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Abstract: In this paper, we obtain the existence, uniqueness, and positivity of the solution to delayed
stochastic differential equations with jumps. This equation is then applied to model the price
movement of the risky asset in a financial market and the Black–Scholes formula for the price of
European option is obtained together with the hedging portfolios. The option price is evaluated
analytically at the last delayed period by using the Fourier transformation technique. However,
in general, there is no analytical expression for the option price. To evaluate the price numerically,
we then use the Monte-Carlo method. To this end, we need to simulate the delayed stochastic
differential equations with jumps. We propose a logarithmic Euler–Maruyama scheme to approximate
the equation and prove that all the approximations remain positive and the rate of convergence of
the scheme is proved to be 0.5.
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1. Introduction

The risky asset in the classical Black–Scholes market is described by the geometric Brownian
motion given by the stochastic differential equation driven by standard Brownian motion:

dS(t) = S(t) [rdt + σdW(t)] , (1)

where r and σ are two positive constants and W(t) is the standard Brownian motion. Ever since
the seminal work of Black, Scholes and Merton, there have been many research works to extend
the Black–Scholes–Merton theory of option pricing from the original Black–Scholes market to more
sophisticated models.

One of these extensions is the delayed stochastic differential equation (SDDE) driven by the
standard Brownian motion (e.g., [1], see also [2,3]). In these works, the risky asset is described by the
following stochastic delay differential equation

dS(t) = S(t) [ f (t, St)dt + g(t, St)dW(t)] ,

where St = {S(s) , t− b ≤ s ≤ t} or St = S(t− b) for some constant b > 0.
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On the other hand, there have been some recent discoveries (see, e.g., [4–7]) showing that, to better
fit some risky assets, it is more desirable to use the hyper-exponential jump process along with the
classical Brownian motion:

dS(t) = S(t) [rdt + σdW(t) + βdZ(t)] ,

where Z(t) is a hyper-exponential jump process (see the definition in the next section).
Let N(dt, dz) be the Poisson random measure associated with a jump process which includes the

hyper-exponential jump process as a special case and let Ñ(dt, dz) denote its compensated Poisson
random measure. Then, the above equation with σ = 0 is a special case of the following equation

dS(t) = S(t)
(

rdt + β
∫
[0,T]×R0

zÑ(dz, ds)
)

(2)

and it has been argued (e.g., [8–10]) that Equation (2) is a better model for stock prices than (1).
In this paper, we propose a new model to describe the risky asset by combining the

hyper-exponential process with delay. More precisely, we propose the following stochastic differential
equation as a model for the price movement of the risky asset:

dS(t) = S(t) [ f (t, S(t− b))dt + g(t, S(t− b))dZ(t)] , (3)

where f and g are two given functions, and Z(t) is a Lévy process which includes the hyper-exponential
jump processes as a special case. The above model along with the Brownian motion component can be
found in [11], where the coefficient of Brownian motion cannot be allowed to be zero. In this work,
we let the coefficient of the Brownian motion be zero and we use the Girsanov formula for the jump
process to address the issue of completeness of the market and hedging portfolio missed in [11].

With the introduction of this new market model, the first question is whether the equation has
a unique solution or not and if the unique solution exists whether the solution is positive or not
(since the price of an asset is always positive). We first answer these questions in Section 2, where we
prove the existence, uniqueness and positivity of the solutions to a larger class of equations than (3).
To guarantee that the solution is positive, we need to assume that the jump part g(t, S(t− b))dZ(t) of
the equation is bounded from below by some constant (see Assumption (A3) in the next section for the
precise meaning). The class of equations to which our results can be applied is larger in the following
two aspects: (1) Z(t) can be replaced by a more general Lévy process or more general Poisson random
measure; and (2) the equation can be multi-dimensional.

Following the Black–Scholes–Merton principle, we then obtain a formula for the fair price for
the European option and the corresponding replica hedging portfolio is also given. To evaluate this
formula during the last delay period, we propose a Fourier transformation method. This method
appears more explicit than the partial differential equation method in the literature and is closer to the
original Black–Scholes formula in spirit. This is done in Section 4.

Due to the involvement of f (S(t− b)) and g(S(t− b)), the above analytical expression for the fair
option price formula is only valid in the last delay period. Then, how do we perform the evaluation by
using this option price formula? We propose to use Monte-Carlo method to get the numerical value
approximately. For this reason, we need to simulate Equation (3) numerically. We observe that there
have been a lot of works (e.g., [12–14]) on Euler–Maruyama convergence scheme for SDDE models.
There has already been study on the Euler–Maruyama scheme for SDDE models with jumps (e.g., [15]).
However, in general, the Euler–Maruyama scheme cannot preserve the positivity of the solution.
Since the solution to Equation (3) is positive (when the initial condition is positive), we wish all of
our approximations of the solution are also positive. To this end and motivated by the similar work
in the Brownian motion case (see, e.g., [16]), we introduce a logarithmic Euler–Maruyama scheme,
a variant of the Euler–Maruyama scheme for (3). With this scheme, all the approximate solutions are
positive and the rate of the convergence of this scheme is also 0.5. This rate is optimal even in the
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Brownian motion case (e.g., [17]). Let us point out that the 0.5 rate of the usual Euler–Maruyama
scheme for SDDE with jumps studied in [15] is only obtained in the L2 sense. Not only our logarithmic
Euler–Maruyama scheme preserves the positivity, its rate is 0.5 in Lp for any p ≥ 2. This is done in
Section 3.

Finally, in Section 5, we present some numerical attempts and compare the classical Black–Scholes
price formula against the market price for some famous call options in the real financial market.

2. Delayed Stochastic Differential Equations with Jumps

Let (Ω,F ,P) be a probability space with a filtration (Ft){t≥0} satisfying the usual conditions.
On (Ω,F ,P), let Z(t) be a Lévy process adapted to the filtration Ft. We consider the following delayed
stochastic differential equation driven by the Lévy process Z(t):{

dS(t) = f (S(t− b))S(t)dt + g(S(t− b))S(t−)dZ(t), t ≥ 0 ,

S(t) = φ(t) , t ∈ [−b, 0] ,
(4)

where

(i) f , g : R→ R are some given bounded measurable functions;
(ii) b > 0 is a given number representing the delay of the equation; and

(iii) φ : [−b, 0]→ R is a (deterministic) measurable function.

To study the above stochastic differential equation, it is common to introduce the Poisson random
measure associated with this Lévy process Z(t) (see, e.g., [9,18–20] and references therein). First,
we write the jump of the process Z at time t by

∆Z(t) := Z(t)− Z(t−) if ∆Z(t) 6= 0 .

