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Abstract: The snap-off is an instability phenomenon that takes place during the immiscible two-phase
flow in porous media due to competing forces acting on the fluid phases and at the interface between
them. Different theoretical approaches have been proposed for the development of mathematical
models that describe the dynamics of a fluid/fluid interface in order to analyze the snap-off mechanism.
The models studied here are based on the “small-slope” approach and were derived from the mass
conservation and other governing equations of two-phase flow at pore scale in circular capillaries for
pure and complex interfaces. The models consist of evolution equations; highly nonlinear partial
differential equations of fourth order in space and first order in time. Although the structure of the
models for each type of interface is similar, different numerical techniques have been employed to
solve them. Here, we propose a unifying numerical framework to solve the group of such models.
Such a framework is based on the Fourier pseudo-spectral differentiation method which uses the
Fast Fourier Transform (FFT) and the inverse FFT (IFFT) algorithms. We compared the solutions
obtained with this method to the results reported in the literature in order to validate our framework.
In general, acceptable agreements were obtained in the dynamics of the snap-off.

Keywords: snap-off; pore scale flow; pseudo-spectral methods

1. Introduction

When a fluid displaces another in a porous media, different displacement mechanisms may occur
depending on the local flow conditions. The displacement may occur in a piston-like regime, at which
one phase is fully pushed by the other, or the displacing liquid may leave a thin film at the wall forming
an interface between the two fluids. If the capillary forces are strong enough, the thin film attached to
the wall may form a liquid collar and could break up the displacing phase into separate ganglia due
to surface tension. This instability phenomenon is known as snap-off (Figure 1). The occurrence of
snap-off is determined by competing forces acting on the fluid phases and at the interface between
them: the capillary pressure difference that drives the wetting phase towards the constriction, the shear
stress at the interface that resists the capillary driven flow and the squeezing process of the non-wetting
phase [1].
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The snap-off phenomenon is important to many industrial and technological areas such as biofluid
dynamics, CO2 geological sequestration, oil recovery, microfluidic devices and chemical engineering.
This phenomenon has been studied both experimentally and theoretically for viscous (drops) and
inviscid (bubbles) fluids. This paper is focused on the theoretical approach. According to Deng et al., [2]
the theoretical snap-off studies typically have two goals: development of models which describe
the evolution of the interface between the fluids until snap-off is achieved and the definition of a
snap-off criterion. The interface evolution models are used to test snap-off criteria and quantify the
snap-off time.
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Figure 1. Snap-off phenomenon illustration in a water wet porous media which contains residual oil
ganglia (in black). Snap-off occurs when: (a) the front of the non-wetting phase flows near the pore
throat; (b) Then the wetting phase is displaced by the non-wetting one, leaving a thin film at the wall;
(c) A liquid collar of the wetting phase grows due to the capillary pressure difference at the crest and
the capillary throat; (d) The collar breaks up the displacing phase due to the surface tension and a
separate ganglion is formed.

Different approaches have been proposed for the development of mathematical models that
describe the dynamics of a fluid/fluid interface [3–8]. Here we focused on the models that describe
the drop and bubble snap-off in circular capillaries by means of an evolution equation derived from
the conservation of mass equation and the small-slope approach [9,10]. This approach consists in the
improvement of the approximation of the Young–Laplace equation; that is, in the balance of the pressure
forces that have their expression in the curvature of the interface. The small slope approach assumes
small capillary and Reynolds numbers, which allow the flow in the capillary to be approximated as
Poiseuillean flow. Furthermore, it is assumed that the radius of the pore wall varies to a small extent
relative to the axial distance, so lubrication approximation applies [11]. The models derived under this
approach have been solved with diverse numerical techniques.

Hammond [12] performs a nonlinear analysis based on lubrication theory in order to examine the
core-annular flow instability in straight and circular capillaries. The analysis results in a nonlinear
thin-film evolution equation. To solve this model, he used the Method of Lines (MOL), which consists
of replacing the spatial derivatives with finite differences that generate a system of coupled ordinary
differential equations (ODE) for the time evolution of the gas–liquid interface; the ODE system is
solved with the Gear’s method.

