces that are not adjacent to
the 5−-face. Thus, µ∗(v) ≥ 2d(v) − 6− 1− 1

2 × 2 = 0. Finally, assume that v is not on a 5−-face
or adjacent to a 5−-face f that all vertices on f are 3-vertices, then, by (R1) 7©, its final charge is
µ∗(v) ≥ 2d(v)− 6− 1

2 × d(v) = 3
2 × (d(v)− 4) = 0.

If d(v) = k ≥ 5. Because of this, the cycle of lengths 3, 4, and 5 are at a distance of at least 3 from
each other. If v is on a 5−-face f . If d( f ) = 3, then, by (R1) 2©, v gives 3

2 to the 3-face, and 1
2 to its base or

incident (3, 3, 3, 3, 3, 4+)-faces that is adjacent to f . Thus, µ∗(v) ≥ 2d(v)− 6− 3
2 −

1
2 × 3 > 0. If d( f ) =

4, then, by (R1) 3© v gives 2 to the 4-face. Thus, µ∗(v) ≥ 2d(v)− 6− 2 > 0. If d( f ) = 5, then, by (R1) 4© v
gives 1 to the 5-face. Thus, µ∗(v) ≥ 2d(v)− 6− 1 > 0. If v is adjacent to a 5−-face f that all vertices on f
are 3-vertices. Thus, by (R1) 6©, v gives at most 2 to the 5−-face, and 1

2 to each other incident 6-faces that
are not adjacent to the 5−-face. Hence, µ∗(v) ≥ 2d(v)− 6− 2− 1

2 × (d(v)− 2) = 3
2 × (d(v)− 14

3 ) > 0.
Finally, assume that v is not on a 5−-face or adjacent to a 5−-face f that all vertices on f are 3-vertices,
then, by (R1) 7©, its final charge is µ∗(v) ≥ 2d(v)− 6− 1

2 × d(v) = 3
2 × (d(v)− 4) > 0.

Lemma 12. Every face other than f0 in G has a nonnegative final charge.

Proof. Let d( f ) = 3. If f contains some vertices of C0, then f gets 3 from f0 by (R3), so µ∗( f ) = 0.
Let f be an internal face. If f contains at least two 4+-vertices, then, by (R1) 1© and 2©, f gets 3

2 from
each of the incident 4+-vertices, thus µ∗( f ) ≥ d( f )− 6 + 3

2 × 2 = 0. If f is incident with exactly one
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4+-vertex, then f gets 3
2 from the incident 4+-vertex by (R1) 1© and 2©, and gets 1

2 from each of the
adjacent 6+-face by (R2), thus µ∗( f ) ≥ d( f )− 6 + 3

2 × 2 = 0. Now, we assume that f = [v′1v′2v′3] is an
internal (3, 3, 3)-face. Let v1v′1, v2v′2, v3v′3 ∈ E(G) and let f1, f2, f3 be the three adjacent faces of f so
that f1 contains v1v′1, v′1v′2, v′2v2 and f2 contains v2v′2, v′2v′3, v′3v3. If f1, f2, f3 are three 7+ or non-internal
6-faces, then they sent 1 to f by (R2) and µ∗( f ) ≥ d( f )− 6 + 3 = 0. Now, let f be adjacent to an
internal 6-face, say f1, then f is adjacent to at least one internal 4+-vertex (say v2), which is incident
with f1 by Lemma 9.

• If both f2 and f3 are internal 6-faces, then one of {v1v3} is a 4+-vertex by Lemma 9. By Lemma
10, either all of {v1, v2, v3} are 4-vertices, or one of them is a 5+-vertex, or one of them (say v1)
is a 3-vertex and the other two are 4-vertices, in which case both f1 and f3 contain 4+-vertices
which are not adjacent to f . Thus, µ∗( f ) ≥ d( f )− 6 + min{3× 1, 2 + 1, 2 + 1

2 × 2} = 0 by (R1)
5©, 6© and (R2).

• If both f2 and f3 are 7+- or non-internal 6-faces, then, by (R1) 5©, 6© and (R2), µ∗( f ) ≥ d( f )− 6 +
1 + 1× 2 = 0.