Denote R0 := R\{0} and let B(R0) be the Borel σ-algebra generated by the family of all Borel
subsets U ⊂ R, such that Ū ⊂ R0. For any t > 0 and for any U ∈ B(R0), we define the Poisson random
measure, N : [0, T]×B(R0)×Ω→ R, associated with the Lévy process Z by

N(t, U) := ∑
0≤s≤t, ∆Zs 6=0

χU(∆Z(s)) , (5)

where χU is the indicator function of U. The associated Lévy measure ν of the Lévy process Z
is given by

ν(U) := E[N(1, U)] (6)

and the compensated Poisson random measure Ñ associated with the Lévy process Z(t) is defined by

Ñ(dt, dz) := N(dt, dz)−E [N(dt, dz)] = N(dt, dz)− ν(dz)dt . (7)

For some technical reason, we assume that the process Z(t) has only bounded negative jumps
to guarantee that the solution S(t) to (4) is positive. This means that there is an interval J = [−R, ∞)

bounded from the left such that ∆Z(t) ∈ J for all t > 0. With these notations, we can write

Z(t) =
∫
[0,t]×J

zN(ds, dz) or dZ(t) =
∫
J

zN(dt, dz)

and Equation (4) becomes

dS(t) =

[
f (S(t− b)) + g(S(t− b))

∫
J

zν(dz)
]

S(t)dt

+g(S(t− b))S(t−)
∫
J

zÑ(dt, dz) .
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It is a special case of the following equation:

dS(t) = f (S(t− b))S(t)dt +
∫
J

g(z, S(t− b))S(t−)Ñ(dt, dz) . (8)

Theorem 1. Suppose that f : R→ R and g : J×R→ R are bounded measurable functions such that there is
a constant α0 > 1 satisfying g(z, x) ≥ α0 > −1 for all z ∈ J and for all x ∈ R, where J is the supporting set of
the Poisson measure N(t, dz). Then, the stochastic differential delay Equation (8) admits a unique pathwise
solution with the property that, if φ(0) > 0, then, for all t > 0, the random variable X(t) > 0 almost surely.

Proof. First, let us consider the interval [0, b]. When t is in this interval f (X(t− b)) = f (φ(t− b)) and
g(z; X(t− b)) = g(z; φ(t− b)) are known given functions of t (and z). Thus, (8) is a linear equation
driven by Poisson random measure. The standard theory (see, e.g., [18,20]) can be used to show that
the equation has a unique solution. Moreover, it is also well-known (see the above-mentioned books
or [21]) that by Itô’s formula the solution to (8) can be written as

X(t) = φ(0) exp
{ ∫ t

0
f (φ(s− b))ds +

∫
[0,t]×J

log [1 + g(z, φ(s− b))] Ñ(ds, dz)

+
∫
[0,t]×J

(
log [1 + g(z, φ(s− b))]− g(z, φ(s− b))

)
dsν(dz)

}
.

From this formula, we see that, if φ(0) > 0, then the random variable X(t) > 0 almost surely for
every t ∈ [0, b].

In a similar way, we can consider Equation (8) on t ∈ [kb, (k + 1)b] recursively for k = 1, 2, 3, · · · ,
and obtain the same statements on this interval from previous results on the interval t ∈ [−b, kb].

Since (4) is a special case of (8), we can write down a corresponding result of the above theorem
for (4).

Corollary 1. Let the Lévy process Z(t) have bounded negative jumps (e.g., ∆Z(t) ∈ J ⊆ [−R, ∞)).
Suppose that f , g : R→ R are bounded measurable functions such that there is a constant α0 > 1 satisfying
g(x) ≤ α0

R for all x ∈ R. Then, the stochastic differential delay Equation (4) admits a unique pathwise solution
with the property that, if φ(0) > 0, then for all t > 0 the random variable X(t) > 0 almost surely.

Proof. Equation (4) is a special case of (8) with g(z, x) = zg(x). The condition g(x) ≤ α0
R implies

g(z, x) ≥ α0 > −1 for all z ∈ J and for all x ∈ R. Thus, Theorem 1 can be applied.

Example 1. One example of the Lévy process Z(t) we have in mind, which is used in finance, is the
hyper-exponential jump process, which we explain below. Let Yi, i = 1, 2, · · · be independent and identically
distributed random variables with the probability distribution given by

fY(x) =
m

∑
i=1

piηie−ηix I{x≥0} +
n

∑
j=1

qjθje
θjx I{x<0} ,

where
ηi > 0, pi ≥ 0, θj > 0, qj ≥ 0 , i = 1, · · · , m, j = 1, · · · , n

with ∑m
i=1 pi + ∑n

j=1 qj = 1. Let Nt be a Poisson process with intensity λ. Then,

Z(t) =
Nt

∑
i=1

Yi
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is a Lévy process. If m = 1, n = 1, then Z(t) is called a double exponential process. The assumption on the
boundedness of the negative jumps can be made possible by requiring that qj = 0 for all j = 1, · · · , n or by
replacing the negative exponential distribution by truncated negative exponential distributions, namely,

fY(x) =
m

∑
i=1

piηie−ηix I{x≥0} +
n

∑
j=1

qj
θj

1− e−θjRj
eθjx I{−Rj<x<0} ,

where
ηi > 0, pi ≥ 0, θj > 0, Rj > 0, qj ≥ 0 , i = 1, · · · , m, j = 1, · · · , n

with ∑m
i=1 pi + ∑n

j=1 qj = 1. For this truncated hyper-exponential process, we can take J = [−R, ∞) with
R = max{R1, · · · , Rn}.

Although this paper mainly is concerned with the one-dimensional delayed stochastic differential
Equation (8) or (4), it is interesting to extend Theorem 1 to more than one dimension.

Let Ñj(ds, dz), j = 1, · · · , d be independent compensated Poisson random measures. Consider the
following system of delayed stochastic differential equations driven by Poisson random measures:

dSi(t) =
d

∑
j=1

fij(S(t− b))Sj(t)dt

+Si(t−)
d

∑
j=1

∫
J

gij(z, S(t− b))Ñj(dt, dz) , i = 1, · · · , d ,

Si(t) = φi(t) , t ∈ [−b, 0] , i = 1, · · · , d , (9)

where S(t) = (S1(t), · · · , Sd(t))T .

Theorem 2. Suppose that fij : R→ R and gij : J×R→ R , 1 ≤ i, j ≤ d are bounded measurable functions
such that there is a constant α0 > 1 satisfying gij(z, x) ≥ α0 > −1 for all 1 ≤ i, j ≤ d, for all z ∈ J and for
all x ∈ R, where J is the common supporting set of the Poisson measures Ñj(t, dz), j = 1, · · · , d. If for all
i 6= j, fij(x) ≥ 0 for all x ∈ R, and φi(0) ≥ 0 , i = 1, · · · , d, then the stochastic differential delay Equation (9)
admits a unique pathwise solution with the property that for all i = 1, · · · , d and for all t > 0, the random
variable Si(t) ≥ 0 almost surely.