Gauglitz and Radke [9,10] extended the Hammond’s evolution equation by making higher order
corrections in the thin-film analysis; this resulted in the small-slope approximation. The small-slope
equations have a more complex mathematical form compared to the thin-film ones; this is due to a
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better approximation of the Young–Laplace equation. To analyze the film breakup in both straight and
constricted cylindrical capillaries, they implement the Galerkin Finite Element (GFE) method to solve
their model. They used Hermite cubic basis functions, and the time derivatives are discretized with
the Crank–Nicholson procedure. The resulting system of algebraic equations is solved by iterations
with the Newton–Raphson method.

Zhang et al. [13] solved the Gauglitz and Radke (GR) model for straight capillaries by using the
MATLAB “pdepe” solver. However, they had to do a reduction of order transformation in order to
adapt the problem to the algorithm requirements. The “pdepe” algorithm solves the initial boundary
value problems for parabolic-elliptic partial differential equations (PDE) in 1-D using the MOL,
where the spatial variable is discretized according with Skeel and Berzins [14] with Petrov–Galerkin’s
approach. This results in a system of ordinary differential equations that are solved using a variable-step,
variable-order algorithm based on the numerical differentiation formulas of orders 1 to 5 [15].

Recently, Hoyer et al. [16] extended the GR model including elastic interfacial stress to analyze the
behavior of the breakup process in complex interfaces. The interfacial elasticity makes the surface stress
anisotropic, which has a direct effect on the pressure along the liquid film. For inelastic cases, the Hoyer
and coworkers (HAC) model becomes a more accurate formulation since the GR model linearizes
the logarithmic terms and discards the film thickness terms of an order greater than three (thin-film
assumption). Such discrimination can generate important differences, for example, in snap-off time
(close to a factor of 2) when the models are tested at high capillary numbers. To solve their model,
suitable for the case of dispersed drop viscosity much lower than the continuous phase, they used an
explicit Euler first order finite difference method, also known as Forward Euler (FE).

Additionally, Beresnev and Deng [17] developed an evolution equation that describes the temporal
evolution in a fluid–fluid interface for arbitrary viscosities in the presence of base flow. The Beresnev and
Deng (BD) model is solved with the MOL framework implemented in Mathematica [18]. Furthermore,
they validate their model with Computational Fluid Dynamics (CFD) experiments in two commercial
models: FLUENT and COMSOL. To discretize the governing equations of flow, FLUENT uses the
finite volume element method, while COMSOL use finite elements; for tracking the interface position
the first uses the volume-of-fluid method and the second one the level-set method. Note that the
computing time in the case of BD model is in the order of minutes, while CFD experiments took at
least 1 day per scenario.

It is from this general review, that we can appreciate that there is great diversity in the schemes
traditionally used to solve the models of the different interfaces reported (gas–liquid elastic, gas–liquid
and liquid–liquid). This situation may be considered as restrictive when it is necessary to assess
the effects of different fluids in a two-phase flow system under instability conditions. We, therefore,
propose a unifying pseudo-spectral differentiation framework in which the most important reported
models are solved. To validate our framework, we compare the solutions obtained using this method
with those reported by our reference authors utilizing other numeric techniques.

This article is divided into four parts. Section 2, called Materials and Methods, first presents
the geometry of the problem. Later, some considerations to derive the evolution equations from the
governing equations of flow at pore-scale are briefly presented. Since the formulation of each model
has its own particularities that depend on the fluid/fluid system, the main assumptions considered to
represent the rheological nature of each type of interface are also mentioned. Then the models are
presented in their dimensionless form, as well as the corresponding boundary and initial conditions.
The last part of this section is dedicated to present Fourier pseudo-spectral differentiation method.
Following that, Section 3 includes the results of the evaluation of the models using the framework
proposed here, as well as a comparison with those reported in the literature. Section 4 contains the
conclusions of our research.
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2. Materials and Methods

