. mathematics ﬁw\o\w

Article
When Will a Sequence of Points in a Riemannian
Submanifold Converge?

Tuyen Trung Truong
Department of Mathematics, University of Oslo, Blindern, 0851 Oslo, Norway; tuyentt@math.uio.no

check for
Received: 26 August 2020; Accepted: 19 October 2020; Published: 3 November 2020 updates

Abstract: Let X be a Riemannian manifold and x,, a sequence of points in X. Assume that we know a
priori some properties of the set A of cluster points of x,,. The question is under what conditions that
x, will converge. An answer to this question serves to understand the convergence behaviour for
iterative algorithms for (constrained) optimisation problems, with many applications such as in Deep
Learning. We will explore this question, and show by some examples that having X a submanifold
(more generally, a metric subspace) of a good Riemannian manifold (even in infinite dimensions) can
greatly help.
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In this paper we will explain how the geometry of submanifolds of R¥ is useful to optimisation
problems in Deep Learning, and we explore similar properties for other manifolds.

1. Motivation

Optimisation is important in many aspects of engineering and computer sciences. For a
modern example, one can mention deep neural networks, which can solve effectively several tasks
(image/video classification, natural language processing and so on) that posed enormous challenges for
the old paradigm of based-rule learning. For deep neural networks to be able to work, one has to solve
large scale and non-convex optimisation. For example, modern state-of-the-art deep neural network
architectures give rise to optimisation problems (finding minima) in hundred of million variables.

For an explicit example, we consider the case of recognising of hand written digits, useful for
example when scanning postal packages. A well-known dataset is MNIST [1]. A sample is in Figure 1,
several of them can be challenging even for human beings. This task is extremely difficult for the old
paradigm of based-rule learning, but is considered a simple task for deep neural networks. For this
task, one can use a “simple” deep neural network, which gives rise to an optimisation problem in
about 12,000 variables.

Because of this large scale and non-convex feature of associated optimisation problems, one must
confine with iterative numerical methods. One would like the method to guarantee convergence to
local minima. This can be divided into two steps. First, show that the method converge, and then
show that the limit point is a local minimum. Since saddle points are dominant for functions in
higher dimensions [2,3], for the second step it is important to guarantee that the limit point is not a
saddle point.

It could be considered as a lucky fact that from beginning Gradient Descent methods (GD)
have been used in deep neural networks. At first, it could be the fact that GD is easy to implement
and is not costly to run in large scale optimisation. Then, even though it dates back more than
170 years [4], only gradually (with some results announced only very recently) it has been shown
that GD has good properties: it can avoid saddle points [5,6]. While its standard version does not
guarantee convergence to critical points, its Backtracking version [7] does [8-10] (the latter paper
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consists of the more experimental part of arXiv:1808.05160, in combination with arXiv:2001.02005 and
arXiv:2007.03618) and can be implemented in deep neural networks with very good performance on
CIFAR10 and CIFAR100 image datasets [10,11]. Some further modifications of Backtracking GD can
avoid saddle points as well [12,13].
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Figure 1. Some samples from the MNIST hand-written digit dataset. (Source: [1]).
2. Convergence Results

We will, for the remainder of this section, discuss convergence to critical points for GD methods,
which uses special geometrical properties. First, we recall in detail the update rule in GD. We consider
a function f : R¥ — R, which is assumed to be C!. We want to find minima of f. One starts from
a random initial point xg, and construct a sequence x,41 = X, — 6, Vf (xy), where 6, > 0 is an
appropriate number. There are many ways to choose J;. In the Standard GD scheme, one chooses J;,
to be a constant Jy. A disadvantage of Standard GD is that it does not guarantee convergence, to have
good behaviour one must assume that f is in C%’l, that is V£ is globally Lipschitz continuous with
the Lipschitz constant L, and further assume that Jy is in the order of 1/L. There are many popular
modifications trying to overcome this, such as Adam, Adadelta, Nesterov Accelerated Gradient,
Momentum and so on (see [14] for a review), none of these are guaranteed to converge in general
either. To date, only Backtracking GD is guaranteed to converge: see Chapter 12 in [9], in particular
Proposition 12.6.1 there, for the case f € Ci’l and has compact sublevels and has at most countably
many critical points, see [8] when f is real analytic (or more generally satisfies the so-called Losjasiewicz
gradient inequality), and see [10] for the general case of f being C! only and has at most countably
many critical points. Note that the assumption in the last paper is not too restrictive: indeed, it is known
from transversality results that such an assumption is satisfied by a generic C! function (for example,
by Morse’s functions, which are a well-known class of functions in geometry and analysis). Since the
real analyticity assumption in [8] is quite special, we will not discuss about it in the below, trying to
provide only the most general ideas.

Both [9,10] start from the following property: If {x,} is constructed as above, and {xy} is a
convergent subsequence, then lim; ,, V f (xnj) = 0. This is classically known (see [15]), the main idea
is as follows: if lim]'_mo Xn; = Xeo and Vf(xe) # 0, then lim infj_>co (SHJ. > 0. The latter is a contradiction,
when Armijo’s condition is taken into account.
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Now, one needs also the following property:
Property 1. Either limy_,o f(Xn) = —00, or limy, o0 ||X; 01 — X || = 0.

In case f has compact sublevels, then this is easily proven [9]. For the general case, see [10] for
a proof.