Proof. We can follow the argument as in the proof of Theorem 1 to show that the system of delayed
stochastic differential Equation (9) has a unique solution S(t) = (S1(t), · · · , Sd(t))T . We modify
slightly the method of [22] to show the positivity of the solution. Denote g̃ij(t, z) = gij(z, S(t− b)).
Let Yi(t) be the solution to the stochastic differential equation

dYi(t) = Yi(t−)
d

∑
j=1

∫
J

g̃ij(t, z)Ñj(dt, dz)

with initial conditions Yi(0) = φi(0). Since this is a scalar equation for Yi(t), its explicit solution
can be represented

Yi(t) = φi(0) exp
{ d

∑
j=1

log
[
1 + g̃ij(s, z)

]
Ñj(ds, dz)

+
d

∑
j=1

∫
[0,t]×J

(
log
[
1 + g̃ij(s, z)

]
− g̃ij(s, z)

)
dsνj(dz)

}
,
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where νj is the associated Lévy measure for Ñj(ds, dz). Denote f̃ij(t) = fij(S(t− b)) and let pi(t) be
the solution to the following system of equations

dpi(t) =
d

∑
j=1

f̃ij(t)pj(t)dt , pi(0) = 1 , i = 1, · · · , d .

By the assumption on f , we have that, when i 6= j, f̃ij(t) ≥ 0 almost surely. By a theorem
in [23] (p. 173), we see that pi(t) ≥ 0 for all t ≥ 0 almost surely. Now, it is easy to check by the Itô
formula that S̃i(t) = pi(t)Yi(t) is the solution to (9), which satisfies that S̃i(t) ≥ 0 almost surely. By the
uniqueness of the solution, we see that Si(t) = S̃i(t) for i = 1, · · · , d. The theorem is then proved.

3. Logarithmic Euler–Maruyama Scheme

Equation (4) or (8) is used in Section 4 to model the price of a risky asset in a financial market and
its the solution is proved to be positive as in Theorem 1. As is well-known, the usual Euler–Maruyama
scheme cannot preserve the positivity of the solution (e.g., [16] and references therein). Motivated by
the work [16], we propose in this section a variant of the Euler–Maruyama scheme (which we call
logarithmic Euler–Maruyama scheme) to approximate the solution so that all approximations are
always non-negative. For the convenience of the future simulation, we consider only Equation (4),
which we rewrite here:

dS(t) = f (S(t− b))S(t)dt + g(S(t− b))S(t−)dZ(t) , (10)

where Z(t) = ∑Nt
i=1 Yi is a Lévy process. Here, Nt is a Poisson process with intensity λ and Y1, Y2, · · · ,

are iid random variables.
The solution to the above equation can be written as

S(t) = φ(0) exp
( ∫ t

0
f (X(u− b))du + ∑

0≤u≤t,∆Z(u) 6=0
ln(1 + g(X(u− b))YN(u))

)
. (11)

We consider a finite time interval [0, T] for some fixed T > 0. Let ∆ = T
n > 0 be a time step size

for some positive integer n ∈ N. For any nonnegative integer k ≥ 0, denote tk = k∆. We consider the
partition π of the time interval [0, T]:

π : 0 = t0 < t1 < · · · < tn = T .

On the subinterval [tk, tk+1], the solution (11) can also be written as

S(t) = S(tk) exp
( ∫ t

tk

f (X(u− b))du

+∑tk≤u≤t,∆Z(u) 6=0 ln(1 + g(X(u− b))YN(u))
)

, t ∈ [tk, tk+1] .
(12)

Motivated by Formula (12), we propose a logarithmic Euler–Maruyama scheme to approximate (4)
as follows.

Sπ(tk+1) = Sπ(tk) exp
(

f (Sπ(tk − b))∆
)

· exp
(

ln(1 + g(Sπ(tk − b))∆Zk)
)

, k = 0, 1, 2, ..., n− 1
(13)

with Sπ(t) = φ(t) for all t ∈ [−b, 0]. It is clear that, if φ(0) > 0, then Sπ(tk) > 0 almost
surely for all k = 0, 1, 2, ..., n. Then, our approximations Sπ(tk) are always positive. Notice that the
approximations from usual Euler–Maruyama scheme is always not positive preserving (see, e.g., [16]
and references therein).
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We prove the convergence and find the rate of convergence for the above scheme. For the
convergence of the usual Euler–Maruyama scheme of jump equation with delay, we refer to [15].
To study the convergence of the above logarithmic Euler–Maruyama scheme, we make the
following assumptions.

(A1) The initial data φ(0) > 0 and they are Hölder continuous, i.e. there exist constant ρ > 0 and
γ ∈ [1/2, 1]) such that for t, s ∈ [−b, 0]

|φ(t)− φ(s)| ≤ ρ|t− s|γ. (14)

(A2) f is bounded. f and g are global Lipschitz. This means that there exists a constant ρ > 0 such that
∣∣∣g(x1)− g(x2)

∣∣∣ ≤ ρ|x1 − x2| ;∣∣∣ f (x1)− f (x2)
∣∣∣ ≤ ρ|x1 − x2| , ∀ x,x2 ∈ R ;∣∣ f (x)

∣∣ ≤ ρ , ∀x ∈ R

(A3) The support J of the Poisson random measure N is contained in [−R, ∞) for some R > 0 and
there are constants α0 > 1 and ρ > 0 satisfying −ρ ≤ g(x) ≤ α0

R for all x ∈ R.
(A4) For any q > 1, there is a ρq > 0∫

J
(1 + |z|)qν(dz) ≤ ρq , ∀x ∈ R . (15)

For notational simplicity, we introduce two step processes{
v1(t) = ∑∞

k=0 I[tk ,tk+1)
(t)Sπ(tk)

[1ex]v2(t) = ∑∞
k=0 I[tk ,tk+1)

(t)Sπ(tk − b).

Define the continuous interpolation of the logarithmic Euler–Maruyama approximate solution on
the whole interval [−b, T] (not only on tk, k = 0, · · · , n) as follows:

Sπ(t) =


φ(t) t ∈ [−b, 0]

φ(0) exp
( ∫ t

0
f (v2(u))du

+∑0≤u≤t,∆Z(u) 6=0 ln(1 + g(v2(u))YN(u))
)

t ∈ [0, T].

(16)

With this interpolation, we see that Sπ(t) > 0 almost surely for all t ≥ 0.

Lemma 1. Let Assumptions (A1)–(A4) be satisfied. Then, for any q ≥ 1, there exists Kq, independent of the
partition π, such that

E
[

sup
0≤t≤T

|S(t)|q
]
∨E

[
sup

0≤t≤T
|Sπ(t)|q

]
≤ Kq.