2.1. Geometry of the Problem

The porous structure of a reservoir presents complex geometric shapes; among these, the presence
of constrictions in the capillary channels called pore throats is found. Constricted pore geometry
is typical of natural core-annular flows and can determinate the fluid breakup occurrence.
During core-annular flow, the pores have a preference to be wetted by one of the phases, either water or
oil, whereby one layer of the wetting phase will be present between the pore-wall and the non-wetting
phase. This fluids configuration and geometry are schematized in Figure 2.
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Figure 2. Geometric diagram that shows circular constricted capillaries and the configuration of the
liquid phases. The main geometric elements are the radius of the capillary Rc; the throat radius Rt,
and the length of the capillary `. The configuration of the phases consists of a core-annular flow,
in which the external phase (with subscript 2), with constant thickness δ and viscosity µ2, wet the wall
of a pore described by λ(x); and the internal phase, with viscosity µ1, is surrounded by the external
phase, with which it shares the interface κ(x, t). The volumetric flow Q, moves from left to right.

This basic geometry of the porous medium, consisting of a circular capillary with one or more
constrictions, has been used to study the mechanism of drop breakup during the immiscible two-phase
flow at pore-scale. Although any smooth function can be used to represent this particular geometry,
a sinusoidal function is typically used [17]:

λ(x) =
1
2

Rc

[
(1 + a) − (1− a) cos

(
απx

(1− a)Rc

)]
, (1)

where λ is the radial coordinate of the capillary wall, x refers to the axial coordinate, a is the ratio
between the throat (Rt) and capillary (Rc) radii and α is a geometric parameter which represents the
ratio between the capillary radius (Rc) and half of the capillary length (`), α = Rc/(`/2).

2.2. Governing Equations

The governing equations for a two-phase flow at pore scale are the simplified Navier–Stokes
equations (momentum equation) using the lubrication approximation for incompressible and laminar
flow in cylindrical coordinates, the conservation of mass, continuity and the Young–Laplace law
derived under small-slope approach [17]:

−
∂P1,2

∂x
+ µ1,2

1
r
∂
∂r

(
r
∂u1,2

∂r

)
= 0, (2)
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(
∂Q1

∂x

)
dx = −2πRc

2κ

(
∂κ
∂t

)
dx, (3)

Q1 + Q2 = Q, (4)

Pc = P1 − P2 = σ

(
1
κ
−
∂2κ

∂x2

)
, (5)

where P is the pressure, subscripts 1 and 2 denote, respectively, the non-wetting and wetting phase,
µ is the dynamic viscosity, r the radial coordinate, u is the axial velocity, t the temporal variable, Q the
total volumetric flow rate in the capillary, Pc is the capillary pressure, κ the radius of interface and σ
the surface tension.

The drop breakup problem needs to determine the interface position change over time ∂κ(x, t)/∂t,
thus the equations that govern the two-phase flow at pore scale are combined to establish an evolution
equation that describes the interface dynamics. The evolution equation is derived from the mathematical
expression of the conservation of mass (Equation (3)), which relates the change rate of the volume of
some of the phases with the volumetric flow differential, which can be written in the form:

∂κ
∂t

= −
1

2πRc2κ

(
∂Q1

∂x

)
, (6)

In order to close the evolution equation, the volume flux of the non-wetting phase Q1 is required
to be explicitly expressed through the interface position κ. The evolution equation derived from this
process will depend on the nature of the fluid phases, though its own particularities are further detailed
in Section 2.3.1.

2.3. Drop and Bubble Snap-OffModels

In this section, we present the reported model’s equations that describe the snap-off dynamics in
circular capillaries for elastic gas–liquid, gas–liquid and liquid–liquid interfaces. Even if original works
can be consulted for further details of mathematical procedure for models derivation [9,10,16,17], it is
important to specify the physical assumptions taken for such derivation.