• Thus, we may assume that one of { f2, f3} is an internal 6-face and the other is a non-internal 6-face
or a 7+-face. If f3 is an internal 6-face, then one of {v1, v3} is a 4+-vertex by Lemma 9. Thus, f
gets 2 from the two adjacent 4+-vertices by (R1) 5© and 6©, and f gets 1 from f2 by (R2). Thus,
µ∗( f ) ≥ d( f )− 6 + 1 + 1 + 1 = 0. Thus, we may assume that f2 is an internal 6-face and f3 is a
7+-or non-internal 6-face. If both v1 and v3 are 3-vertices and d(v2) ≥ 4, by Lemma 10, both f1

and f2 contain at least one 4+-vertex that is not adjacent to f . Thus, by (R2), f gets 1
2 × 2 from f1

and f2, gets 1 from f3, and gets 1 from v2. Thus, µ∗( f ) ≥ d( f )− 6 + 1 + 1 + 1 = 0. If d(v2) = 4
and one vertex of {v1, v3} is a 4+-vertex, then, by (R1) 5©, f gets 1 from v2 and the 4+-vertex
of {v1, v3}, and by (R2) f gets 1 from f3. Thus, µ∗( f ) ≥ d( f )− 6 + 1 + 1 + 1 = 0. If d(v2) ≥ 5,
then by (R1) 6© f gets 2 from v2 and by (R2) f gets 1 from f3. Thus, µ∗( f ) ≥ d( f )− 6 + 2 + 1 = 0.

Let d( f ) = 4. If f contains some vertices of C0, then f gets 2 from f0 by (R3), so µ∗( f ) = 0. Let f
be an internal face. If f is contains a 4+-vertex, then, by (R1) 3© f gets 2 from each of the incident
4+-vertices, thus µ∗( f ) ≥ d( f ) − 6 + 2 = 0. Now, we assume that f = [v′1v′2v′3v′4] is an internal
(3,3,3,3)-face. Let v1v′1, v2v′2, v3v′3, v4v′4 ∈ E(G) and let f1, f2, f3, f4 be the four adjacent faces of
f . If two faces of { f1, f2, f3, f4} are 7+- or non-internal 6-faces, then they sent 1 to f by (R2) and
µ∗( f ) ≥ d( f )− 6 + 2 = 0. Thus, we may assume that it is adjacent to three or four internal 6-faces.
By Lemma 9, f is adjacent to at least two internal 4+-vertices, so, by (R1) 5© and 6©, f gets 1 + 1 from
the two 4+-vertices. Thus, µ∗( f ) ≥ d( f )− 6 + 2 = 0.

Let d( f ) = 5. If f contains some vertices of C0, then f gets 1 from f0 by (R3), so µ∗( f ) = 0.
Let f be an internal face. If f contains a 4+-vertex, then, by (R1) 4© f gets 1 from each of the incident
4+-vertices, thus µ∗( f ) ≥ d( f )− 6 + 2 = 0. Now, we assume that f = [v′1v′2v′3v′4v′5] is an internal
(3, 3, 3, 3, 3)-face. Let v1v′1, v2v′2, v3v′3, v4v′4,v5v′5 ∈ E(G) and let f1, f2, f3, f4, f5 be the five adjacent
faces of f . If one face of { f1, f2, f3, f4} are 7+- or non-internal 6-faces, then it sent 1 to f by (R2) and
µ∗( f ) ≥ d( f )− 6+ 1 = 0. Thus, we may assume that it is adjacent to five internal 6-faces. By Lemma 9,
f is adjacent to at least three internal 4+-vertices, so, by (R1) 5© and 6©, f gets 1 + 1 from the three
4+-vertices. Thus, µ∗( f ) ≥ d( f )− 6 + 3 > 0.

Let d( f ) = 6. If f contains vertices of C0 or f is not adjacent to an internal 3-face, then, by (R2)
and (R3), µ∗( f ) = 0. Now, we assume that f is an internal 6-face that is adjacent to an internal 3-face
f ′ = [v1v2v3] with the common edge v1v2 and d(v1) ≤ d(v2).

• If d(v1), d(v2) ≥ 4, then f gives nothing to f ′, so µ∗( f ) = 0.
• If d(v1) = 3 and d(v2) ≥ 5. then, by (R1) 2© and (R2), f gets 1

2 from v2 and gives 1
2 to f ′. Thus,

µ∗( f ) ≥ d( f )− 6 + 1
2 −

1
2 = 0.

• If d(v1) = d(v2) = 3. Now, we assume that d(v3) = 4. If f has a 4+-vertex, then, by (R1) 7© and
(R2) f gets 1

2 from the 4+-vertex and gives 1
2 to f ′. Thus, µ∗( f ) ≥ d( f )− 6 + 1

2 −
1
2 = 0. If f is
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a (3, 3, 3, 3, 3, 3)-face, then, by (R1) 1©, 2© and (R2) f gets 1
2 from v3, and gives 1

2 to f ′. Thus,
µ∗( f ) ≥ d( f )− 6 + 1

2 −
1
2 = 0. If d(v3) = 3, by Lemma 7 f has a 4+-vertex. By (R2), f ′ gets 1

2
from f when f contains a 4+-vertex that is not adjacent to the 3-face, in which case, by (R1) 7© f
gets 1

2 from the 4+-vertex, so µ∗( f ) ≥ d( f )− 6 + 1
2 −

1
2 = 0.