Proof. We can assume that q > 2. First, let us prove E
[

sup0≤t≤T |Sπ(t)|q
]
≤ Kq.

From (16), it follows

E
[

sup
0≤t≤T

|Sπ(t)|q
]
≤ |φ(0)|qE

[
sup

0≤t≤T
exp

(
q
∫ t

0
f (v2(u))du

+q ∑
0≤u≤t,∆Z(u) 6=0

ln(1 + g(v2(u))YN(u))
)]

.
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Since | f (t)| ≤ ρ, we have

E
[

sup0≤t≤T |Sπ(t)|q
]

≤ φ(0)qeqρTE
[

sup0≤t≤T exp
(

q ∑0≤u≤t,∆Z(u) 6=0 ln(1 + g(v2(u))YN(u))
)]

= φ(0)qeqρTE
[

sup0≤t≤T exp
(

q
∫
T

ln(1 + zg(v2(u)))N(du, dz)
)]

,

(17)

where, and throughout the remaining part of this paper, we denote T = [0, t]× J. Now, we handle
the factor

I := E
[

sup
0≤t≤T

exp
(

q
∫
T

ln(1 + zg(v2(u)))N(du, dz)
)]

.

Let h = ((1 + zg(v2(u))2q − 1))/z. Then,

I = E
[

sup
0≤t≤T

exp
(1

2

∫
T

ln(1 + zh)N(du, dz)
)]

= E
[

sup
0≤t≤T

exp
(1

2

∫
T

ln(1 + zh)Ñ(du, dz) +
1
2

∫
T

ln(1 + zh)ν(dz)du
)]

= E
[

sup
0≤t≤T

exp
(1

2

∫
T

ln(1 + zh)Ñ(du, dz) +
1
2

∫
T
[ln(1 + zh)− zh] ν(dz)du

)]
sup

0≤t≤T
exp

(
− 1

2

∫
T
(1 + zg(v2(u))2q − 1) ν(dz)du

)]
≤ CqE

[
sup

0≤t≤T
exp

(1
2

∫
T

ln(1 + zh)Ñ(du, dz) +
1
2

∫
T
[ln(1 + zh)− zh] ν(dz)du

)]
,

where we use boundedness of g and Assumption (A4). Now, an application of the Cauchy–Schwartz
inequality yields

I ≤ Cq

{
E
[

sup
0≤t≤T

Mt

]}1/2

,

where
Mt := exp

( ∫
T

ln(1 + zh)Ñ(du, dz) +
∫
T
[ln(1 + zh)− zh] ν(dz)du

)
.

However, (Mt, 0 ≤ t ≤ T) is an exponential martingale. Thus,

E
[

sup
0≤t≤T

Mt

]
≤ 2E

[
MT

]
= 2 .

Inserting this estimate of I into (17) proves E
[

sup0≤t≤T |Sπ(t)|q
]
≤ Kq < ∞. In the same way,

we can show E
[

sup0≤t≤T |S(t)|q
]
≤ Kq < ∞. This completes the proof of the lemma.

Lemma 2. Assume Assumptions (A1)–(A4) are true. Then, there is a constant K > 0, independent of π,
such that

EQ

∣∣∣Sπ(t)− v1(t)
∣∣∣p ≤ K∆p/2, ∀ t ∈ [0, T] .
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Proof. Let t ∈ [tj, tj+1) for some j. Using |ex − ey| ≤ (ex + ey)|x− y| we can write∣∣∣Sπ(t)− v1(t)
∣∣∣ =

∣∣∣Sπ(t)− Sπ(tj)
∣∣∣

≤
∣∣∣Sπ(t) + Sπ(tj)

∣∣∣ · ∣∣∣ ∫ t

tj

f (v2(s))ds + ∑
tj≤s≤t

ln(1 + g(v2(s))YN(s))
∣∣∣ .

An application of the Hölder inequality yields that, for any p > 1,

E
[∣∣∣Sπ(t)− v1(t)

∣∣∣p] ≤
{
E
[∣∣∣Sπ(t) + Sπ(tj)

∣∣∣ · ∣∣∣]2p
}1/2

{
E
∣∣∣∫ t

tj
f (v2(s))ds + ∑tj≤s≤t ln(1 + g(v2(s))YN(s))

∣∣∣2p
}1/2

≤ Kp

{
E
∣∣∣∫ t

tj
f (v2(s))ds

∣∣∣2p
+E

∣∣∣∑tj≤s≤t ln(1 + g(v2(s))YN(s))
∣∣∣2p
}1/2

≤ Kp

{
∆2p +E

∣∣∣∑tj≤s≤t ln(1 + g(v2(s))YN(s))
∣∣∣2p
}1/2

.

(18)

Now, we want to bound

I := E

∣∣∣∣∣∣ ∑
tj≤s≤t

ln(1 + g(v2(s))YN(s))

∣∣∣∣∣∣
2p

.

(we use the same notation I to denote different quantities in different occasions and this does not cause
ambiguity). We write the above sum as an integral:

I = E
∣∣∣ ∫

J

∫ t

tj

ln(1 + zg(v2(s)))N(ds, dz)
∣∣∣2p

= E
∣∣∣ ∫

J

∫ t

tj

ln(1 + zg(v2(s)))Ñ(ds, dz)

+
∫
J

∫ t

tj

ln(1 + zg(v2(s)))ν(dz)ds
∣∣∣2p

≤ Cp

(
∆2p +E

∣∣∣ ∫
J

∫ t

tj

ln(1 + zg(v2(s)))Ñ(ds, dz)
∣∣∣2p
)

.

By the Burkholder–Davis–Gundy inequality, we have

E
∣∣∣ ∫

J

∫ t

tj

ln(1 + zg(v2(s)))Ñ(ds, dz)
∣∣∣2p

≤ E
(∫

J

∫ t

tj

∣∣∣ ln(1 + zg(v2(s)))
∣∣∣2ν(dz)ds

)p

≤ Kp∆p .

Thus, we have
I ≤ Kp,T∆p .

Inserting this bound into (18) yields the lemma.

Our next objective is to obtain the rate of convergence of our logarithmic Euler–Maruyama
approximation Sπ(t) to the true solution S(t).



Mathematics 2020, 8, 1932 10 of 21

Theorem 3. Assume Assumptions (A1)–(A4) are true. Let Sπ(t) be the solution to (13) and let S(t) be the
solution to (10). Then, there is a constant Kp,T , independent of π such that

EQ
[

sup
0≤t≤T

|S(t)− Sπ(t)|p
]
≤ Kp,T∆p/2 . (19)

Proof. We write S(t) = φ(0) exp (X(t)) and Sπ(t) = φ(0) exp (p(t)). Then,∣∣∣S(t)− Sπ(t)
∣∣∣p ≤ ∣∣∣S(t) + Sπ(t)

∣∣∣p∣∣∣X(t)− p(t)
∣∣∣p .