2.3.1. General Considerations for the Derivation of Models

In general terms, the evolution equations that describe the temporal evolution of the interface
are basically obtained by solving the simplified incompressible Navier–Stokes equations (momentum
equation) for cylindrical core-annular geometry (Equation (2)); with which the velocity profiles of the
wetting and non-wetting phases are obtained. The velocity profiles are integrated to obtain the volume
flow rates. The resultant formulations are combined with the continuity and Young–Laplace equations
(Equations (4) and (5)) to obtain an explicit expression of the volume flux through the interface position
κ, which is finally substituted in the conservation equation (Equation (6)).

Depending on the core phase nature, two approaches can be distinguished: (1) those that consider
an inviscid core fluid and constant zero pressure (GR and HAC models) (2) those in which a viscous
core liquid is studied (BD model). For both cases, non-slip (solid wall) at the surface of the capillary
( r = λ → u2 = 0) and balance of forces at the interface (r = κ → µ1du1/dr = µ2du2/dr) are postulated
as boundary conditions. Additionally, this model assumes that the interface is infinitesimally thin and
in a state of physic-chemical and mechanical equilibrium; therefore, no transport phenomena occurs.

In the first approach, since the viscosity of the non-wetting phase is null (µ1 = 0), shear stress of
the core is neglected µ1du1/dr = 0; consequently r = κ → µ2du2/dr = 0 . In Hoyer and coworkers
formulation [16] for elastic interfaces, surfaces stress (T = σ+ Kξ) in axial (xx) and transversal (θθ)
directions are included as function of the surface tension σ, the dilational interfacial elasticity K and the
corresponding surface strains ξxx and ξθθ (defined by geometric relationships). Note that for inelastic
cases (K = 0), the surface stress becomes Txx = Tθθ = σ. At the interface the liquid film shear stress is
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balanced by the net surfaces stress in axial direction, then: r = κ → µ2du1/dr = dTxx/dx . Furthermore,
a constant zero pressure is assumed for inviscid core (P1 = 0), thus explicit expressions based on
the interface curvature for the capillary pressure can be used: for inelastic case the Young–Laplace
equation becomes Pc = −P2 = σ

[
1/κ+ ∂2κ/∂x2

]
; while for an elastic interface the expression is

Pc = −P2 =
[
(σ+ Kξθθ)/κ+ (σ+ Kξxx)

(
∂2κ/∂x2

)]
.

For fluid arbitrary viscosities (µ1 , 0), the velocity profile of the core is equal to that of the annular
film at the interface ( r = κ → u1 = u2 ); additionally no variation of the radial velocity derivative on
the axes is postulated (r = 0 → du1/dr = 0). In this case the assumption of constant zero pressure
in the core is no longer valid, and Laplace’s law would only provide a relative pressure difference
between the two fluids, it is expressed as: Pc = P1 − P2 = σ

[
1/κ+ ∂2κ/∂x2

]
.

The nondimensionalizing is performed according with:

L = `/Rc; x∗ = x/Rc; λ∗ = λ/Rc; κ∗ = κ/Rc; δ∗ = δ/Rc ;P∗ = P/(σ/Rc);
Q∗ = Q/

(
σRc

2/µ2

)
; τ = t/(3µ2Rc/σ); K∗ = K/σ; u∗ = u/(σ/µ2).

(7)

where * denotes dimensionless variables and δ is the film thickness. For the viscous core case,
the dimensionless equations use the viscosity of the non-wetting phase µ1 instead of the wetting phase
µ2, and the dimensionless time is τ = t/(µ1Rc/σ).