• If d(v1) = 3 and d(v2) = 4. If f is an internal (4, 3, 3, 3, 3, 3)-face, then f gets 1
2 from v2 by

(R1) 1©, or else f contains another 4+-vertex, then, by (R1) 7© f gets 1
2 from the 4+-vertex. Thus,

µ∗( f ) ≥ d( f )− 6 + 1
2 −

1
2 = 0.

If d( f ) ≥ 7. Since the cycles of lengths 3, 4, and 5 in G are a distance of at least 3 from each other,
f is adjacent to at most b d( f )

4 c 3-faces. Thus, µ∗( f ) ≥ d( f )− 6− b d( f )
4 c ≥ 0 by (R2).

We call a bad 6-face f in F6 Special if f is adjacent to one internal 5−-face.

Lemma 13. The final charge of f0 is positive.

Proof. Assume that µ∗( f0) ≤ 0. Let E(C0, G− C0) be the set of edges between C0 and G− C0. Let e′

be the number of edges in E(C0, G− C0) that is not on a 5−-face and x be the charges f0 receives by
(R2). Let `3 = |F3|, `4 = |F4|, `5 = |F5| and `6 be the number of special 6-faces. By Lemma 5, C0 has
no chord, each 5−-face in F3, F4 and F5 contains at least two edges in E(C0, G− C0). By (R2) and (R3),
the final charge of f0 is

µ∗( f0) = d( f0) + 6 + ∑
v∈C0

(2d(v)− 6)− 3`3 − 2`4 − `5 − `6 + x

= d( f0) + 6 + ∑
v∈C0

2(d(v)− 2)− 2d(C0)− 3`3 − 2`4 − `5 − `6 + x

= 6− d( f0) + 2|E(C0, G− C0)| − 3`3 − 2`4 − `5 − `6 + x

≥ 6− d( f0) + 4`3 + 4`4 + 4`5 + 2e′ − 3`3 − 2`4 − `5 − `6 + x

= 6− d( f0) + `3 + 2`4 + 3`5 + 2e′ − `6 + x

where the equality follows from that each 5−-face in F3, F4 and F5 contains two edges in E(C0, G−C0).
Note that, for each special 6-face f , no edge in E(C0, G− C0)

⋂
E( f ) is on a 5−-face, then e′ ≥ `6.

When e′ = `6 6= 0, µ∗( f0) ≥ 6 − d( f0) + `3 + 2`4 + 3`5 + `6 + x, then `3 = `4 = `5 = 0 and
9 ≥ d( f0) ≥ 6 + `6 + x. If e′ = `6 = 1, then 9 ≥ d( f0) ≥ 7. Thus, there is only a 7+-face adjacent to C0,
a contradiction to `6 = 1. If e′ = `6 = 2, then 9 ≥ d( f0) ≥ 8 + x and x ≤ 1. Since a special 6-face shares
at most four vertices with C0, so C0 is adjacent to a 9+-face f that contains at least four consecutive
2-vertices on C0. Thus, there is only a 6-face adjacent to C0, a contradiction to `6 = 2. If e′ = `6 ≥ 3,
then d( f0) = 9 and x = 0 and e′ = `6 = 3, in which case, we have a bad 9-cycle as in Figure 1. Thus,
we may assume that e′ ≥ `6 + 1. Thus,

µ∗( f0) ≥ 6− d( f0) + `3 + 2`4 + 3`5 + 2e′ − `6 + x

≥ 6− d( f0) + `3 + 2`4 + 3`5 + `6 + 2 + x

= 8− d( f0) + `3 + 2`4 + 3`5 + `6 + x

Since µ∗( f0) ≤ 0, d( f0) ≥ 8. Thus, if `6 = 1, then d( f0) = 9, x = `3 = `4 = `5 = 0 and e′ = 2.
Since the 6-face shares at most four vertices with C0, C0 is adjacent to a 10+-face f that contains at least
five consecutive 2-vertices on C0. Thus, by (R2), x ≥ d( f )− 6− d d( f )−8

4 e > 0, a contradiction.
Therefore, we may assume that `6 = 0, and 9 ≥ d( f0) ≥ 6 + `3 + 2`4 + 3`5 + 2e′ + x, so e′ ≤ 1.
Let e′ = 1, it follows that `3 ≤ 1, `4 = 0 and `5 = 0.