Hence, by Lemma 1, we have, for any r ∈ [0, T],

E
[

sup0≤t≤r |S(t)− Sπ(t)|p
]

≤ E
[

sup0≤t≤r

∣∣∣S(t) + Sπ(t)
∣∣∣2p]1/2

E
[

sup0≤t≤r

∣∣∣X(t)− p(t)
∣∣∣2p]1/2

≤ 22p−1
(
E
[

sup0≤t≤r

∣∣∣S(t)∣∣∣2p]
+E

[
sup0≤t≤r

∣∣∣Sπ(t)
∣∣∣2p])1/2[

E sup0≤t≤r

∣∣∣X(t)− p(t)
∣∣∣2p]1/2

≤ Kp

[
E sup0≤t≤r

∣∣∣X(t)− p(t)
∣∣∣2p]1/2

= Kp I1/2 .

(20)

Thus, we need only to bound the above expectation I, which is given by the following.

I = E
[

sup
0≤t≤r

|X(t)− p(t)|2p
]

≤ E sup
0≤t≤r

∣∣∣ ∫ t

0
( f (S(u− b))− f (v2(u)))du (21)

+ ∑
0≤u≤t,∆Z(u) 6=0

ln(1 + g(S(u− b))YN(u))− ln(1 + g(v2(u))YN(u))
∣∣∣2p

.

By the Lipschitz conditions, we have

I ≤ KpE
∫ r

0

∣∣∣S(u− b)− v2(u)
∣∣∣2p

du

+KpE sup0≤t≤r

∣∣∣∑0≤u≤t,∆Z(u) 6=0 ln(1 + g(S(u− b))YN(u))− ln(1 + g(v2(u))YN(u))
∣∣∣2p

≤ Kp

[
E
∫ r

0

∣∣∣S(u− b)− Sπ(u− b)
∣∣∣2p

du +E
∫ r

0

∣∣∣Sπ(u− b)− v2(u)
∣∣∣2p

du
]

+KpE sup0≤t≤r

∣∣∣∑0≤u≤t,∆Z(u) 6=0 ln(1 + g(S(u− b))YN(u))− ln(1 + g(v2(u))YN(u))
∣∣∣2p

= I1 + I2 + I3 .

(22)

By Lemma 2 and Assumption (A1) about the Hölder continuity of the initial data φ, we have

I2 ≤ Kp,T∆p . (23)
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We write the above sum I3 with jumps as a stochastic integral:

I3 = E sup
0≤t≤r

∣∣∣ ∑
0≤u≤t,∆Z(u) 6=0

ln(1 + g(S(u− b))YN(u))− ln(1 + g(v2(u))YN(u))
∣∣∣2p

= E sup
0≤t≤r

∣∣∣ ∫
J

∫ t

0
[ln(1 + zg(S(u− b)))− ln(1 + zg(v2(u)))] Ñ(du, dz)

+
∫
J

∫ t

0
[ln(1 + zg(S(u− b)))− ln(1 + zg(v2(u)))] ν(dz)du

∣∣∣2p

= 4pE sup
0≤t≤r

∣∣∣ ∫
J

∫ t

0
[ln(1 + zg(S(u− b)))− ln(1 + zg(v2(u)))] Ñ(du, dz)

∣∣∣2p

+4pE sup
0≤t≤r

∣∣∣ ∫
J

∫ t

0
[ln(1 + zg(S(u− b)))− ln(1 + zg(v2(u)))] ν(dz)du

∣∣∣2p

=: I31 + I32 .

Using the Lipschitz condition on g and Assumption (A3), we have

I32 ≤ KpE
( ∫ r

0

∣∣∣g(S(u− b))− g(v2(u))
∣∣∣du
)2p

≤ Kp,TE sup
0≤t≤r

|S(t− b))− Sπ(t− b)|2p .

Using the Burkholder–Davis–Gundy inequality, we have

I31 ≤ KpE
( ∫

J

∫ r

0

∣∣∣ ln(1 + zg(S(u− b)))− ln(1 + zg(v2(u)))
∣∣∣2ν(dz)du

)p
.

Similar to the bound for I32, we have

I31 ≤ Kp,TE sup
0≤t≤r

|S(t− b))− Sπ(t− b)|2p .

Combining the estimates for I31 and 32, we see

I3 ≤ Kp,TE sup
0≤t≤r

|S(t− b))− Sπ(t− b)|2p . (24)

It is easy to verify

I1 ≤ Kp,TE sup
0≤t≤r

|S(t− b))− Sπ(t− b)|2p . (25)

Inserting the bounds obtained in (23)–(26) into (22), we see that

I ≤ Kp,TE sup
0≤t≤r

|S(t− b))− Sπ(t− b)|2p + KP,T∆p . (26)

Combining this estimate with (20), we see

E
[

sup0≤t≤r |S(t)− Sπ(t)|p
]

≤ Kp,T

[
E sup0≤t≤r |S(t− b)− Sπ(t− b)|2p

]1/2
+ KP,T∆p/2

(27)
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for any p ≥ 2 and for any r ∈ [0, T]. Now, we use (27) to prove the theorem on the interval [0, kb]
recursively for k = 1, 2, · · · , [ T

b ] + 1. Since Sπ(t) = S(t) = φ(t) for t ∈ [−b, 0]. Taking r = b, we have

E
[

sup
0≤t≤b

|S(t)− Sπ(t)|p
]
≤ Kp,T∆p/2 (28)

for any p ≥ 2. Now, taking r = 2b in (27), we have

E
[

sup0≤t≤2b |S(t)− Sπ(t)|p
]

≤ Kp,T

[
E sup−b≤t≤b |S(t))− Sπ(t)|2p

]1/2
+ KP,T∆p/2

≤ Kp,T
[
K2p,T∆p]1/2

+ KP,T∆p/2 ≤ Kp,T∆p/2 .

(29)

Continuing this way, we obtain for any positive integer k ∈ N,

E
[

sup
0≤t≤kb

|S(t)− Sπ(t)|p
]
≤ Kk,p,T∆p/2 . (30)

Now, since T is finite, we can choose a k such that (k− 1)b < T ≤ kb. This completes the proof of
the theorem.