2.3.2. Inviscid Core Fluid Models

Hoyer and coworkers (HAC) model for an elastic behavior of a gas–liquid interface, encapsulated
in K∗ = 0 parameter, is denoted by the following formulation [16]:

∂κ∗

∂τ∗ = −
3

16κ∗
{(

1
κ∗2

∂κ∗

∂x∗ +
∂3κ∗

∂x∗3

)[
−4λ∗2κ∗2 + λ∗4 + 4 ln

(
λ∗

κ∗

)
κ∗4 + 3κ∗4

]}
+

∂
∂x∗


K∗ 1√

1+ ∂κ∗
∂x∗

2


4λ∗2κ∗

{
−1 +

[
1− 2 ln

(
κ∗

λ∗

)](
κ∗

λ∗

)2
}(
∂κ∗

∂x∗
∂2κ∗

∂x∗2

)
−

λ∗4
{
1− 4

(
κ∗

λ∗

)2
+

[
3− 4 ln

(
κ∗

λ∗

)](
κ∗

λ∗

)4
}

[
∂κ∗

∂x∗
(
∂2κ∗

∂x∗2

)2
+

(
1 + ∂κ∗

∂x∗
2
)
∂3κ∗

∂x∗3

]



(8)

if K∗ = 0, i.e., for inelastic interface, it then results in an extension of the GR model [16]:

∂κ∗

∂τ∗
= −

3
16κ∗

∂
∂x∗

{(
1
κ∗2

∂κ∗

∂x∗
+
∂3κ∗

∂x∗3

)[
−4λ∗2κ∗2 + λ∗4 + 4 ln

(
λ∗

κ∗

)
κ∗4 + 3κ∗4

]}
, (9)

The Gauglitz and Radke model (GR) for the gas-liquid interface is [10]:

∂κ∗

∂τ∗
= −

1
κ∗

∂
∂x∗

{(
1
κ∗2

∂κ∗

∂x∗
+
∂3κ∗

∂x∗3

)[
λ∗(λ∗ − κ∗)3

]}
, (10)

here the second factor on the derivative corresponds to an approximation of the equivalent term in the
HAC model. For straight capillaries, i.e., λ∗(x∗) = 1, the GR model results in:

∂κ∗

∂τ∗
= −

1
κ∗

∂
∂x∗

[(
1
κ∗2

∂κ∗

∂x∗
+
∂3κ∗

∂x∗3

)
(1− κ∗)3

]
, (11)
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2.3.3. Viscous Core Fluid Models

The Beresnev and Deng model (BD) for liquid–liquid interfaces is [17]:

∂κ∗

∂τ∗ = −
1

2π
µ2
µ1

Q∗
κ∗

∂
∂x∗

 1+2
µ1
µ2

(
λ∗2

κ∗2
−1

)
λ∗4

κ∗4
+

µ2
µ1
−1


+ 1

4κ∗

κ∗2(∂κ∗∂x∗ + κ
∗2 ∂3κ∗

∂x∗3

)
(
λ∗2

κ∗2
−1

)[(
µ1
µ2
−

1
4

)
λ∗2

κ∗2
+ 3

4−
µ1
µ2

]
λ∗4

κ∗4
+

µ2
µ1
−1

−
µ1
µ2

ln λ∗

κ∗




. (12)

2.4. Initial and Boundary Conditions

The models presented here consist of fourth order partial differential equation in space and first
order in time. A uniform film thickness δ is assumed as an initial condition in all cases. For the HAC
and GR models, fourth boundary conditions are required, while in BD model periodic boundary
conditions are postulated.

2.4.1. Initial Conditions

The initial conditions are related to the residual film of liquid wetting the adjacent wall of the
capillary that is formed when it is displaced by the non-wetting fluid. When the invading phase is gas
(HAC and GR models), Bretherton’s theory [19] predicts the dimensionless thickness of the wetting
film as a power law of the capillary number (Ca) :

δ∗ = 1.337Ca2/3, (13)

Beresnev et al. [20] developed a hydrodynamic theory and performed microfluidic experiments
for two liquids core-annular flow (BD model). They concluded that Bretherton’s equation does not
apply to liquid–liquid displacement. Deng et al. [21] used these experimental measurements and
fitted them to propose an empirical equation in order to predict the film thickness under these flow
conditions:

δ∗ = 0.0412log10(Ca) + 0.1475, (14)