• If `3 = 1, then d( f0) = 9 and x = 0. Since C0 is not a bad 9-cycle, C0 is adjacent to a 7+-face f and
f is adjacent to the 3-face. Thus, by (R2), f gives at least 1 to f0, that is, x ≥ 1, a contradiction.
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• If `3 = 0, then d( f0) ≥ 8 and x ≤ 1. Note that C0 is adjacent to a 8+-face f that contains d(C0)− 1
consecutive 2-vertices on C0, thus, by (R2), f gives at least x ≥ d( f )− 6− d d( f )−d( f0)

4 e ≥ 2 to f0,
a contradiction to x ≤ 1.

Finally, let e′ = 0, then, `3 + 2`4 + 3`5 + x ≤ d( f0) − 6, and each edge in E(C0, G − C0) is on
a 5−-face. Note that we may assume that `3 + `4 + `5 ≥ 1; otherwise, G = C0, so d( f0) ≥ 7.
Because of that, the cycle of lengths 3, 4, and 5 are a distance of at least 3 from each other, and, by
Lemma 1, d(v) ≥ 3 for each v ∈ G− C0, so there must be a 8+-face f adjacent to the 5−-face and
C0. The 8+-face do not give charge to at least one 5−-face, so x ≥ d( f )− 6− [d d( f )

4 e − 1] ≥ 1.
It follows that `3 ≤ 2, `4 ≤ 1 and `5 = 0.

• If `3 = 2, then `4 = 0, x = 1 and d( f0) = 9. There must be a 8+-face f adjacent to the two 3-faces
and C0. The 8+-face does not give charge to the two 3-faces, so x ≥ d( f )− 6− [d d( f )

4 e − 2] ≥ 2,
a contradiction to x = 1.

• If `3 = 1, then `4 = 0, 1 ≤ x ≤ 2 and 8 ≤ d( f0) ≤ 9. If d( f0) = 8, then x = 1. In this case, C0

is adjacent to a 9+-face f that contains at least six consecutive 2-vertices on C0; thus, by (R3), f
gives at least x ≥ d( f )− 6− d d( f )−7

4 e ≥ 2 to f0, a contradiction to x = 1. If d( f0) = 9, then x = 2.
In this case, C0 is adjacent to a 10+-face f that contains at least seven consecutive 2-vertices on C0;
thus, by (R3), f gives at least x ≥ d( f )− 6− d d( f )−8

4 e ≥ 3 to f0, a contradiction to x = 2.
• If `3 = 0, then `4 = 1, x = 1 and d( f0) = 9. C0 is adjacent to a 9+-face f that contains at least

six consecutive 2-vertices on C0; thus, by (R3), f gives at least x ≥ d( f )− 6− d d( f )−7
4 e ≥ 2 to f0,

a contradiction to x = 1.

Proof of Theorem 3. By Lemmas 11–13, ∑x∈V
⋃

F µ∗(x) > 0, a contradiction to ∑x∈V
⋃

F µ(x) = 0. Thus,
the counterexample can’t exist, which, in turn, would show that the theorem is true for all cases.

3. Conclusions

The coloring theory of graphs plays a very important role in combinatorial optimization,
computer theory, allocation of wireless communication channels, network data transmission, and so
on. For example, the efficient design of airline schedules, the design of computer coding programs, etc.

It is well known that the problem of deciding whether a planar graph is 3-colorable is NP-complete.
The Three Color Problem is very much alive, replete with an assortment of established results and an
abundance of open problems. In addition, 3-coloring is the first significant graph coloring problem and,
on the plane, the only unqualified graph coloring problem remaining. DP-coloring is one generalization
of list coloring, which is a stronger version of proper coloring. It is very difficult to determine whether
a graph is DP-colorable, or even whether a planar graph is DP-3-colorable.

It is unknown if Theorem 3 is most possible in the sense that there exists a planar graph with
5−-cycles that are a distance of at least 2 from each other is not DP-3-colorable.

Let d1 denote the least integer k such that every planar graph with 5−-cycles are at distance from
each other of at least k is DP-3-colorable.

Problem 1. What is the exact value of d1?

Let d2 denote the least integer k such that every planar graph with 5−-cycles are at distance from
each other of at least k is 3-choosable.

Problem 2. What is the exact value of d2?

It follows from Theorem 3 that d1 ≤ 3 and d2 ≤ 3.
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