4. Option Pricing in Delayed Black–Scholes Market with Jumps

In this section, we consider the problem of option pricing in a delayed Black–Scholes market
which consists of two assets. One is risk free, whose price is described by

dB(t) = rB(t)dt , or B(t) = ert , t ≥ 0 . (31)

Another asset is a risky one, whose price is described by the delayed Equation (4) or (10), namely,

dS(t) = f (S(t− b))S(t)dt + g(S(t− b))S(t−)dZ(t) , (32)

where Z(t) = ∑Nt
i=1 Yi is a Lévy process, Nt is a Poisson process with intensity λ, and Y1, Y2, · · · ,

are iid random variables. As in Section 2, we introduce the Poisson random measure N(dt, dz) and its
compensator Ñ(dt, dz). The above delayed equation can be written as

dS(t) =

[
f (S(t− b)) + g(S(t− b))

∫
J

zν(dz)
]

S(t)dt

+g(S(t− b))S(t−)
∫
J

zÑ(dt, dz) .

Denote
L =

∫
J

z fY(z)dz , (33)

where fY is the probability density of Yi (whose support is J). Then,∫
J

zν(dz) = λL .

Set

S̃(t) =
S(t)
B(t)

.
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Then, by Itô’s formula, we have

dS̃(t) = S̃(t−)g(S(t− b))
( ∫

J
z
[
θ(t)ν(dz)dt + Ñ(dt, dz)

])
, (34)

where θ(t) = f (S(t−b))+g(S(t−b))−r
λLg(S(t−b)) . We keep Assumptions (A1)–(A4) made in the previous section and

we need to make an additional assumption:

(A5) There is a constant α1 ∈ (1, ∞) such that
∫
J

ν(dz) ≥ α1

∣∣∣ f (s) + g(s)− r
g(t)

∣∣∣ ∀ s, t ∈ [0, ∞)

To find the risk neutral probability measure, we apply Girsanov theorem for Lévy process
(see [19] (Theorem 12.21)). The θ(t) is predictable for t ∈ [0, T]. From the assumptions above, we also
have that 0 < θ(s) ≤ 1

α1
. Thus,∫

[0,T]×J

(
| log(1 + θ(s))|+ θ2(s)

)
ν(dz)ds ≤ K < ∞ .

Now, define

Sθ(t) := exp
( ∫

[0,t]
{log

(
1− θ(s)

)
+ θ(s)}ν(dx)ds

+
∫
[0,t]

log
(
1− θ(s)

)
Ñ(dx, ds)

)
.

In order for us to obtain an equivalent martingale measure, we need to verify the following
Novikov condition:

E
[

exp
(1

2

∫
[0,T]×J

{(1− θ(s)) log(1− θ(s)) + θ(s)}ν(dz)ds
)]

< ∞ (35)

This is a consequence of our Assumption (A5). In fact, we have first

|θ(s)| =
| f (S(t− b))− r|

λLg(S(t− b))
≤ 1

α1
< 1 .

Hence, we have ∫
[0,T]
{(1− θ(s)) log(1− θ(s)) + θ(s)}ds < ∞ .

However, ν(dz) = λ fY(z)dz, we have∫
J

ν(dz) =
∫
J

λ fY(z)dz < ∞ .

Thus, we have (35).
Now, since we have verified the Novikov condition (35) we have then E[Sθ(T)] = 1.

Define an equivalent probability measure Q on FT by

dQ := Sθ(T)dP . (36)

On the new probability space (Ω,FT ,Q) (new probability Q), the random measure

ÑQ(dz, ds) = θ(t)ν(dz)ds + Ñ(dz, ds) , (37)



Mathematics 2020, 8, 1932 14 of 21

is a compensated Poisson random measure. The corresponding Lévy measure is denoted by νQ.
With this new Poisson random measure, we can write (34) as

dS̃(t) = S̃(t−)
∫
J

zg(S(t− b))ÑQ(dt, dz) . (38)

The following result gives the fair price formula for the European call option as well as the
corresponding hedging portfolio.

Theorem 4. Let the market be given by (31) and (32), where the coefficients f and g satisfy
Assumptions (A1)–(A5). Then, the market is complete. Let T be the maturity time of the European call
option on the stock with payoff function given by X = (ST − K)+. Then, at any time t ∈ [0, T], the fair price
V(t) of the option is given by the formula

V(t) = e−r(T−t)EQ
(
(ST − K)+|Ft

)
(39)

where Q is the martingale measure on (Ω,FT) given by (36).

Moreover, if
∫
J

zjνQ(dz) < ∞,
∫
R+

g(t)jdt < ∞ for j = 1, 2, 3, 4, there is an adapted and square integrable

process ψ(z, t) ∈ L2(J× [0, T]) such that

EQ
(

e−rT(ST − K)+|Ft

)
= EQ

(
e−rT(ST − K)+

)
+
∫
[0,t]×J

ψ(z, s)ÑQ((dz, ds)

and the hedging strategy is given by

πS(t) :=

∫
J

ψ(z, t)ÑQ(dz, t)

S̃(t)g(S(t− b))
, πB(t) := U(t)− πS(t)S̃(t), t ∈ [0, T] , (40)

where U(t) = EQ(e−rT(ST − K)+|Ft).

Proof. Applying the Itô formula to (38), we get

S̃(T) = exp
( ∫

[0,T]×J
{ln(1 + zg(S(t− b)))− zg(S(t− b)}νQ(dz)dt

+
∫
[0,T]×J ln(1 + zg(S(t− b)))ÑQ(dt, dz)

) (41)

Denote X = (ST − K)+ and consider

U(t) := EQ(e−rTX|Ft) .

To apply martingale representation theorem for Lévy process (see, e.g., [18] (Theorem 5.3.5)),
we first show that Ut ∈ L2, which is implied by EQ[S2

T ] < ∞.
Write h = g(S(t− b)). Then, we can write

S̃2
T = exp

( ∫
[0,T]×J

{ln(1 + zh)2 − 2zh}νQ(dz)dt

+
∫
[0,T]×J ln(1 + zh)2ÑQ(dt, dz)

)
.

(42)
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Denoting T = [0, T]× J and taking h̃ = (1+zh)4−1
z , we have

S̃2
T = exp

(1
2

∫
T
{ln(1 + zh̃)− zh̃}νQ(dz)dt +

1
2

∫
T

ln(1 + zh̃)ÑQ(dt, dz)
)

.

exp
( ∫

T

( zh̃
2
− zh

)
νQ(dz)dt

)
.

Applying the Hölder inequality, we have

EQ
[
S̃2

T
]

≤
[
EQ exp

( ∫
T
{ln(1 + zh̃)− zh̃}νQ(dz)dt +

∫
T

ln(1 + zh̃)ÑQ(dt, dz)
)]1/2

·
[
EQ exp

(
2
∫
T

( zh̃
2
− zh

)
νQ(dz)dt

)]1/2

=
[
EQ exp

(
2
∫
T

( zh̃
2
− zh

)
νQ(dz)dt

)]1/2
.