Now, one needs a special property of compact metric spaces [16]. We recall that given a sequence
{xn}, its set of cluster points consists of points x so that there is a subsequence {xy,} for which
lim; o Xn; = X.

Theorem 1. Let (X, d) be a compact metric space. If {x, } C X is a sequence so that im0 d(x;41,Xn) =0,
then the set of cluster points of {x, } is connected.

In the setting of [9], one can finish the proof of convergence as follows: Let X = {x € R¥: f(x) <
f(x0)}. Since f is assumed to have compact sublevels, it follows that X is compact. Let d be the
restriction to X of the usual metric on R¥, then (X, d) is a compact metric space. Since we know that
limy, 00 d (X, X,11) = O for the constructed sequence, we can then apply Theorem 1 for the sequence
{xn}, and have that the set of cluster points D of {x,} is connected. Since we also know that D must
be contained in the set of critical points C = {x : Vf(x) = 0} and by assumption C is countable,
it follows that {D} is also countable. Since a countable and connected set must be either empty or one
point, it follows that either lim, .« || || = co (the first case) or {x, } converges. Note that in this case,
since {x, } is bounded, it follows that only the second case happens, that is {x, } converges.

In the general case, the above proof does not go through, since the set X in the above may not be
bounded. In [10], a way to go around is as follows. We let (P¥, d) be the real projective space with its
canonical metric (the spherical metric). We let (R, ||.||) be the usual Euclidean metric on R¥, and let
(R, d) be the restricted metric of d. Then, topologically , the two spaces (R, ||.||) are homeomorphic.
In particular, convergence properties of a sequence {x, } in (R, ||.||) can be translated to that of the
same sequence but considered in (R¥,d). Even though they are not isometric, one can check that if
limy, 0 | X1 — Xn|| = 0, then also limy—ye0 d(xy, X;,41) = 0. In addition, (IP’k,d) is a compact metric
space. Hence, one can apply Theorem 1, and have that for the constructed sequence {x, }, considered
in (PX, d) the set of cluster points D is connected. Since D NRF = D C C and C is countable, it follows
that if D is non-empty then it is a point. Hence, we obtain the same conclusions as before. Note that

here the case lim;_,c ||Xx|| = o0 can happen, for example for the function f(x) = x.

3. Riemannian Manifold Optimisation

Now we discuss the general setting of optimisation on manifolds. Let X be a real manifold and
f: X — R. We want to find (local) minima of f. Here one could, as before, try to use Standard
GD. To prove good properties for Standard GD, one could, as before, restrict the discussion to Ci’l
functions. However, here it is very cumbersome to define a global Ci’l notion in the manifold setting.
It is better to switch to Backtracking GD, which is local in nature, and hence has a natural extension
to the manifold setting. We let it to the readers to state a specific version of Backtracking GD in the
manifold setting, by working on small coordinate charts.

Taking the ideas from the proof in [10], as presented above, we obtain the following general result.
We say that a sequence {x,} in a metric space X diverges to infinity if {x, } eventually leaves every
bounded subset of X.

Theorem 2. Let X be a Riemmanian manifold, with the induced metric d. Assume that there is a compact metric
space (Z,dz), together with a homeomorphism h : X — h(X) C Z such that dz(h(x1),h(x2)) < d(x1,x2)
forall x1,x; € X. Let f : X — R bea C! function, and {x,} a sequence constructed by Backtracking GD.
Assume that f has at most countably many critical points. Then, either {x, } converges to a critical point of f,
or {xy } diverges to infinity.
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For clarity of the next discussion, we define a class of Riemannian manifolds.

Definition 1. A Riemannian manifold (X,d) is called non-expandingly homeomorphically compactible if
there is a compact metric space (Z,dz), together with a homeomorphism h : X — h(X) C Z such that
dz(h(x1),h(x2)) < d(x1,x) forall x1,x; € X.

To be able to apply Theorem 2, it remains to find what manifolds are non-expandingly
homeomorphically compactible. We give first some examples.

Example 1. X is a bounded subset of R. This is the case in [9].

Example 2. X is a subset of R!. This is the case in [10] and is more general than Example 1, when X is
unbounded. On the other hand, it is interesting to note that an X from Example 2 is homeomorphic to a one in
Example 1. Indeed, by Theorem 3.4.4 in [17], the real projective space P! is affine, that is isometric to a compact
subset of RUT1)?,

Remark 1. In a very recent paper [18], the author has been able to extend previously mentioned results,
including Theorem 2 and a modification of Newton's method, to general Riemannian manifolds. There, the readers
can consult more general algorithms on Riemannian manifolds. In particular, by using Nash's embedding
theorem [19-21], every Riemannian manifold is non-expandingly homeomorphically compactible and hence
Theorem 2 holds in general.

From the above discussion, we are motivated to state the following question. Even partial answers
to it will be greatly helpful for optimisation on manifolds.

Question 1. In the statement of Theorem 2, if one does not assume that f has at most countably many
critical points, will the conclusions of Theorem 2 still hold?

Currently, we do not know about the answer to Question 1. We have just a couple of comments.
First, by transversality theorem, functions satisfying Theorem 2 is dense, and hence for practical
purposes the Theorem is applicable in realistic setttings. Second, we have done many examples on
various types of benchmark functions, and found that the sequence constructed by Backtracking GD
always satisfies the conclusions of Theorem 2. Hence, we conjecture that the answer to Question 1 is
affirmative, at least when the initial point x( is randomly chosen.
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