2.4.2. Boundary Conditions

For HAC and GR models, the two first boundary conditions are related with the assumption that
the bubble is centered at the neck of the throat, consequently the problem is considered symmetric.
Thus the interface profile should be perpendicular to the plane x∗ = 0 and no flow at the pore neck is
imposed; i.e., the first and third derivatives are equal to zero at x∗ = 0:

∂κ∗(x∗, τ)
∂x∗

∣∣∣∣∣∣
x∗=0

= 0, (15)

∂3κ∗(x∗, τ)
∂x∗3

∣∣∣∣∣∣
x∗=0

= 0, (16)

The rest of the boundary conditions are imposed away of the constriction, at a distance d, where no
movement in the interface is detected, thus:

κ∗(x∗, τ)
∣∣∣
x∗=d = λ∗(d) − δ, (17)

∂κ∗(x∗, τ)
∂x∗

∣∣∣∣∣∣
x∗=d

=
∂λ∗(x∗)
∂x∗

∣∣∣∣∣∣
x∗=d

, (18)
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Periodic boundary conditions for the BD model are imposed, that is, the interface radius is equal
at the boundaries for all simulation time:

∂κ∗(x∗, τ)
∂x∗

∣∣∣∣∣∣
x∗=−L/2

=
∂κ∗(x∗, τ)
∂x∗

∣∣∣∣∣∣
x∗=L/2

. (19)

It should be noted that with this boundary conditions gas-liquid models describe a symmetric
interface evolution that reduced the computing to the middle of the domain, while the liquid–liquid
formulation does not specify symmetry, this implies a calculation on the entire domain.

2.5. Numerical Procedures

The models presented in Sections 2.3.2 and 2.3.3 consist in highly non-linear partial differential
equations, fourth order in space and first order in time, whose analytical solution can be very complex if
no simplifications are made. To solve such equations several numerical techniques have been proposed,
which range from the simple Forward Euler method to the use of powerful solvers implemented in
commercial software. We have thus proposed a unifying framework based on Fourier pseudo-spectral
differentiation method to solve the group of exposed models.

Fourier-Based Pseudo-Spectral (FPS) Differentiation Method

The finite differences differentiation method approximates the derivatives of a function in a
node of interest, where the accuracy order is related to the numbers of nodes involved in the
differentiation formula: two nodes for a second-order accuracy O(h2), four nodes for a O(h4), etc.
From a matricial point of view, the accuracy order determines the density of the differentiation matrix:
to a second-order accuracy O(h2) approximation corresponds a tridiagonal differentiation matrix, to an
O(h4) pentadiagonal matrix. The spectral methods have their basis in taking this process to the limit,
i.e., it works with differentiation matrix of N-order of accuracy O(hN), where N is the total number of
nodes, although this implies a dense matrix [22].

In the spectral collocation method (also known as pseudo-spectral), the unknown solution to
the differential equation is expanded as a global interpolant, such as trigonometric or polynomial
interpolant [23]. Since the geometry of our problem consists of a periodic domain (sinusoidal) and
periodic boundary conditions are used, it results adequate for the use of a global trigonometric
interpolant based on the compute of the Discrete Fourier Transform (DFT) and the inverse DFT (IDFT).

The DFT of a periodic function, in the domain x∗ = [−L/2 L/2] divided on N nodes spaced for a
distance h = 2π/N, period T = 2π, wave numbers k entire multiples of π/h = N/2, is stablished by:

κ̂∗ = h
N∑

j=1

eikx jκ∗ j, (20)

for all k = −N/2 + 1,−N/2, . . . , N/2; where κ̂ is the DFT, i is the imaginary unit and k is the variable
in the Fourier space or wave number. While the inverse Fourier transform is defined as:

κ j∗ =
1

2π

N/2∑
k=−N/2+1

eikx j κ̂k, (21)