From the definition of h̃, we have zh̃ = (1 + zh)4 − 1. Then,

zh̃− 2zh = (1 + zh)4 − 1− 2zh = z4h4 + 4z3h3 + 6z2h2 + 2zh .

Thus,

EQ
[
S̃2

T
]
≤ exp

( ∫
T

(
z4h4 + 4z3h3 + 6z2h2 + 2zh

)
νQ(dz)dt

)
which is finite by the assumptions of the theorem.

From the martingale representation theorem (see, e.g., [18] (Theorem 5.3.5)), there exists a square
integrable predictable mapping ψ : T×Ω→ R such that

U(t) = EQ(e−rT(ST − K)+) +
∫ t

0

∫
J

ψ(s, z)Ñ(ds, dz).

Define

πS(t) :=

∫
J

ψ(z, t)ÑQ(dz, t)

S̃(t)g(S(t− b))

=

∫
J

ψ(z, t)S̃(t)g(S(t− b))dS̃(t)

S̃(t)g(S(t− b))
,

πB(t) := U(t)− πS(t)S̃(t), t ∈ [0, T] .

Consider the strategy {(πB(t), πS(t)) : t ∈ [0, T]} to invest πB(t) units in the riskyless asset B(t)
and πS(t) units in the risky asset S(t) at time t. Then, the value of the portfolio at time t is given by

V(t) := πB(t)ert + πS(t)S(t) = ertU(t)

By the definition of the strategy, we see that

dV(t) = πB(t)dert + πS(t)dS(t) = ertdU(t) + U(t)dert .

Hence, the strategy is self-financing. Moreover, we have

V(T) = erTU(T) = (ST − K)+.
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Hence, the claim (referring to the European call option) is attainable stand, therefore the market
{S(t), B(t) : t ∈ [0, T]} is complete.

The pricing Formula (39) is hard to evaluate analytically and we use a general Monte-Carlo
method to find the approximate values. However, when the time fall in the last delay period, namely,
when t ∈ [T − b, T], we have the following analytic expression for the price.

Theorem 5. Assume the conditions of Theorem 4. When t ∈ [T− b, T], then price for the European Call option
is given by

V(t) = ert limv→∞
1

2π

∫ ∞

−∞

1
iξ
(eivξ − eiwξ)A(t) · S̃(t) exp

{∫ T

t

∫
J

(
(1 + zg(S(u− b)))(1−iξ)

− (1− iξ) ln(1 + zg(S(u− b)))− 1
)

νQ(dz)du
}

−Kert limv→∞
1

2π

∫ ∞

−∞

1
iξ
(eivξ − eiwξ)A(t) · S̃(t) exp

{∫ T

t

∫
J

(
(1 + zg(S(u− b)))−iξ

+ iξ ln(1 + zg(S(u− b)))− 1
)

νQ(dz)du
}

,

(43)

where w = ln(K/A)− rT and

A(t) = exp
( ∫ T

t

∫
J
{ln (1 + zg(S(u− b)))− zg(S(u− b))νQ(dz)du

)
. (44)

Proof. By (39) for any time t ∈ [0, T], we have

V(t) = e−r(T−t)EQ
(
(S(T)− K)+ | Ft

)
= ertEQ

(
(S̃(T)− Ke−rT)+ | Ft

)
= ertEQ

(
S̃(T)I{S̃(T)≥Ke−rT} | Ft

)
− KertQ(S̃(T) ≥ Ke−rT)

=: V1(t)−V2(t) .

(45)

First, let us compute V1(t) and V2(t) can be computed similarly. The solution S̃(t) is given by (41),
which we rewrite here:

S̃(T) = S̃(t) exp
{ ∫ T

t

∫
J
{ln (1 + zg(S(u− b)))− zg(S(u− b))}νQ(dz)du

+
∫ T

t

∫
J

ln (1 + zg(S(u− b)))ÑQ(dz, du)
}

.
(46)

when u ∈ [t, T] and t ∈ [T − b, T], we see that S(u− b) is Ft-measurable. Hence, while computing
the conditional expectation of h(S̃(T)) with respect to Ft, we can consider the integrands
ln(1 + zg(S(u− b))) and ln(1 + zg(S(u − b))) − zg(S(u − b)) as “deterministic” functions. Thus,
the analytic expression for the conditional expectation is possible. However, it is still complicated.
To find the exact expression and to simplify the presentation, let us use the notation (44) and introduce

Y =
∫ T

t

∫
J

ln (1 + zg(S(u− b)))ÑQ(dz, du) .

With these notation we have

S̃(T) = S̃(t)A exp Y .
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To calculate EQ
(

eYI{v≥Y≥w}

)
, we first express I[w,v] as the (inverse) Fourier transform of

exponential function because E(eiξY) is computable. Since the Fourier transform of I{w,v} is

∫ ∞

−∞
eixξI[w,v]dx =

1
iξ
(eivξ − eiwξ),

we can write

I[w,v](x) =
1

2π

∫ ∞

−∞

1
iξ
(ei[v−x]ξ − ei[w−x]ξ)dξ .

Therefore, we have

EQ(eYI{v≥Y≥w} | Ft) =
1

2π

∫ ∞

−∞
EQ
( 1

iξ
(ei[v−Y]ξ+Y − ei[w−Y]ξ+Y) | Ft

)
dξ

=
1

2π

∫ ∞

−∞

1
iξ
(eivξ − eiwξ)EQ(eY(1−iξ) | Ft)dξ .

Denote Tt = [t, T]× J. Then, we have

EQ(eY−iYξ) = EQ
(

exp
∫
Tt
(1− iξ) ln (1 + zg(S(u− b)))Ñ(dz, du) | Ft

)
= EQ

(
exp

∫
Tt
(1− iξ) ln (1 + zg(S(u− b)))Ñ(dz, du)

)
= exp

( ∫
Tt
{e(1−iξ) ln(1+zg(S(u−b)))

−(1− iξ) ln(1 + zg(S(u− b)))− 1}νQ(dz)du
)

= exp
( ∫

Tt
{(1 + zg(S(u− b)))(1−iξ)

− ln(1 + zg(S(u− b)))(1−iξ) − 1}νQ(dz)du
)

.

Hence,

EQ(eYI{v≥Y≥w} | Ft) =
1

2π

∫ ∞

−∞

1
iξ
(eivξ − eiwξ) exp

( ∫
Tt
{(1 + zg(S(u− b)))(1−iξ)

− ln(1 + zg(S(u− b)))(1−iξ) − 1}νQ(dz)du
)

dξ .

Taking w = ln(K/A)− rT, v→ ∞ in the above formula, we can evaluate (45) as follows.