To compute the DFT and IDFT we used the Cooley and Tukey [24] algorithms, known as Fast Fourier
Transform (FFT) and the inverse FFT (IFFT) implemented on MATLAB. Figure 3 shows a diagram
with a flowchart that illustrates the steps followed to perform the pseudo-spectral differentiation
method [25]. The procedure used to obtain the n-order spatial derivative of the dimensionless interface
position at time τ, κ∗′ = ∂κ(x∗, τ)/∂τ, on the domain x∗ = [−L/2 L/2], begins with the compute of the
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DFT by the FFT (κ̂∗). Subsequently the n-order derivative of κ̂∗ is performed on the Fourier space by
using the associated wave numbers k. Finally, the derivative κ∗′ is obtained via the IFFT.
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Once obtained the n-order spatial derivatives of the interface position κ∗ that intervene on the
evolution equations (Equations (8)–(12)), the first order temporal derivative is determined using a
forward finite difference, in such a way that the equation becomes explicit and the solution of next
time step can be estimated.

3. Results and Discussion

This section has the objective of validating our unifying numerical framework. For this purpose,
we evaluated some representative cases of the models studied here in order to compare the results
obtained with the Fourier-based pseudo-spectral (FPS) differentiation method to those reported in the
literature with other numerical techniques.

To solve the HAC model for gas–liquid elastic interfaces (Equation (8)) the authors used the
Forward Euler (FE) method [16]. Here, we focused on those results that show the effect of the interfacial
elasticity [26], encapsulated in the dimensionless parameter K∗. The HAC model is evaluated in a
geometry defined by a = 0.2, α = 0.1. The initial condition is defined by Ca = 0.1. First, Figure 4
shows the evolution of the interface radius κ∗ over time at the center of the capillary for cases where K∗

values are (a) less than and (b) greater than the unit. In first case (K∗ = 0.4) snap-off occurs, but not in
second case (K∗ = 1.1). While in Figure 5, it is related to the interface profiles moments before the end
of the simulation for different values of K∗.

The solutions reported for the GR model [10] (gas–liquid interfaces), represented by Equation (10),
were obtained using the GFE method, which are compared to those obtained by this work with the
FPS method. Figure 6 shows the interface evolution profiles at different dimensionless times, for the
same geometry used on the previous case but with initial conditions defined by Ca = 8.94 × 10−4.
In the case of a straight capillary, the GR model is evaluated for a dimensionless initial film thickness
ε = 0.12 and a dimensionless wavelength of fastest growing disturbance of λ∗max = 23/2π. In Figure 7
we compared the evolution of the interface profiles reported by Gauglitz and Radke [9] using the
Galerkin FE method, to those obtained with the MATLAB “pdepe” solver by Zhang et al. [13] and to
the results of this work applying the FPS method.
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Regarding the viscous core fluid case, the BD model for liquid–liquid interfaces (Equation (12))
is first evaluated for a base case defined by Ca = 10−3, a = 0.6, δ∗ = 0.5Rt

∗, µ1/µ2 = 10 and different
values of α. This base case is used by the BD model authors to validate the numerical solutions obtained
with the MOL implemented on Mathematica [18] through the comparison of the solutions obtained by
numerical simulations performed on CFD commercial codes. Here, we compare the results of Beresnev
and Deng [17] with those obtained on this work with the FPS method (see Figure 8). The snap-off time
for the cases that appear in Figure 8 are: (a) τs = 3.35 (b) τs = 7.74 (c) τs = 39.54. Beresnev and Deng
(Figure 3 in [14]) reported τsBD = 3.4, 7.8, 38.0, respectively.
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After these comparisons, the BD model is evaluated for two specific cases depicted in Figure 9.
The first inspects a geometric break-up criterion (Equation (6) in [23]); the geometric slope overcomes
the upper limit of such criterion (α = 0.729) with the rest of parameters maintained. This means that,
in theory, the snap-off is inhibited. In one of the profiles shown in Figure 9 it may be appreciated that
the FPS reproduces this situation, i.e., snap-off does not occur and the wetting liquid film decreases
its thickness. The second case in Figure 9 corresponds to a reversed viscosity ratio, that is the most
viscous liquid is now the wetting phase, thus: µ1/µ2 = 0.1. The rest of the parameters are those of the
base case, but with Ca = 3× 10−5 and α = 0.0695; this last parameter corresponds with the geometry
in case of Figure 8c. In fact, this case tries to demonstrate that even in most unfavorable conditions
for drop breakup (displaced wetting phase more viscous than the non-wetting phase and a low flow
regime), the breakup occurs if the geometrical criterion of rupture is met. Although, it should be noted
that the effect of these “unfavorable” flow conditions is reflected on the snap-off time τs; since this is
increased from τs = 39.54 to τs = 600.16. Beresnev and Deng (Figure 3c and Figure 7 in [14]) report for
these cases τsBD = 38.0, 585.0, respectively.