V1(t) = ertEQ
(

S̃(T)I{S̃(T)≥Ke−rT} | Ft

)
= ert lim

v→∞

1
2π

∫ ∞

−∞

1
iξ
(eivξ − eiwξ)A · S̃(t) · exp

( ∫
Tt
{(1 + zg(S(u− b)))(1−iξ)

− ln(1 + zg(S(u− b)))(1−iξ) − 1}νQ(dz)du
)

dξ

= ert lim
v→∞

1
2π

∫ ∞

−∞

1
iξ
(eivξ − eiwξ)A · S̃(t). exp

( ∫
Tt
{(1 + zg(S(u− b)))(1−iξ)

− ln(1 + zg(S(u− b)))(1−iξ) − 1}νQ(dz)du
)

dξ .
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Exactly in the same way (and now without the factor eY), we have

V2(t) = Kert lim
v→∞

1
2π

∫ ∞

−∞

1
iξ
(eivξ − eiwξ)A · S̃(t). exp

( ∫
Tt
{(1 + zg(S(u− b)))−iξ)

− ln(1 + zg(S(u− b)))−iξ − 1}νQ(dz)du
)

dξ .

This gives (43).

5. Numerical Attempt

In this section, we carry out some numerical computations of our Formula (39) against the
American call options Microsoft stock traded on Questrade platform. To apply our model in the
financial market, we need to estimate all the parameters including the delay factor b from the real data.
To the best of our knowledge, the theory on the parameter estimation is still unavailable even in the
case of the classical model of [1]. Motivated by the work of [7], we try our best guess of the parameters
in the model (31) and (32).

The real market option prices we consider is for the American call option on Microsoft stock.
The data we use are from Questrade trading/investment platform on 5 October 2020 at 12:25 (EDT).
We take T to be one, three and six months active trading period, respectively. The real prices of the
options of different strike prices are listed in the last column of the three tables below.

The readers may wonder that, since the option pricing formulas for both our model and the
classical Black–Scholes model are for the European call option, why we use the market price for
the American option. The reason is that we can only find the market price for the American option.
On the other hand, as stated by [24] (p. 251), “There is no advantage to exercise an American call
prematurely when the asset received upon early exercise does not pay dividends. The early exercise
right is rendered worthless when the underlying asset does not pay dividends, so in this case the
American call has the same value as that of its European counterpart”. See also the work of [25]
(p. 61, Theorem 6.1). This justifies our use of the market price for the American option.

Using Monte-Carlo simulation, we calculate the prices of European option given by (39) and the
analogous Black–Scholes formula obtained from the model: dS(t) = S(t)[αdt + σdW(t)]. We simulate
2000 paths of the solutions to both equations using the logarithmic Euler–Maruyama scheme
(for Black–Scholes model, the logarithmic Euler–Maruyama scheme is the same by replacing the
jump process by Brownian motion). In the simulations, we take the time step ∆ to be the trading unit
minute. Thus, when T = 1 month, there are

n = trading hours× 60× trading days = 6.5× 60× 22 = 8580

minutes. Thus, ∆ = 1
8580 . We do the same for T = 3 and T = 6.

In our calculation for the delayed jump model, we use the double exponential jump process as
our Yis with parameters p = 0.60, q = 1− p = 0.40, η = 12.8, θ = 8.40 with the intensity λ = 0.03.
The interest rate r = 0.01 is the risk free rate. The delay factor was taken to be one day, which is
b = 6.5×60

8580 because there are trading 6.5 h in a trading day. The function f (x) was taken to be a fixed
constant f (x) = 0.1, g(x) = 0.15 ∗ sin(x/209.11) and φ(x) = exp(αx/n) with α = 0.11. We choose
α = 0.11 since the initial price we have taken is 209.11 and the predicted average price target of
Microsoft stock for next one year (around 12 months from 5 October 2020) is 230 which is 11%.

For the simulation of the Black–Scholes model, based on stock prices for the year 2019, we take
volatility of the Microsoft stock as σ = 15% to calculate Black–Scholes price. We take r = 1% since in
the last one year the range of 10 year treasury rate has been between 0.52% and 1.92%.

The computations are summarized in the following tables. Table 1, Table 2, and Table 3 are for
one, two, and three month call options respectively. From Tables 1–3 notice an interesting phenomenon
that the price we obtain by using our formula is comparable to the Black–Scholes price for shorter
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maturities and is closer to the real market price for longer maturity. This may be because of our choice
of the parameters by guessing.

Table 1. Call option price comparison for T = 1 month for Microsoft stock.

Strike Price

Black–Scholes Option
Price (European) with
One-Month Expiration
(No Delay)

Option Price of Jump
Model (European) with
One-Month Expiration

Market Price of
American Option with
Expiration One Month

195 16.27 16.08 18.3
200 11.41 11.05 15.15
205 7.65 6.91 12
210 4.54 3.62 9.43
215 2.05 1.48 7
220 0.83 0.61 5.15

Table 2. Call option price comparison for T = 3 months for Microsoft stock.

Strike Price

Black–Scholes Option
Price (European) with
Three-Month
Expiration (No Delay)

Option Price of Jump
Model (European) with
Three-Month
Expiration

Market Price of
American Option with
Expiration Three
Months

195 21.37 21.27 24.40
200 16.72 16.99 21.35
205 13.08 14.50 18.55
210 9.65 11.43 15.95
215 6.35 8.58 13.65
220 4.31 7.51 11.55

Table 3. Call option price comparison for T = 6 months for Microsoft stock.

Strike Price

Black–Scholes Option
Price (European) with
Six-Month Expiration
(No Delay)

Option Price of Jump
Model (European) with
Six-Month Expiration

Market Price of
American Option with
Expiration Six Months

195 28.41 29.53 29.00
200 23.85 26.11 26.15
205 19.49 24.44 23.50
210 16.24 21.15 21.05
215 12.83 18.39 18.80
220 10.58 17.97 16.70

6. Conclusions

In this paper, we introduce and study a stochastic delay equation with jump and derive a formula
for the fair price of the European call option. We assume that the jump is dictated by a compensated
Lévy process, which includes a process similar to asymmetric double exponential or hyper-exponential
jump process. In the numerical execution, we consider the asymmetric double exponential process.
Furthermore, we propose a logarithmic Euler–Maruyama scheme (a variant of Euler–Maruyama
scheme) which preserves the positivity of the approximate solutions and shows that the convergence
rate of this scheme is 0.5 in any Lp norm, the optimal rate for the classical Euler–Maruyama scheme for
the stochastic differential equations driven by standard Brownian motion (see, e.g., [17]). From the
above tables, we see that the parameters guessed here may not be the best possible values but our
formula still gives a good fit to the real market prices compared to the Black–Scholes formula. We note
further that the potential research problem of parameter estimation is still open before we can come up
with the best possible simulated results.
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