As it may be observed on the series of Figures 4–9, there is an acceptable agreement between the
results of the snap-off dynamics obtained in this work and those reported on the literature. The small
deviations on snap-off time and form of the interface can be related with the arbitrary definition of
breakup time. Regarding the differences in the interface evolution of inviscid and viscous core fluid,
it should be noted that in the first case the forms of the interface are axisymmetric, in addition to the
fact that a single breaking point is observed (Figures 5 and 6). While in the second case the results
show a more varied interface dynamics, both in non-symmetrical forms and in the presence, in some
configurations, of more than one breaking point (Figures 8 and 9). This can be explained by the
high non-linearity of the BD model (Equation (12)) and the periodic boundary conditions imposed
(Equation (19)).
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. In both cases, a = 0.6 and
δ∗ = 0.5Rt

∗.

It is important to remark that the small-slope based models assume α � 1, so the smaller α,
the better the approximation. On Beresnev et al. (Table III in [23]), for example, it is clear that the
order of the ratio between the theoretical and experimental snap-off times decreases for greater values
of the slope wall; recalling the assumption of small slope built into the theory. This situation is
observed too if we compare the snap-off time (τs) of the cases of Figure 8 with those reported of
CFD experiments (τCFD) (Figure 3 in [14]); the ratios τs/τCFD for αa,b,c = 0.45, 0.225, 0.0695 are (a) 2.70
(b) 2.08 (c) 1.13, respectively.

4. Conclusions

The snap-off mechanism in circular capillaries was studied here from a theoretical approach.
Particularly, we focused on the models reported that are based on the small-slope approach [9,10] for
gas–liquid elastic, gas–liquid and liquid–liquid interfaces, mainly: GR, HE and BD models [9,10,16,17].
Although the rheology of each interface implies important considerations on the formulation of
the models, their structures are similar: evolution equations described by highly nonlinear partial
differential equations of fourth order in space and first order in time (Equations (8)–(12)). According
to the reviewed literature, different mathematical techniques have been employed to solve such
models, from the Forward Euler simple method to the use of powerful solvers implemented in
commercial software.

We thus present a unifying framework to solve the group of referred models. This framework is
based on Fourier pseudo-spectral (FPS) differentiation method and uses the Fast Fourier Transform
(FFT) and the inverse FFT (IFFT), as is schematized in Figure 3. To demonstrate the effectiveness of our
framework we evaluate some of the most representative model cases studied here and compared the
results that we obtained with those reported in the literature. As it can be seen in Figures 4–9 there is
an acceptable agreement between the results of the snap-off dynamics (shape of the interface profile
and snap-off time). The fact that the FPS differentiation method turns out to be suitable for the solution
of the models studied here, may be related with the periodic domain of the problem, which results
adequate to implement the trigonometric interpolant used in the pseudo-spectral method.
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Finally, it is important to mention that despite the fact that the snap-off phenomenon was studied
here by mathematical modelling, most of the exposed models (except the HAC model) have been
validated experimentally [9,10,13,27,28]. Furthermore, it should be noted that a series of simplifications
are made on the models’ formulations, so future research might focus on overcoming these limitations.
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